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Abstract

Simultaneous distribution between the deflection angle and the lateral displacement of fast

charged particles traversing through matter is derived by applying numerical inverse Fourier trans-

forms on the Fourier spectral density solved analytically under the Molière theory of multiple scat-

tering, taking account of ionization loss. Our results show the simultaneous gaussian distribution

at the region of both small deflection angle and lateral displacement, though show the characteris-

tic contour patterns of probability density specific to the single and the double scatterings at the

regions of large deflection angle and/or lateral displacement. The influences of ionization loss on

the distribution are also investigated. An exact simultaneous distribution is derived under the fixed

energy condition based on a well-known model of screened single-scattering, which indicates the

limit of validity of the Molière theory applied to the simultaneous distribution. The simultaneous

distribution will be valuable for improving the accuracy and the efficiency of experimental analyses

and simulation studies relating to charged particle transports.
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I. INTRODUCTION

Molière’s theory of multiple scattering [1–3] is still a most advanced theory, taking account

of the single and the plural scatterings together in his theory, and showing rapid convergence

reflecting expansion by the low-frequent large-angle scattering [4]. Though, no distributions

other than those of the deflection angle, the lateral displacement, and the linear combination

of the both, were indicated by himself [5], due to the mathematical difficulty or complexity.

Effective approaches have been attempted to apply the Molière theory to other prob-

lems. A differentially-formulated Molière theory was developed by Kamata and Nishimura,

expressing the Molière’s theory by a simple ordinary differential equation for the Fourier

spectral density, introducing new physical constants [6, 7]. They indicated the terms ap-

pended by the Molière theory to their structure functions of electromagnetic shower. Later,

the formulation was applied by Nakatsuka to evaluate corrections by the Molière theory

to the longitudinal distribution of fast charged particles traversing through matter [8] and

by Nakatsuka and Nishimura to derive the angular and the lateral distributions of those

particles under the Molière theory with ionization [4]. On the other hand, the numeri-

cal functional transform was applied by Andreo et al. to derive the higher-order terms of

Molière’s series-coefficient function [9, 10], as well as by Bielajew to derive the exact angular

distribution based on a model of screened single-scattering [11, 12].

We derive the simultaneous distribution between the deflection angle and the lateral dis-

placement, not solved yet under the Molière theory [13], by applying the above effective

methods. The Molière simultaneous distribution determines the energy of charged particle

more accurately with the maximum likelihood method than the individual distribution for

the deflection angle [14]. The former will give more reliable results than the latter in exper-

imental analyses concerning charged particle transports, e.g. momentum measurements by

emulsion cloud chambers [15, 16] or streamer tube chambers [17, 18] in neutrino-oscillation

experiments, as well as arrival-direction decisions in astronomical cosmic-ray observations

[19, 20].

Practically, we acquire the simultaneous distribution with ionization by applying the

inverse Fourier transforms numerically on the Fourier spectral density solved analytically

by the Molière theory of differential formulation. The distribution expressed by a power

series of rapid convergence is also presented. The results indicated by contour maps of the
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probability density show characteristic patterns of the single and the double scatterings other

than the central gaussian pattern. We also propose a mathematically exact simultaneous

distribution based on a well-known model of screened single-scattering [11, 12], under the

fixed energy condition. Comparing the results with those derived by the Molière theory,

we discuss the limits of validity and applicability of the Molière theory to the simultaneous

distribution.
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II. MOLIÈRE SIMULTANEOUS DISTRIBUTION BETWEEN THE DEFLEC-

TION ANGLE AND THE LATERAL DISPLACEMENT

A. The analytical solution of Fourier spectral density for the simultaneous distri-

bution

Let F (~χ,~r, t)d~χd~r be the simultaneous distribution between the deflection angle ~χ ≡
(θy, θz) and the lateral displacement ~r ≡ (y, z) of fast charged particles after penetrating a

matter of the thickness t, with ~r and t measured in units of radiation length X0 [21]. Then

the diffusion equation is described as [4, 11]

∂

∂t
F (~χ,~r, t) = −~χ

∂F (~χ,~r, t)

∂~r
+

∫∫
{F (~χ− ~χ′, ~r, t)− F (~χ,~r, t)}σ(χ′)d~χ′, (1)

where σ(χ) denotes the screened single-scattering cross-section for charged particles of energy

E under the small angle approximation [13],

σ(χ)2πχdχdt =
1

πΩ

K2

E2
χ−42πχdχdt for χ >

√
eχa (2)

with the characteristic screening angle [1, 3] of

χa = (K/E)/e(Ω−1+2C)/2, (3)

K and Ω denote the scattering constants specific to the matter introduced by Kamata

and Nishimura [4, 6, 7], and C = 0.57721 · · · denotes Euler’s constant. We derive the

simultaneous distribution, taking account of continuous energy loss by ionization with

E = E0 − εt, (4)

where E0 denotes the incident energy and ε the critical energy [4, 21]. Applying Fourier

transforms

F̃ (~ζ, ~η, t) =
1

4π2

∫∫∫∫
ei~ζ~χ+i~η~rF (~χ,~r, t)d~χd~r, (5)

we have a diffusion equation for the Fourier spectral density,

∂F̃

∂t′
= ~η

∂F̃

∂~ζ ′
+ 2πF̃

∫ ∞

0

{J0(ζ
′χ)− 1}σ(χ)χdχ

= ~η
∂F̃

∂~ζ ′
− K2ζ ′2

4E ′2 F̃

{
1− 1

Ω
ln

K2ζ ′2

4E ′2

}
, (6)
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according to the differentially-formulated Molière theory [4, 6, 7], where ~ζ ≡ (ζy, ζz) and

~η ≡ (ηy, ηz) denote the Fourier variables corresponding to ~χ and ~r, respectively. Note that

the variables ~ζ ′ and E ′ change together with the increase of variable t′. The differential term

with ~ζ ′ vanishes when we replace the variable ~ζ ′ by

~ζ ′ = ~ζ + (t− t′)~η, (7)

where t and ~ζ denote thickness and Fourier variable at the destination, so that Eq. (6) is

integrated as [4]

ln 4π2F̃ = −
∫ t

0

K2(~ζ + (t− t′)~η)2

4(E0 − εt′)2

{
1− 1

Ω
ln

K2(~ζ + (t− t′)~η)2

4(E0 − εt′)2

}
dt′

=

∫ 1

0

θ2
ME0E(~ζ + ~ηtu)2

4B(E + εtu)2
ln

θ2
ME0E(~ζ + ~ηtu)2

4eB(E + εtu)2
du, (8)

where u replaces (t− t′)/t, E denotes the destination energy at t, and B and θM, called as

the expansion parameter and the scale angle [4], are introduced as

B − ln B = Ω− ln Ω + ln t, (9)

θ2
M = (B/Ω)K2t/(E0E). (10)

The thickness t and the square of scale angle θ2
M divided by K2/(E0E) for charged particles

traversing through matters of H2O (Ω = 15.2, K = 19.1 MeV), Fe (Ω = 14.3, K = 19.8

MeV), and Pb (Ω = 13.0, K = 20.7 MeV) are plotted against B in Figs. 1 and 2, respectively.

