PATTERSON-SULLIVAN THEORY FOR COARSE COCYCLES
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ABSTRACT. In this paper we develop a theory of Patterson—Sullivan mea-
sures associated to coarse cocycles of convergence groups. This framework
includes Patterson—Sullivan measures associated to the Busemann cocycle on
the geodesic boundary of a Gromov hyperbolic metric spaces and Patterson—
Sullivan measures on flag manifolds associated to Anosov (or more general
transverse) subgroups of semisimple Lie groups, as well as more examples.
Under some natural geometric assumptions on the coarse cocycle, we prove
existence, uniqueness, and ergodicity results.
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1. INTRODUCTION

Patterson—Sullivan measures were first constructed by Patterson [Pat76] in the
setting of Fuchsian groups and by Sullivan [Sul79] for Kleinian groups. They have
been used to study the dynamics of the action of the recurrent part of the geodesic
flow of the quotient manifold, the geometry of the limit set of the group and to
obtain counting estimates for both orbit points of the group and closed geodesics
in the quotient manifold. They have been generalized to many settings, including
proper isometric actions on Gromov hyperbolic spaces and discrete subgroups of
semi-simple Lie groups.

In this paper we develop a theory of Patterson—Sullivan measures for coarse-
cocycles of convergence group actions, which encompasses many of the previous
situations. When the coarse cocycle has an expanding property and a finite critical
exponent, we show that Patterson—Sullivan measures exist in the critical dimension.
Moreover, we establish a Shadow Lemma in the spirit of Sullivan and show that
the action of the convergence group is ergodic with respect to the measure when
the associated Poincaré series diverges at its critical exponent.

We also develop the notion of a coarse Gromov—Patterson—Sullivan system, which
is a pair of coarse-cocycles with an associated coarse Gromov product, and estab-
lish a version of the Hopf-Tsuji-Sullivan ergodic dichotomy in this setting. In a
companion paper, we will use this framework to establish mixing, equidistribution
and counting results for relatively Anosov groups (and more generally for divergent
GPS systems for geometrically finite convergence groups).

1.1. Main results. Suppose I' C Homeo(M) is a convergence group. A function
o:T'x M — R is called a k-coarse-cocycle if:

(1) For every v € I, the function o(v,-) is k-coarsely continuous: if xg € M,

then
lim sup |O'(’Yv .130) - 0(77 l‘)‘ < K.
Tr—xQ
(2) o satisfies a coarse version of the cocycle identity: if v1,72 € T and x € M,
then

o(mryz, ) — (0(717’7290) + 0(’72@))’ < k.

Notice that a 0-coarse-cocycle is simply a continuous cocycle. In the classical
hyperbolic setting, one usually considers the Busemann cocycle.

Given a coarse-cocycle o: I' x M — R, we define the o-magnitude of an element
v €T to be

[7ll, = sup o(v,2) € R.
zeM
Then the o-Poincaré series is
Qs(s) = ZG*SHVHG € [0, +o0]
yel
and the o-critical exponent is
§,(T) =inf{s > 0: Qu(s) < +o0} € [0, +x].

In Section [2| we will show that the set I'U M has a unique topology which makes
it a compact metrizable space and where the natural action of I' on I' LI M is a
convergence group action. We call a metric on I'U M which generates this topology
a compatible metric.



PATTERSON-SULLIVAN THEORY FOR COARSE COCYCLES 3

We will often require that our cocycles satisfy the following weak expansion
property.

Definition 1.1. Suppose I' C Homeo(M) is a convergence group and d is a com-
patible metric on I' U M. A coarse-cocycle o: I' x M — R is expanding if
e o is proper: ||v,|, — +oo for any escaping sequence {v,} C I, and
e for every e > 0 there exists C' > 0 such that: whenever x € M, v € I" and
d(z,771) > ¢, then

a(v,2) = [, = C.

We show that if a coarse-cocycle is expanding and has finite critical exponent
05 (T"), then it admits a coarse Patterson—Sullivan measure of dimension ¢, (I") which
is supported on the limit set. Moreover, any Patterson—Sullivan measure has di-
mension at least 0, (I).

Definition 1.2. Suppose I' C Homeo(M ) is a convergence group and o: I'x M — R
is a coarse-cocycle, then a probability measure g on M is a C-coarse o-Patterson—
Sullivan measure of dimension 9§ if, for every v € T', the measures p, . are abso-
lutely continuous and

o—Cbo(v ) < BN cso(y71,)
< g <

p-almost everywhere.