By taking the spectral density F̃ (~ζ, ~η, t) of Eq. (5) on the coordinates of ~ζ = (ζ, 0) and

~η = (η, 0), we have the spectral density for the projected components, as

f̃(ζ, ηt, t) =
1

2π
exp

[∫ 1

0

θ2
ME0E(ζ + ηtu)2

4B(E + εtu)2
ln

θ2
ME0E(ζ + ηtu)2

4eB(E + εtu)2
du

]
. (11)

We expressed the spectral density as the function of ζ and ηt. Then applying the inverse

Fourier transforms with ζ and ηt, we have the simultaneous distribution between the pro-

jected components, θ and y, as

f(θ, ψ, t)dθdψ =
dθd(y/t)

2π

∫ ∞

−∞

∫ ∞

−∞
e−iθζ−iψ(ηt)f̃(ζ, ηt, t)dζd(ηt), (12)

where we expressed the simultaneous distribution as the function of the deflection angle θ

and the chord-angle ψ, defined as

ψ ≡ y/t. (13)
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It should be reminded that the variables ζ and ηt always appear in the forms of θMζ and

θMηt in the Fourier spectral density of Eq. (11), so that the variables θ and ψ become scaled

by θM in the probability density of f(θ, ψ, t) due to the relation of Eq. (12).

Note that the diffusion equation (1) is valid under the small angle approximation [13]

where θ2 is required smaller enough than 1. Thus so as the Molière simultaneous distributions

derived below to be valid, θ2
M which increases with t (or the corresponding B) and works

proportionally to K2/(E0E) is required smaller enough than 1. Note also that the continuous

energy loss of Eq. (4) is valid for charged particles not to suffer radiation loss, e.g. for

electrons with their energies of about E < ε [21] and for muons with their energies of about

E < 625 GeV in the standard rock [22].

B. Double Fourier transforms to derive the simultaneous distribution

The simultaneous distribution is derived by the double Fourier transforms of Eq. (12), by

applying FFT (Fast Fourier Transform) tools [23] or applying numerical functional trans-

forms. As it holds a symmetric relation of

f̃(−ζ,−ηt, t) = f̃(ζ, ηt, t), (14)

the double Fourier transforms of Eq. (12) is reduced to the double cosine transforms as

f(θ, ψ, t)dθdψ =
dθd(y/t)

π

∫ ∞

0

d(ηt)

∫ ∞

−∞
cos(θζ + ψηt)f̃(ζ, ηt, t)dζ. (15)

The simultaneous distribution can also be expressed as g(ρ, ϕ, t)ρdρdϕ in the cylindrical

coordinate, satisfying

f(θ, ψ, t) = g(ρ, ϕ, t) with (16)

θ = ρ cos ϕ, ψ = ρ sin ϕ. (17)

On the radial axis with the azimuthal angle of 0, the probability density is expressed as

g(ρ, 0, t) = f(ρ, 0, t) =
1

π

∫ ∞

0

dζ cos(ρζ)

∫ ∞

−∞
f̃(ζ, ηt, t)d(ηt). (18)

If we introduce the new θ′-ψ′ and ζ ′-η′t coordinates by rotating both the θ-ψ and ζ-ηt

coordinates with ϕ, the probability density on the θ′ axis, or g(ρ, ϕ, t), is derived same way

as Eq. (18) on the rotated coordinate,

g(ρ, ϕ, t) =
1

π

∫ ∞

0

dζ ′ cos(ρζ ′)
∫ ∞

−∞
f̃(ζ ′ cos ϕ− η′t sin ϕ, ζ ′ sin ϕ + η′t cos ϕ, t)d(η′t). (19)
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C. The simultaneous distribution under the gaussian approximation

Integrating Eq. (11) with the limiting condition of B → ∞, we have the analytical

solution of simultaneous spectral density under the gaussian approximation [13], as

f̃G(ζ, ηt, t) =
1

2π
exp

[
−

∫ 1

0

θ2
ME0E(ζ + ηtu)2

4(E + εtu)2
du

]

=
1

2π
exp

[
−θ2

ME0E

4ε2t2

{
η2t2 − 2ηt(Eηt− εtζ)

εt
ln

E0

E
+

(Eηt− εtζ)2

E0E

}]
, (20)

so that we have the gaussian simultaneous distribution

fG(θ, ψ, t)dθdψ

=
ε2t2/(E0E)

{
ε2t2/(E0E)− ln2(E0/E)

}1/2

dθdψ

πθ2
M

× exp

[
− ε2t2/(E0E)/θ2

M

ε2t2/(E0E)− ln2(E0/E)

{
θ2 − 2θ(Eθ + εtψ)

εt
ln

E0

E
+

(Eθ + εtψ)2

E0E

}]
. (21)

These spectral density and the distribution agree with Eyges’ results [24], if we regard his

pβ as our E.

Especially under the fixed energy condition, we have

f̃G(ζ, ηt, t) =
1

2π
exp

[
−θ2

M

4

(
ζ2 + ζηt +

η2t2

3

)]
(22)

at the limit of ε → 0 thus E0 → E, so that we have the simultaneous distribution

fG(θ, ψ, t)dθdψ =
2
√

3

πθ2
M

exp

[
− 4

θ2
M

(
θ2 − 3θψ + 3ψ2

)]
dθdψ, (23)

well known as the Fermi distribution [21].

D. Molière simultaneous distribution under the fixed energy condition

Integrating Eq. (11) with the limiting condition of ε → 0, we have the analytical solution

of simultaneous spectral density under the fixed energy condition, as

ln 2πf̃ =
1

B

θ2
M

12ηt

{
(ζ + ηt)3 ln

θ2
M(ζ + ηt)2

4e2/3+B
− ζ3 ln

θ2
Mζ2

4e2/3+B

}
, (24)

identical with Molière’s result [5], where we should remind his χ′c
√

l0B agrees with our θM.

By applying the double cosine transforms of Eq. (15), we have the Molière simultaneous

distribution f(θ, ψ, t) between the deflection angle θ and the chord-angle ψ ≡ y/t as indicated
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in Fig. 3 for B = 8, where we find the probability density decreases as two-dimensional

gaussian at the central region of ρ ¿ θM. The same distribution is also indicated in Fig. 4 by

the radial variation g(ρ, ϕ, t) of the density defined in Eq. (19), where we find the probability

density decreases with power-law of the index of about -4 or -6 at the peripheral regions of

ρ À θM depending on the azimuthal angle ϕ of the radial direction (the indexes of about

−4.2, −3.9, −6.2, −6.1, −6.0, and −6.0 for ϕ of π/6, 0, π/3, 5π/6, π/2, and 2π/3, from the

top line to the bottom). The probability density f(θ, ψ, t) is also indicated in the contour

map in Fig. 5, whose characteristic patterns appearing in the peripheral regions are discussed

later in Subsection III C.