We establish a Shadow Lemma for coarse Patterson—Sullivan measures and use
it to study the associated Patterson—Sullivan measures. In particular, we establish
ergodicity of the action when the Poincaré series diverges at its critical exponent.

Theorem 1.3 (see Theorem [8.1] below). Suppose I' C Homeo(M) is a convergence
group and o: T'x M — R is an expanding coarse-cocycle with § := 0,(I') < +oo. If
w is a C-coarse o-Patterson-Sullivan measure of dimension 6 and

3 el = 4o,

~yel
then:
(1) T acts ergodically on (M, ).
(2) p is coarsely unique in the following sense: if A is a C-coarse o-Patterson—
Sullivan measure of dimension §, then e *Cu < X < 2.
(8) The conical limit set of T' has full pu-measure.

As an application of ergodicity in the divergent case, we prove the following
rigidity result for Patterson—Sullivan measures.

Proposition 1.4 (see Propositions and [14.2). Suppose I' C Homeo(M) is
a convergence group and oy1,02: I' X M — R are expanding coarse-cocycles with
finite critical exponents §1 1= 64, (T'), 02 := 04,(I"). Fori = 1,2, let u; be a coarse
oi-Patterson—Sullivan measure of dimension 9;.

If > er e 1llor — o0, then either:

(1) pa L po.
(2) 1 < po and po < p1. Moreover, in this case

sup |61 [|7]l,, = 82 [|71l,,,| < oo.
~yel
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Remark 1.5. Dongryul Kim [Kim24] has informed us that in forthcoming work,
which studies higher rank analogues of conformal measure rigidity theorems, they
establish similar results in the special case of coarse-cocycles associated to trans-
verse Zariski dense discrete subgroups of semisimple Lie groups.

Using this rigidity result we establish a strict convexity result for the critical
exponent.

Theorem 1.6 (see Theorem [15.1|below). Suppose I’ C Homeo(M) is a convergence
group and o1,09: I' x M — R are expanding coarse-cocycles with finite critical
exponents 0y, (') = §,,(I') = 1. For 0 < A< 1, let ox = Aog+ (1 — X)o1. Then

5qy (T) < 1.

Moreover, if Z'yel‘ e e Mllle, — 400, then the following are equivalent:

(1) 65,(T) = 1.
(2) super |11, = 1715, | < +oo.

In the context of Theorem if o1 and oy do not have coarsely equivalent
magnitudes, then one obtains a drop in critical exponent when taking a convex
combination of oy and ;7. These types of strict convexity results can be used to
prove entropy rigidity results, see for instance [PS17].

We further study coarse-cocycles which have a well-behaved “dual cocycle” and
coarse Gromov product.

Definition 1.7. Suppose I' C Homeo(M) is a convergence group and let M® =

{(z,y) € M? : © # y}. We say that (0,5,G) is a k-coarse Gromov—Patterson—
Sullivan system (or GPS system) if 0,6 : T x M — R are k-coarse-cocycles,
G: M® —[0,00) is a locally bounded function, and

)(5’(%96) + 0(%y)) - (G('ywryy) - G(x,y))‘ <K
for all v € I and z,y € M distinct.

We construct a measurable flow space associated to a GPS system and use the
Patterson—Sullivan measures of o and & and the Gromov product to give it a Bowen—
Margulis—Sulivan measure. We will show that the dynamics of this flow space are
controlled by the behavior of the Poincaré series at the critical exponent and use
this to establish the following version of the Hopf-Tsuji-Sullivan dichotomy.

Theorem 1.8 (see Section . Suppose (0,5,G) is a coarse GPS system and
05(T') < +oo. Let pu, i be Patterson—Sullivan measures of dimension § for o, &
respectively. Then there exists a measurable nonnegative function G on M such
that }
V= e‘sGﬁ & W
is I'-invariant. Moreover we have the following dichotomy:
(1) If 32 cr e e = 400, then:
(a) § = 0,(T).
(b) p(A"(T)) =1 = p(A™(I)).
(¢) The T action on (M® 1) is ergodic and conservative.
(2) If 32 cr e 0o < 400, then:
(a) & > d,(T).
(b) p(A®(T)) = 0 = p(A(I)).
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(¢c) TheT action on (M, v) is non-ergodic and dissipative.

In the theorem above, A®®(T") denotes the set of conical limit points. We pro-
vide the definitions of conservative and dissipative actions, and state their basic
properties, in Appendix [A]

1.2. Motivating examples. We now discuss a range of examples which our ap-
proach to Patterson—Sullivan theory treats in a unified way.

1.2.1. Transverse subgroups of semi-simple Lie groups. In the sequel to this pa-
per [BCZZ24] we apply the framework developed here to study Patterson—Sullivan
measures for certain class of discrete subgroups of semi-simple Lie groups. We show,
among other things, that the ergodic dichotomy for transverse groups established
in [CZZ23 [KOW23] is a particular case of the dichotomy established in this paper.
For more details, see [BCZZ24l, Section 11].

1.2.2. Proper actions on Gromov hyperbolic spaces. If X is a proper geodesic Gro-
mov hyperbolic metric space and T' C Isom(X) is discrete, then T' acts on the
Gromov boundary 0,,X as a convergence group (see [Tuk94, Th.3A] or [Fre95]).
If we fix a base point 0 € X, we can define, and for each z € 9,,X, a Busemann
function

by: X - R by setting b,(q) = limsupd(p,q) — d(p, o).

p—T

The Busemann coarse-cocycle B: T' X 05c X — R is defined by

B(v,2) = ba(77(0))-

When X is CAT(—1) (e.g. X = H") this is a continuous cocycle, but in general it
will only be a coarse-cocycle.
The Gromov product G: 9o X — R is classically defined by

G(ZE, y) = lim sup d(O,p) + d(O, Q) - d(pa Q)

p—T,q—Y

Then (3, 8,G) is a coarse GPS system, which is not always continuous. One can
show that

sup ‘||7||3 — d(o,v(o))‘ < +o0.
yel

Hence, d5(T') is also the critical exponent of the series

Q(s) = Ze—sd(om(O))_

yel

When X is CAT(—1), Roblin [Rob03] proved the Hopf-Tsuji—Sullivan dichotomy
for the GPS system (8,5, G), see also work of Burger—Mozes [BM96]. Building
upon work of Bader—Furman [BF17], Coulon-Dougall-Schapira—Tapie [CDST18]
extended this to the case of general proper geodesic Gromov hyperbolic metric
spaces.
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1.2.3. Coarsely additive potentials. We continue to assume that X is a proper ge-
odesic Gromov hyperbolic metric space and I' C Isom(X) is discrete.
Adapting a definition of Cantrell-Tanaka [CT22, Defn. 2.2], we make the follow-
ing definition.
Definition 1.9. A function ¢: X x X — R is a coarsely additive potential if
(1) lim; s o0 infdx(p,q)ZT ¢(p7 Q) = +o0,
(2) for any r >0,

sup  |[¢(p, q)|] < +o0,
dx (p,q)<r

(3) for every r > 0 there exists £ = k(r) > 0 such that: if u is contained in the
r-neighborhood of a geodesic in d joining p to ¢, then

W(I% Q) - W(Z% u) + 1/J(Uvq))’ < K.

Remark 1.10. Cantrell-Tanaka consider the case when I' is word hyperbolic and
X =T with a word metric. In this case they introduce tempered potentials which
are functions ¢ : I' x ' = R which satisfy and another property they call (QE).
In their results they consider the case when 1) is I-invariant (which implies (2))) and
has finite “exponent” (which implies (I)). In Lemma [17.7} we show that a version
of their property (QE) holds for any coarsely additive potential.

We will show that any I'-invariant potential gives rise to any expanding coarse-
cocycle on 0o X and when I acts co-compactly on X, then every expanding coarse-
cocyle arises in this way.

Theorem 1.11 (see Theorem below). Suppose v is a T-invariant coarsely
additive potential. Define functions oy, 04: I' X 050X — R and Gy : 0o X? —
[0,00) by

oy (v, ) = limsup ¢¥(y ‘o, p) — (o, p),

p—T
y (v, x) = limsup ¢(p,y~"0) — ¢ (p, o),
p—x
Gw (ZL’, y) = lim sup '1/1(]9, O) + 1/}(07 Q) - 1/1(2% q)
P—T,q—Y

Then there exists k1 > 0 such that (Gy, 0y, Gy + K1) s a coarse GPS-system and
sup ‘HV”% — (o, 70)‘ < 4o0.
yer

Theorem 1.12 (see Theorem [17.2). Suppose I' acts co-compactly on X and o :
I' X 00X — R is an expanding coarse-cocycle. Then there exists a I'-invariant
coarsely additive potential where

sup oy (v, @) — o (7, 2)| < +o0.
YET, €06 X

In particular, o is contained in a GPS-system.

One can also interpret coarsely additive potentials as I'-invariant coarsely-geodesic
quasimetrics on X, see Section [I7.1] below.