E. Molière simultaneous distribution with ionization

Integrating Eq. (11) partly using mathematica [25], we have the analytical solution of

simultaneous spectral density with ionization, as

ln 2πf̃ =
θ2
ME0E

4B(E0 − E)2

{
ηt

[
(ζ + ηt) ln

θ2
M(ζ + ηt)2

4eB
− ζ ln

θ2
Mζ2

4eB
− E0 + E

E0 − E
ηt ln

E0

E

]

+ (Eηt− εtζ)

[
ζ + ηt

E0

ln
θ2
M(ζ + ηt)2

4eB+2
− ζ

E
ln

θ2
Mζ2

4eB+2
−

(
ζ + ηt

E0

+
ζ

E

)
ln

E0

E

]

− (Eηt− εtζ)ηt

E0 − E

[
ln

E2
0(ηt)2

(Eηt− εtζ)2
ln

θ2
M(ζ + ηt)2

4eB
− ln

E2(ηt)2

(Eηt− εtζ)2
ln

θ2
Mζ2

4eB

+4Li2(−(E0 − E)(ζ + ηt)

Eηt− εtζ
)− 4Li2(−(E0 − E)ζ

Eηt− εtζ
)

]}
(25)

with B and θM of Eqs. (9) and (10), where Li2(z) denotes the dilogarithm function indi-

cated in Appendix A [26]. The spectral density indicates that the simultaneous distribution

between the deflection angle θ and the chord-angle ψ ≡ y/t, both scaled by θM, depends

only on the expansion parameter B and the fractional energy E/E0. The simultaneous dis-

tribution with fractional energy-loss, (E0 − E)/E0, of 1/4 and 1/2 are derived numerically

through Eq. (15) [27] as indicated in contour maps of the probability density in Fig. 5, whose

characteristic patterns appearing in the peripheral regions are discussed later in Subsection

III C.
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III. RELATING PROBLEMS AND DISCUSSIONS

A. Molière simultaneous distribution expressed by power series with B−1

The spectral density of the Molière simultaneous distribution under the fixed energy

condition of Eq. (24) can be expressed as

f̃ =
1

2π
exp

[
−θ2

M

4
(ζ2 + ζηt +

η2t2

3
) +

θ2
M/B

12ηt

{
(ζ + ηt)3 ln

θ2
M(ζ + ηt)2

4e2/3
− ζ3 ln

θ2
Mζ2

4e2/3

}]
.

(26)

We can expand the density by power series with B−1 as

f̃ =
1

2π
e−

θ2
M
4

(ζ2+ζηt+ η2t2

3
)

∞∑

k=0

1

k!

(θ2
M/B)k

(12ηt)k

{
(ζ + ηt)3 ln

θ2
M(ζ + ηt)2

4e2/3
− ζ3 ln

θ2
Mζ2

4e2/3

}k

, (27)

so we find the Molière simultaneous distribution is expressed by power series with B−1 as

f(θ, ψ, t) = f (0)(θ, ψ) + B−1f (1)(θ, ψ) + B−2f (2)(θ, ψ) + · · · (28)

with the t-dependent B of Eq. (9) and the B-independent series-coefficient functions of

f (k)(θ, ψ)

=
1/k!

4π2

∫ ∫
e−iθζ−iψηt

(
θ2
M

12ηt

)k {
(ζ + ηt)3 ln

θ2
M(ζ + ηt)2

4e2/3
− ζ3 ln

θ2
Mζ2

4e2/3

}k

e−
θ2
M
4

(ζ2+ζηt+ η2t2

3
)dζd(ηt),

(29)

similarly as the series expansion of the Molière angular distribution [2].

Especially for the first three series-coefficient functions, we have

f (0)(θ, ψ) =
1

4π2

∫ ∫
e−iθζ−iψηte−

θ2
M
4

(ζ2+ζηt+ η2t2

3
)dζd(ηt) =

2
√

3

πθ2
M

exp

[
− 4

θ2
M

(
θ2 − 3θψ + 3ψ2

)]
, (30)

f (1)(θ, ψ) =
1

4π2

∫ ∫
e−iθζ−iψηte−

θ2
M
4

(ζ2+ζηt+ η2t2

3
)

×
{

θ2
M

4

(
ζ2 + ζηt +

η2t2

3

)
ln

θ2
Mζ2

4e2/3
+

θ2
M(ζ + ηt)3

12ηt
ln

(
1 +

ηt

ζ

)2
}

dζd(ηt), (31)

f (2)(θ, ψ) =
1/2!

4π2

∫ ∫
e−iθζ−iψηte−

θ2
M
4

(ζ2+ζηt+ η2t2

3
)

×
{

θ2
M

4

(
ζ2 + ζηt +

η2t2

3

)
ln

θ2
Mζ2

4e2/3
+

θ2
M(ζ + ηt)3

12ηt
ln

(
1 +

ηt

ζ

)2
}2

dζd(ηt), (32)

where at |ηt
ζ
| ≤ 0.01 we evaluate

θ2
M(ζ + ηt)3

12ηt
ln

(
1 +

ηt

ζ

)2

' θ2
M(ζ + ηt)3

6ζ

(
1− ηt

2ζ
+

η2t2

3ζ2
− · · ·

)
. (33)
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f (0)(θ, ψ) derived analytically is a 2-dimensional gaussian, already indicated in Eq. (23).

f (1)(θ, ψ) and f (2)(θ, ψ) are derived numerically as indicated in Figs. 6-7 and given in Tables

I-II for representative radial directions in the θ-ψ coordinate. Then we can derive the

simultaneous distributions accurately enough by the first three terms of the power series

(28), easily with B from Eq. (9), f (0) of Eq. (30), and f (1), f (2) of Tables I-II especially

on the radial lines indicated in the tables without applying the numerical integration of

Eq. (15). The distributions derived by the first three terms of the power series agree very

well with those derived by the numerical integration of Eq. (15), as compared in Fig. 8 on

the radial lines of θ = 0 and ψ ≡ y/t = 0 for B = 8.

Note that the term f (k)(θ, ψ) for k ≥ 1 does not contribute to the probability of simulta-

neous distribution with θ and ψ as a whole, as confirmed by

∫ ∞

−∞
dψ

∫ ∞

−∞
dθf (k)(θ, ψ)

= lim
ηt→0

[
lim
ζ→0

1

k!

(
θ2
M

12ηt

)k {
(ζ + ηt)3 ln

(ζ + ηt)2

4e2/3
− ζ3 ln

ζ2

4e2/3

}k

e−
θ2
M
4

(ζ2+ζηt+ η2t2

3
)

]

= 0 (for k ≥ 1). (34)

B. A cross-section dividing model to interpret the series expansion of the Molière

simultaneous distribution

We divide the screened single-scattering cross-section σ(χ) of Eq. (2) as [4]

σ(χ) = σM(χ) + σL(χ), (35)

where the moderate scattering σM(χ) and the large-angle scattering σL(χ) are divided at

χB = eB/2
√

eχa. (36)

As we have [4, 13]

2π

∫ ∞

0

{J0(ζ
′χ)− 1}σM(χ)χdχ = −B

Ω

K2ζ ′2

4E2
+O(ζ ′4),

2π

∫ ∞

0

{J0(ζ
′χ)− 1}σL(χ)χdχ =

1

Ω

K2ζ ′2

4E2
ln

eBK2ζ ′2

eΩ4E2
+O(ζ ′4), (37)
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the diffusion equation (6) is described as

∂F̃

∂t′
= ~η

∂F̃

∂~ζ ′
+ 2πF̃

∫ ∞

0

{J0(ζ
′χ)− 1} {σM(χ) + σL(χ)}χdχ

= ~η
∂F̃

∂~ζ ′
− B

Ω

K2ζ ′2

4E2
F̃ +

1

Ω

K2ζ ′2

4E2
F̃ ln

eBK2ζ ′2

eΩ4E2
. (38)

The differential term with ~ζ ′ vanishes when we replace the variable ~ζ ′ by Eq. (7), then we

have

ln 4π2F̃ = −B

Ω

∫ t

0

K2(~ζ + (t− t′)~η)2

4E2
dt′ +

1

Ω

∫ t

0

K2(~ζ + (t− t′)~η)2

4E2
ln

eBK2(~ζ + (t− t′)~η)2

eΩ4E2
dt′, (39)

under the fixed energy condition, so that we have the spectral density for the projected

components

ln 2πf̃ = −
∫ 1

0

θ2
M(ζ + ηtu)2

4
du +

1

B

∫ 1

0

θ2
M(ζ + ηtu)2

4
ln

θ2
M(ζ + ηtu)2

4
du

= −θ2
M

4

(
ζ2 + ζηt +

η2t2

3

)
+

θ2
M/B

12ηt

{
(ζ + ηt)3 ln

θ2
M(ζ + ηt)2

4e2/3
− ζ3 ln

θ2
Mζ2

4e2/3

}
, (40)

identical with Eq. (24). It should be reminded that the former and the latter terms are the

correction terms on the simultaneous distribution by the moderate scattering σM(χ) and

the large-angle scattering σL(χ) expressed in the Fourier component, respectively. So the

successive terms in the power series (27) with B−1 mean the gaussian distribution of Eq. (23)

produced by σM(χ) (k = 0) and its corrected distributions by k-times scatterings of σL(χ)

within the thickness t (k ≥ 1), expressed in the Fourier component. The successive terms

in the power series (28) for the simultaneous distribution have the same meaning.

The probability p of receiving σL(χ) within the thickness t is evaluated as [4]

p ≡
∫ t

0

dt

∫ ∞

0

σL(χ)2πχdχ =
t

πΩ

K2

E2

∫ ∞

χB

χ−42πχdχ = e2C−2/B, (41)

so that we find the power series (28) with B−1 means the power series with the probability of

receiving the low-frequent large-angle scattering σL(χ) within the thickness t, which explains

very rapid convergence of the power series (28) for the Molière simultaneous distribution as

the traditional power series for the Molière angular distribution [4].
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C. Contour patterns of probability density for the Molière simultaneous distribu-

tion

Contour maps of the probability density f(θ, ψ, t) for the simultaneous distribution with

ionization are indicated in Fig. 5 with θ and ψ ≡ y/t scaled by θM. Those show B-

independent elliptic patterns of 2-dimensional gaussian at the central region of distribution

(θ2 + ψ2 ¿ θ2
M), which are well approximated by the gaussians of Eq. (21), revealing as the

limiting distribution at B → ∞ (or t → ∞ as indicated in Fig. 1). The azimuthal angle λ

for the major axis of the gaussian in the θ-ψ coordinate is determined by the rotation angle

introduced in Subsection II B to remove θ′ψ′ term from Eq. (21) in the θ′-ψ′ coordinate.

Thus we have

tan 2λ = 2

(
E0 − E

E0

− ln
E0

E

)
/

(
E0 + E

E0

− (E0 − E)2

E0E
− 2E

E0 − E
ln

E0

E

)
, (42)

which decreases from 3/2 to 0 with the increase of fractional energy-loss, (E0 − E)/E0, as

indicated in Fig. 9. The correlation coefficient µ is expressed as [28]

µ ≡ 〈θ · y/t〉av√
〈θ2〉av〈y2/t2〉av

=

(
ln

E0

E
− 1 +

E

E0

)
/

√(
E0

E
− E

E0

− 2 ln
E0

E

)(
1− E

E0

)
, (43)

which decreases from
√

3/2 to 0 with the increase of fractional energy-loss, as indicated in

Fig. 10.

The probability density in the peripheral region of θ2 + ψ2 À θ2
M with ψ(ψ − θ) < 0

(single-scattering region) depends only on θ and does not depend on y/t under the fixed

energy condition. We interpret the simultaneous distribution in this region by the single

scattering illustrated in Fig. 11, taking account of ionization loss. Probability σp(θy)dθydt′

for charged particles to be scattered in the projected angle between θy and θy + dθy within

the thickness of dt′ is derived from the spatial angular distribution expressed in Eq. (2), as

σp(θy)dθydt′ =
1

πΩ

K2

E ′2dθydt′
∫ ∞

−∞

dθz

(θ2
y + θ2

z)
2

=
1

2Ω

K2

E ′2 θ−3
y dθydt′, (44)

where the energy decreases as E ′ = E0 − εt′ according to Eq. (4). So the probability of

simultaneous distribution determined by the single scattering, f1(θ, ψ, t)dθdψ, is evaluated

13



as

f1(θ, ψ, t)dθdψ =
K2

2Ω
dθdy

∫ t

0

θ−3

E2
δ(y − (t− t′)θ)dt′

=
1

2Ω

K2θ−4

(E + εy/θ)2
dθdy

=
θ2
M

2B

E0E

(E + εy/θ)2
θ−4dθd

y

t
, (45)

where δ denotes the delta function. On the contrary in the peripheral region of θ2+ψ2 À θ2
M

with ψ(ψ − θ) > 0 (double-scattering region), we can interpret the simultaneous distribu-

tion by the double scattering as illustrated in Fig. 11. The probability of simultaneous

distribution determined by the double scattering, f2(θ, ψ, t)dθdψ, is evaluated as

f2(θ, ψ, t)dθdψ=

(
K2

2Ω

)2

dθdy

∫ t

0

dt′
∫ ∞

y/(t−t′)
dθ′

θ′−3

E ′2

∫ t

t′
dt′′

(θ − θ′)−3

E ′′2 δ(y − (t− t′)θ′ − (t− t′′)(θ − θ′))