The next two subsections highlight two previously studied examples that can be
interpreted in terms of GPS systems associated to coarsely additive potentials.
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1.2.4. Holder potentials and cocycles. Next we describe the setting studied in work
of Paulin—Pollicott—Schapira [PPS15, Section 3], see also earlier work of Ledrap-
pier [Led95].

Let X be a simply connected complete Riemannian manifold with pinched neg-
ative curvature and suppose I' C Isom(X) is discrete. Then let F': T'X — R be a
I'-invariant Holder function with

0< inf F(v) < Fv) < .
S TS S P < oo

/qu - /OT F(0(1))dt

where £: [0,7] — X is the unit speed geodesic joining p to ¢. Among (many) other
things, [PPS15] consider counting for the “magnitudes”

Yo
[ r

To accomplish this they develop a theory of Patterson—Sullivan measures, Buse-
mann cocycles, and Gromov products in this setting.

By [PPS15, Lemma 3.2], the function (p,q) — f;F is a coarsely additive po-
tential. Further the Busemann cocycle and Gromov product introduced in [PPS15]
(essentially) correspond to the definitions in Theorem Hence this setting fits
into the general GPS systems framework.

Then for p,q € X define

1.2.5. Hitting measures of random walks. Next let I' be a word hyperbolic group
and let A\ be a finitely-supported probability measure on T' with (supp A) = I'. If
91,92, -+ C I' are random group elements following the distribution g, then the
location of the random walk X,, = g1 - - - g5, follows the distribution A*”. The Green
metric, introduced in [BB07], is the left-invariant function dy on I x I defined by
dx(z,y) = —log F(z,y), where F(x,y) is the probability that the random walk
started at x ever hits y.

We claim that d) is a coarsely additive potential. Property follows from the
fact that

dx(a, 8) < inf —log A" (a™"B).

Property (1)) follows from [BHMOS, Prop. 3.1]. Property (3]) follows from a result of
Ancona (see [Woe00, Thm. 27.11]): for any r > 0, there exists a positive constant
C(r) such that
F(id,y) < C(r)F(id,y)F(', )
whenever v,7" € T' and +" at (word) distance at most r from a geodesic segment
between id and v in a Cayley graph. Hence d) is a coarsely additive potential.
Thus Theorem can be applied to conclude: (0,7,G) := (oa,05,Gy) is a
GPS system for I' C Homeo(9.I'), where
o 0(7,2) = limsup, ,, dx(id, ya) — dy(id, @);
e )\ is the probability measure on I' defined by A(7y) := A(y~!);
e Gi(w,y) = limsup,_,, 5_,, dxr(a,id) + da(id, B) — da(a, B).
The cocycle oy also satisfies

dy; v

ox(7,€) = —log 7(5)
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where v is the unique A-stationary measure on JI', i.e. harmonic measure or hitting
measure associated to A [GMMIS| Prop. 2.5]. The o-Patterson—Sullivan measures
are absolutely continuous with respect to the hitting measure v.

1.2.6. Proper actions on CAT(0) visibility spaces. Finally, we briefly discuss an-
other set of examples our results encompass, involving spaces which need not be
uniformly hyperbolic. Let X be a proper CAT(0) space with base point 0 € X and
visual boundary 0X. Suppose X is visible, i.e. all £ #n € X can be connected by
a bi-infinite geodesic in X (this notion was introduced by Eberlein-O’Neill [EO73],
see also [BH99, DefII1.9.28]). Let I' be a discrete group of isometries of X.

Then T acts on 0X as a convergence group [Kar05, Th.1]. The Busemann
functions (z,y,2) € X3 ~ b.(x,y) = d(z,z) — d(y,z) extend continuously to
(z,y,2) € X2U (X UIX) (see [BHI9, p.267]), and o(v,£) = be(y'o,0) defines a
continuous cocycle I' x 0X — R. Finally, setting G(&,n) = — inf e x (be + by)(z, 0),
we obtain a continuous GPS system (o, 0, G) by work of Ricks [Ric17, p.948]. (Be-
cause of the visibility assumption, every geodesic in X is rank-one in the sense
Ricks uses.)

If T' acts cocompactly on X, then X is Gromov hyperbolic ([EO73|, see also
[BH99, III.H.1.4]). Otherwise, X may not be Gromov hyperbolic. For example,
given geodesics in the hyperbolic plane at distance at least 1 from one another,
the surface obtained by grafting flat strips (of any widths) along these geodesics is
always CAT(0) and visible.

1.3. Outline of the paper. In many theories of Patterson—Sullivan measures, the
measures live on the boundary of a metric space and this metric space is used in an
essential way in the study these measures. The first part of this paper (Sections
to @ is devoted to developing a perspective for studying these measures without
the presence of a metric space.