=

(
K2

2Ω

)2

dθdy

∫ t

0

dt′
∫ ∞

y/(t−t′)

θ′−3

E ′2
(θ − θ′)−4

(E + ε(y − (t− t′)θ′)/(θ − θ′))2
dθ′

=

(
θ2
M

2B

)2

dθd
y

t

∫ t

0

dt′

t

E0E

E ′2

∫ ∞

y/(t−t′)

E0Eθ′−3(θ − θ′)−2

(E0y/t + E(θ − y/t)− E ′θ′)2
dθ′. (46)

The contour maps derived from f1(θ, ψ, t) and f2(θ, ψ, t) in case of fixed energy, as well as

in cases with fractional energy-loss, (E0 − E)/E0, of 1/4 and 1/2 are indicated in Fig. 12,

which well explain the Molière simultaneous distributions of Fig. 5 in the peripheral regions.

The contour lines of f1(θ, ψ, t) run parallel to the (y/t)-axis in Fig. 12 under the fixed

energy condition (ε = 0), as the probability density of the single scattering depends only on

θ and does not depend on the thickness t′ or the lateral displacement y ≡ (t − t′)θ in the

evaluation of Eq. (45). We derive the equation of the contour line of f1(θ, ψ, t), which meets

the θ-axis at θ0. As it satisfies f1(θ, ψ, t) = f1(θ0, 0, t), we have the equation

(E0 − E)ψ = E(θ2
0/θ − θ) for ψ(ψ − θ) ≤ 0 (47)

of hyperbola, which explains the parallel lines to (y/t)-axis under the fixed energy condition

and the inclined lines under the process with ionization, appearing in the single-scattering

region of the contour map in Fig. 5.

The probability densities f(θ, ψ, t) on the radial lines of θ = 0 and y/t = 0 under the

fixed energy condition are indicated in Fig. 8 for B = 8. Those in the central region are well

explained by the gaussian distributions of f (0)(θ, ψ) as good first approximations, though

14



substantial contributions from B−1f (1)(θ, ψ) and B−2f (2)(θ, ψ), or the first and the second

correction terms on the gaussian distributions by receiving the large-angle scattering σL(χ)

defined in Subsection III B, should be taken into account as pointed out by Scott [13]. The

density in the peripheral region indicated on the radial line of θ = 0 is well explained

by f2(0, ψ, t) = (θ4
M/168)B−2ψ−6 derived by the double scattering. On the other hand, the

density in the peripheral region on the radial line of y/t = 0 cannot be explained by f1(θ, 0, t)

derived by the single scattering, as the density f(θ, 0, t) in the peripheral region indicated

in Fig. 5 shows a little smaller value than f1(θ, 0, t) indicated in Fig. 12. This density is well

explained by B−1f (1)(θ, 0) term, or the first correction term on the gaussian distribution by

receiving the above scattering σL(χ), as indicated in Fig. 8 [29].

D. Comparison of the Molière simultaneous distribution with an exact distribu-

tion based on a screened single-scattering model and limits of the Molière theory

It is well known that Molière’s Fourier spectral density for his angular distribution [2]

showed gaussian at the central region of spectrum (θ2
Mζ2 + θ2

Mη2t2 ¿ 1), agreeing very well

with an exact spectral density [9, 10] derived under a model of screened single-scattering

[11, 12]. Though with the increase of frequency, it began to depart from the exact spectral

density and to increase and diverge after taking a deep minimum, so that the resultant

Molière angular distribution wiggled especially in case of small B [9, 10]. The Molière

simultaneous spectral density of Eq. (24) has also the same problem, as indicated in Fig. 13

for B = 8. It has the peak value of 1/(2π) at ζ = ηt = 0 and decreases with 2-dimensional

gaussian at low frequency regions of ζ and ηt. Though, it begins to increase after revealing

a deep ditch and diverges at θ2
Mζ2 + θ2

Mη2t2 À 1, which fact disturbs convergence of the

numerical integration of Eq. (15) to obtain the Molière simultaneous distribution in case of

small B.

These problems vanished in derivation of the angular distribution by applying an exact

spectral density derived under the well-known model of screened single-scattering [11, 12],

σ(χ)2πχdχdt =
1

πΩ

K2

E2

1

(χ2 + χ2
a)

2
2πχdχdt. (48)

We obtain the simultaneous distribution, based on this model. The diffusion equation for
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the Fourier spectral density is exactly described as

∂F̃

∂t′
= ~η

∂F̃

∂~ζ ′
+

K2/E2

Ωχ2
a

F̃ {χaζ
′K1(χaζ

′)− 1} , (49)

instead of Eq. (6) under the Molière theory where terms of O(ζ ′4) were neglected [9, 12, 13].

K1 denotes the modified Bessel function of the first order [30]. The differential term with ~ζ ′

vanishes when we replace the variable ~ζ ′ by Eq. (7), thus we get the simultaneous spectral

density for the projected components as

f̃(ζ, ηt, t) =
1

2π
exp

[
K2t/E2

Ωχ2
a

∫ 1

0

{χa|ζ + ηtu|K1(χa|ζ + ηtu|)− 1} du

]

=
1

2π
exp

[
eB−1+2C

B

{∫ 1

0

θM|ζ + ηtu|
e(B−1+2C)/2

K1(
θM|ζ + ηtu|
e(B−1+2C)/2

)du− 1

}]
(50)

under the fixed energy condition, instead of Eq. (24) derived by the Molière theory, with χa

of Eq. (3) expressed as

χa = θM/e(B−1+2C)/2, (51)

according to Eqs. (9) and (10).

The resultant spectral density is indicated in Fig. 14 for B = 8, for wider regions of ζ

and ηt than Fig. 13. It also has the peak value of 1/(2π) at ζ = ηt = 0 and shows the same

gaussian decrease at low frequency regions of ζ and ηt as the Molière spectral density of

Fig. 13. Though, it continues to decrease monotonously with the increase of ζ2 + η2t2 and

approaches to the finite limiting density of

lim
ζ2+η2t2→∞

f̃(ζ, ηt, t) = e−t/t0/(2π) with (52)

1/t0 = K2/(E2Ωχ2
a) = Ω−1eΩ−1+2C , (53)

corresponding to the survival probability of the incident particle against the scattering of

Eq. (48) with the mean free path of t0 [10]. Hence, the inverse Fourier transforms of Eq.

(12), applied to the spectral density of Eq. (50) with the limiting density of e−t/t0/(2π)

subtracted, converges at any thickness of t and gives the exact simultaneous distribution

between θ and y/t, removing the delta function corresponding to the survival probability

of the incident charged particle, as in the derivation of exact angular distribution [10]. The

exact simultaneous distribution expressed with the variables scaled by θM depends only on

the parameter B, under the fixed energy condition.
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As the diffusion equation (6) under the Molière theory is a highly accurate approximation

of the exact equation (49) for small |ζ ′| [12], the resultant simple spectral density of Eq. (24)

agrees very well with the exact one of Eq. (50) in the central region of spectrum, within the

ditch observed in Fig. 13. We compare the both in the contour map of Fig. 15 for B = 8.

We cannot find any visible difference between the both in the central region of spectrum

where the numerical inverse transforms of Eq. (15) converge. Thus the both simultaneous

distributions derived by the respective spectral densities agree very well, as indicated in the

contour map of Fig. 16 for B = 8.

In case of small thicknesses of t (or the corresponding B determined by Eq. (9)), the

ditch is shallow reflecting the even high limiting density e−t/t0/(2π) of the exact spectrum,

so that the numerical integration of Eq. (15) does not converge due to the divergence of

spectral densities outside the ditch. With the increase of t, the ditch becomes deep reflecting

the decrease of the limiting spectral density, so that the numerical integration begins to

converge in the central region of spectrum. And in case of large enough t, we get the reliable

Molière simultaneous distributions by the numerical inverse transforms of Eq. (15) with

the integration converged in the accurate region of spectrum, even under the process with

ionization by applying the spectral density of Eq. (25). On the other hand, we can get the

exact simultaneous distributions under the fixed energy condition at any thickness of t (or

the corresponding B) by applying the numerical integration of Eq. (15) on the exact spectral

density of Eq. (50) with the limiting density of e−t/t0/(2π) subtracted, though the spectral

density expressed in a definite integral is rather complicated.
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IV. CONCLUSIONS

Simultaneous distribution between the deflection angle θ and the lateral displacement

y for charged particles traversing through matter is derived under the Molière theory of

multiple scattering with ionization. The distribution is evaluated by applying the numer-

ical inverse Fourier transforms on the analytical Fourier spectral density solved by the

differentially-formulated Molière theory. The distributions are indicated on the contour

maps of the probability density, which is characterized by three regions; the central region,

the single-scattering region, and the double-scattering region, reflecting the properties of the

multiple scattering, the single scattering, and the double scattering, respectively (Section II

and Subsection III C).

The simultaneous distribution with the both projected angles, θ and ψ ≡ y/t, scaled by

θM is expressed in power series with B−1 under the fixed energy condition. The first three

terms of the series, f(θ, ψ, t) = f (0)(θ, ψ)+B−1f (1)(θ, ψ)+B−2f (2)(θ, ψ), with B-independent

series-coefficient functions, f (0) of Eq. (30) and f (1), f (2) of the predetermined Tables I-II

for required radial directions in the θ-ψ coordinate, are effective in easy derivations of the

probability density without applying the numerical integration of Eq. (15) at required thick-

nesses of t, with the corresponding B and θM determined by Eqs. (9) and (10) (Subsection

IIIA).

The Molière simultaneous distribution expressed by the power series (28) with B−1 is well

interpreted by the cross-section dividing model, as series of the central gaussian distributions

corrected successively by the k-times large-angle scatterings of σL(χ) within the thickness t.

B−1 is proportional to the probability of receiving the scattering σL(χ) within the thickness

t, so that we find the power series (28) shows very rapid convergence (Subsection III B).

An exact simultaneous distribution derivable at any thickness of t is solved based on

the well-known model of screened single-scattering under the fixed energy condition, which

shows the Molière theory gives accurate and reliable distributions if the numerical integra-

tions of inverse Fourier transforms are well converged within the accurate central region of

spectrum in case of large enough t (Subsection III D), though both the exact and the Molière

simultaneous distributions obtained here are valid under the small angle approximation and

are applicable to charged particles not suffering radiation loss (Subsection II A).

The Molière simultaneous distribution, as easy to handle as the traditional angular distri-
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bution, will give more reliable and accurate results than the individual distribution in theo-

retical predictions and data analyses of experiments concerning charged particle transports,

and will also give higher accuracy and efficiency in tracing charged particles in simulation

works [31, 32].
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APPENDIX A: THE DILOGARITHM FUNCTION

The dilogarithm function is defined as

Li2(z) ≡ −
∫ z

0

ln(1− u)

u
du =

∞∑

k=1

zk/k2, (−1 < z < 1) (A1)

Li2(z) = −Li2(
1

z
)− π2

6
− 1

2
ln2(−z), (z < −1) (A2)

Li2(z) = Li2(1)−
∫ z

1

ln |1− u|
u

du, (1 < z) (A3)

Li2(−1) = −π2/12, Li2(1) = π2/6. (A4)
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FIG. 14: Fourier spectral density (logarithmic

value) of an exact simultaneous distribution, for

B = 8 under the fixed energy condition.
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FIG. 15: The Fourier spectral densities,

2πf̃(ζ, ηt, t), are compared between the

Molière’s (line) and the exact one (+ dot)

on the contour map for B = 8. The spectral

densities plotted are 10−1, 10−2, · · · , 10−11,

from inside to outside.
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FIG. 16: The simultaneous distributions

f(θ, y/t, t) are compared between the Molière’s

(line) and the exact one (+ dot) on the contour

map for B = 8, with the both variables scaled

by θM. The probability densities plotted are 1,

10−1, · · · , 10−9, from inside to outside.
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TABLE I: Series-coefficient function f (1)(θ, ψ) on the radial lines with the azimuthal angle of ϕ,

or θ = ρ cosϕ and ψ = ρ sinϕ. θ, ψ, and ρ are scaled by θM. f (1)(0, 0) = 9.106e-01.
ρ ϕ = 0 ϕ = π/6 ϕ = π/3 ϕ = π/2 ϕ = 2π/3 ϕ = 5π/6

0.1 7.939e-01 8.888e-01 7.675e-01 5.735e-01 4.971e-01 5.969e-01

0.2 4.936e-01 8.251e-01 4.094e-01 -6.495e-02 -1.902e-01 -1.380e-02

0.3 1.314e-01 7.253e-01 3.185e-03 -4.105e-01 -4.167e-01 -3.733e-01

0.4 -1.644e-01 5.976e-01 -2.913e-01 -3.494e-01 -2.410e-01 -3.411e-01

0.5 -3.180e-01 4.527e-01 -4.027e-01 -1.525e-01 -5.398e-02 -1.509e-01

0.6 -3.267e-01 3.018e-01 -3.585e-01 -2.727e-02 1.153e-02 -1.595e-02

0.7 -2.405e-01 1.557e-01 -2.383e-01 9.890e-03 1.405e-02 2.741e-02

0.8 -1.238e-01 2.371e-02 -1.163e-01 1.006e-02 6.643e-03 2.564e-02

0.9 -2.428e-02 -8.689e-02 -3.139e-02 4.772e-03 2.487e-03 1.537e-02

1.0 3.805e-02 -1.717e-01 1.151e-02 1.742e-03 8.957e-04 8.123e-03

1.1 6.486e-02 -2.290e-01 2.493e-02 5.684e-04 3.306e-04 4.263e-03

1.2 6.783e-02 -2.598e-01 2.366e-02 1.777e-04 1.248e-04 2.310e-03

1.3 5.916e-02 -2.669e-01 1.775e-02 5.455e-05 4.741e-05 1.292e-03

1.4 4.723e-02 -2.547e-01 1.195e-02 1.643e-05 1.787e-05 7.383e-04

1.5 3.623e-02 -2.282e-01 7.676e-03 4.823e-06 6.628e-06 4.278e-04

1.6 2.751e-02 -1.927e-01 4.867e-03 1.370e-06 2.406e-06 2.499e-04

1.7 2.106e-02 -1.529e-01 3.106e-03 3.749e-07 8.519e-07 1.467e-04

1.8 1.638e-02 -1.129e-01 2.008e-03 9.846e-08 2.933e-07 8.619e-05

1.9 1.297e-02 -7.556e-02 1.316e-03 2.476e-08 9.803e-08 5.063e-05

2.0 1.044e-02 -4.300e-02 8.722e-04 5.950e-09 3.174e-08 2.968e-05

2.1 8.537e-03 -1.628e-02 5.827e-04 1.364e-09 9.944e-09 1.733e-05

2.2 7.067e-03 4.320e-03 3.914e-04 2.991e-10 3.011e-09 1.008e-05

2.3 5.913e-03 1.909e-02 2.638e-04 6.313e-11 8.802e-10 5.827e-06

2.4 4.994e-03 2.873e-02 1.781e-04 1.249e-11 2.482e-10 3.347e-06

2.5 4.253e-03 3.412e-02 1.204e-04 1.387e-12 6.747e-11 1.909e-06

2.6 3.648e-03 3.622e-02 8.138e-05 -8.856e-13 1.767e-11 1.080e-06

2.7 3.150e-03 3.594e-02 5.496e-05 -4.881e-13 4.468e-12 6.064e-07

2.8 2.736e-03 3.406e-02 3.706e-05 6.913e-13 1.083e-12 3.374e-07

2.9 2.390e-03 3.124e-02 2.494e-05 1.348e-12 2.363e-13 1.860e-07

3.0 2.098e-03 2.797e-02 1.675e-05 8.406e-13 4.347e-14 1.016e-07

3.1 1.850e-03 2.459e-02 1.121e-05 -4.193e-13 1.691e-14 5.491e-08

3.2 1.638e-03 2.134e-02 7.483e-06 -1.335e-12 1.161e-14 2.938e-08

3.3 1.456e-03 1.836e-02 4.976e-06 -1.086e-12 -4.968e-15 1.556e-08

3.4 1.299e-03 1.571e-02 3.297e-06 1.371e-13 -1.339e-14 8.149e-09

3.5 1.163e-03 1.341e-02 2.175e-06 1.265e-12 -2.151e-15 4.222e-09

3.6 1.045e-03 1.144e-02 1.429e-06 1.283e-12 6.124e-15 2.163e-09

3.7 9.415e-04 9.787e-03 9.348e-07 1.479e-13 -2.202e-15 1.095e-09

3.8 8.507e-04 8.398e-03 6.086e-07 -1.138e-12 -6.768e-15 5.484e-10

3.9 7.707e-04 7.239e-03 3.943e-07 -1.416e-12 1.128e-15 2.713e-10

4.0 7.000e-04 6.271e-03 2.542e-07 -4.224e-13 2.821e-15 1.327e-10

4.1 6.373e-04 5.463e-03 1.630e-07 9.572e-13 -5.541e-15 6.407e-11

4.2 5.816e-04 4.785e-03 1.040e-07 1.479e-12 -5.568e-15 3.057e-11

4.3 5.319e-04 4.214e-03 6.598e-08 6.748e-13 3.101e-15 1.441e-11

4.4 4.874e-04 3.730e-03 4.163e-08 -7.270e-13 3.480e-15 6.707e-12

4.5 4.475e-04 3.318e-03 2.612e-08 -1.467e-12 -1.873e-15 3.083e-12

4.6 4.117e-04 2.965e-03 1.629e-08 -8.966e-13 -5.534e-16 1.397e-12

4.7 3.794e-04 2.660e-03 1.010e-08 4.606e-13 5.103e-15 6.249e-13

4.8 3.502e-04 2.396e-03 6.229e-09 1.391e-12 4.151e-15 2.775e-13

4.9 3.238e-04 2.166e-03 3.817e-09 1.080e-12 -5.501e-16 1.242e-13

5.0 2.999e-04 1.964e-03 2.325e-09 -1.745e-13 -1.334e-15 5.624e-14

5.5 2.087e-04 1.254e-03 1.773e-10 1.290e-12 4.630e-15 4.060e-15

6.0 1.498e-04 8.451e-04 1.150e-11 5.131e-13 8.644e-15 -2.877e-15

6.5 1.104e-04 5.927e-04 6.321e-13 -1.129e-12 7.577e-16 -6.694e-15

7.0 8.319e-05 4.292e-04 2.883e-14 -8.049e-13 6.337e-16 -3.657e-16

7.5 6.388e-05 3.191e-04 1.093e-15 9.861e-13 5.755e-15 -1.047e-15

8.0 4.988e-05 2.424e-04 2.539e-16 1.243e-12 6.844e-16 -1.668e-15

8.5 3.952e-05 1.877e-04 -1.069e-15 -5.201e-13 -5.090e-15 -6.774e-16

9.0 3.172e-05 1.477e-04 -2.111e-17 -1.425e-12 -4.723e-16 1.923e-15

9.5 2.576e-05 1.179e-04 2.230e-15 -3.169e-14 2.644e-16 3.154e-15

10.0 2.114e-05 9.525e-05 -1.624e-15 1.289e-12 -8.001e-15 4.586e-15
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TABLE II: Series-coefficient function f (2)(θ, ψ) on the radial lines with the azimuthal angle of ϕ,

or θ = ρ cosϕ and ψ = ρ sinϕ. θ, ψ, and ρ are scaled by θM. f (2)(0, 0) = 2.416e+00.
ρ ϕ = 0 ϕ = π/6 ϕ = π/3 ϕ = π/2 ϕ = 2π/3 ϕ = 5π/6

0.1 2.011e+00 2.342e+00 1.916e+00 1.263e+00 1.018e+00 1.344e+00

0.2 1.029e+00 2.128e+00 7.485e-01 -5.425e-01 -7.802e-01 -4.006e-01

0.3 2.826e-04 1.799e+00 -3.668e-01 -9.139e-01 -6.846e-01 -8.565e-01

0.4 -6.090e-01 1.392e+00 -8.853e-01 -2.680e-01 2.486e-02 -2.698e-01

0.5 -6.641e-01 9.489e-01 -7.635e-01 1.432e-01 1.605e-01 1.669e-01

0.6 -3.534e-01 5.150e-01 -3.361e-01 1.207e-01 3.423e-02 1.532e-01

0.7 1.914e-02 1.284e-01 3.313e-02 2.059e-02 -1.536e-02 2.249e-02

0.8 2.431e-01 -1.821e-01 1.855e-01 -8.391e-03 -7.683e-03 -3.020e-02

0.9 2.764e-01 -4.002e-01 1.626e-01 -1.765e-03 1.062e-03 -2.545e-02

1.0 1.910e-01 -5.225e-01 7.678e-02 4.417e-03 2.999e-03 -1.198e-02

1.1 8.007e-02 -5.570e-01 7.186e-03 5.163e-03 2.520e-03 -4.468e-03

1.2 1.200e-04 -5.205e-01 -2.389e-02 3.882e-03 1.766e-03 -1.454e-03

1.3 -3.652e-02 -4.343e-01 -2.732e-02 2.544e-03 1.182e-03 -3.028e-04

1.4 -4.219e-02 -3.212e-01 -1.973e-02 1.597e-03 7.808e-04 1.664e-04

1.5 -3.376e-02 -2.017e-01 -1.132e-02 9.982e-04 5.149e-04 3.576e-04

1.6 -2.263e-02 -9.193e-02 -5.495e-03 6.326e-04 3.413e-04 4.181e-04

1.7 -1.373e-02 -2.785e-03 -2.223e-03 4.102e-04 2.287e-04 4.137e-04

1.8 -7.945e-03 6.051e-02 -5.844e-04 2.733e-04 1.555e-04 3.781e-04

1.9 -4.568e-03 9.748e-02 1.888e-04 1.871e-04 1.077e-04 3.300e-04

2.0 -2.701e-03 1.112e-01 5.387e-04 1.313e-04 7.599e-05 2.795e-04

2.1 -1.676e-03 1.069e-01 6.833e-04 9.432e-05 5.468e-05 2.318e-04

2.2 -1.100e-03 9.057e-02 7.243e-04 6.910e-05 4.007e-05 1.894e-04

2.3 -7.613e-04 6.792e-02 7.105e-04 5.152e-05 2.986e-05 1.532e-04

2.4 -5.526e-04 4.372e-02 6.676e-04 3.901e-05 2.260e-05 1.229e-04

2.5 -4.176e-04 2.142e-02 6.101e-04 2.994e-05 1.734e-05 9.814e-05

2.6 -3.265e-04 3.089e-03 5.467e-04 2.326e-05 1.347e-05 7.818e-05

2.7 -2.628e-04 -1.036e-02 4.829e-04 1.827e-05 1.059e-05 6.223e-05

2.8 -2.166e-04 -1.896e-02 4.217e-04 1.450e-05 8.401e-06 4.958e-05

2.9 -1.823e-04 -2.331e-02 3.651e-04 1.161e-05 6.728e-06 3.960e-05

3.0 -1.560e-04 -2.433e-02 3.139e-04 9.373e-06 5.434e-06 3.175e-05

3.1 -1.353e-04 -2.301e-02 2.685e-04 7.628e-06 4.424e-06 2.556e-05

3.2 -1.187e-04 -2.026e-02 2.286e-04 6.252e-06 3.627e-06 2.069e-05

3.3 -1.052e-04 -1.683e-02 1.941e-04 5.159e-06 2.993e-06 1.685e-05

3.4 -9.386e-05 -1.327e-02 1.644e-04 4.283e-06 2.486e-06 1.380e-05

3.5 -8.432e-05 -9.936e-03 1.391e-04 3.577e-06 2.077e-06 1.137e-05

3.6 -7.616e-05 -7.037e-03 1.176e-04 3.004e-06 1.744e-06 9.430e-06

3.7 -6.909e-05 -4.653e-03 9.946e-05 2.535e-06 1.472e-06 7.866e-06

3.8 -6.293e-05 -2.785e-03 8.416e-05 2.150e-06 1.249e-06 6.599e-06

3.9 -5.750e-05 -1.385e-03 7.130e-05 1.832e-06 1.064e-06 5.567e-06

4.0 -5.269e-05 -3.794e-04 6.051e-05 1.567e-06 9.107e-07 4.721e-06

4.1 -4.840e-05 3.086e-04 5.146e-05 1.346e-06 7.825e-07 4.023e-06

4.2 -4.456e-05 7.533e-04 4.387e-05 1.161e-06 6.749e-07 3.444e-06

4.3 -4.111e-05 1.018e-03 3.751e-05 1.005e-06 5.842e-07 2.962e-06

4.4 -3.799e-05 1.156e-03 3.216e-05 8.727e-07 5.075e-07 2.557e-06

4.5 -3.517e-05 1.206e-03 2.767e-05 7.605e-07 4.423e-07 2.216e-06

4.6 -3.260e-05 1.199e-03 2.388e-05 6.648e-07 3.867e-07 1.928e-06

4.7 -3.027e-05 1.157e-03 2.067e-05 5.829e-07 3.391e-07 1.683e-06

4.8 -2.814e-05 1.094e-03 1.796e-05 5.126e-07 2.982e-07 1.474e-06

4.9 -2.619e-05 1.020e-03 1.565e-05 4.519e-07 2.630e-07 1.294e-06

5.0 -2.440e-05 9.430e-04 1.369e-05 3.995e-07 2.325e-07 1.140e-06

5.5 -1.740e-05 6.004e-04 7.322e-06 2.236e-07 1.302e-07 6.294e-07

6.0 -1.269e-05 3.775e-04 4.181e-06 1.318e-07 7.679e-08 3.673e-07

6.5 -9.432e-06 2.428e-04 2.515e-06 8.116e-08 4.728e-08 2.244e-07

7.0 -7.127e-06 1.606e-04 1.579e-06 5.183e-08 3.020e-08 1.425e-07

7.5 -5.466e-06 1.092e-04 1.027e-06 3.415e-08 1.990e-08 9.345e-08

8.0 -4.248e-06 7.602e-05 6.880e-07 2.313e-08 1.348e-08 6.305e-08

8.5 -3.342e-06 5.412e-05 4.732e-07 1.604e-08 9.351e-09 4.360e-08

9.0 -2.658e-06 3.928e-05 3.329e-07 1.136e-08 6.625e-09 3.081e-08

9.5 -2.135e-06 2.901e-05 2.389e-07 8.201e-09 4.783e-09 2.220e-08

10.0 -1.731e-06 2.176e-05 1.746e-07 6.020e-09 3.512e-09 1.627e-08
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