We first observe, in Section [2 that the set I' U M has a topology which makes
it a compact metrizable space (the existence of this topology is implicit in work of
Bowditch, see [Bow99]). In Section [3] we study properties of cocycles and prove
that the coarse-cocycles in a coarse GPS system are expanding.

Among other things, we establish the following property, which allows us to
regard our cocycles as the “Busemann cocycle” on the “Busemann boundary” as-
sociated to the metric-like function p(a, 8) = ||a~*g|| on T.

Proposition 1.13 (see Propositionfor more properties). Suppose ' C Homeo(M)
is a convergence group and o: I' x M — R is an expanding k-coarse-cocycle. If
x € A(T') and v €T, then
limsup |o(y,2) = ([vall, — lall,)| < 2-.
a—x
We use this result and Patterson’s original argument to show that Patterson—
Sullivan measures exist in the critical dimension.

Theorem If 0 is an k-coarse expanding cocycle for a convergence group
I' C Homeo(M) and § := 6,(T") < 400, then there ezists a 2kd-coarse o-Patterson—
Sullivan measure of dimension 6 on M, which is supported on the limit set A(T).

One nearly immediate consequence of the existence of a Patterson—Sullivan mea-
sure is a result guaranteeing decrease of critical exponent in the spirit of Dal’bo—
Otal-Peigné [DOPOQ, Prop. 2].
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Theorem Suppose I' C Homeo(M) is a convergence group, o is an expanding
coarse-cocycle, and 6,(I') < +oo. If G C T is a subgroup where A(G) is a strict
subset of A(T') and

3 e 8 @lalls — foc,
geqG

then 0,(G) < 0,(T).

The next key step in the paper is to define shadows in our setting and prove a
version of shadow lemma. To define shadows we borrow an idea from the theory
of Patterson—Sullivan measures associated to Zariski-dense discrete subgroups in
semisimple Lie groups (compare the shadows below to the sets vBj§.., in [Quil2]
Lem. 8.2]).

Definition 1.14. Suppose I' C Homeo(M) is a convergence group and d is a
compatible metric on I' U M. Given € > 0 and « € I', the associated shadow is

Sc(y) ==~ (M- B.(v7")).

where B.(y~!) is the open ball centered at y~!

metric d.

of radius e with respect to the

In Section we establish some basic properties of shadows, relate shadows
to a notion of uniformly conical limit points, and compare these shadows to the
classically defined shadows in the Gromov hyperbolic setting. In Section [ we prove
our version of the Shadow Lemma:

The Shadow Lemma (see Theorem|6.1)) Suppose I' C Homeo(M) is a convergence
group, o: I'x M — R is an expanding coarse-cocycle, and y is a coarse o-Patterson—

Sullivan measure on M of dimension 6. For any sufficiently small € > 0 there exists
C =C(e) > 1 such that

%efwld < 1 (S.(7)) < Ce=Ihll,

forally €T.

We then establish some standard consequences of the Shadow Lemma in our
setting.

Proposition Suppose T' C Homeo(M) is a convergence group, o: T' x M — R
is an expanding coarse-cocycle, and p is a coarse o-Patterson—Sullivan measure on
M of dimension 8. Then:
(1) If y € M is a conical limit point, then u({y}) = 0.
(2) If
Z e Pl < 400,
yel’
then p(A°™(T")) = 0.
(3) B> d,(I).
(4) There exists C > 0 such that
#{vel: |, <R} < Ce MR

for any R > 0.
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In the second part of the paper, we use the framework developed in the first
part to study the ergodicity properties of Patterson—Sullivan measures. In Sections
and we prove Theorem In Section |§| we study the action of I' on M),
In Section [10| we introduce a flow space which admits a measurable action of I'.
In Section [L1] we use this flow space to establish ergodicity of the action of I" on
(M@, 1) in Theorem Finally, in Section |12| we complete the proof of Theorem
3

The constructions and arguments in Sections[10] and [11] uses ideas from the work
of Bader—Furman [BFIT].

For continuous GPS systems (i.e. when x = 0 in Definition , there is a well-
defined continuous flow space ! : Ur — Ur and when the Poincaré series diverges
at its critical exponent, there is a unique Bowen—Margulis—Sullivan measure (see
Section for details). The arguments establishing Theorem show that the
flow is conservative and ergodic in this case.

Theorem If (0,5,G) is a continuous GPS system with § := 6,(I") < +00

and
E e—0lll, — +00,
yel’

then the flow ¥ on (Ur,mr) is conservative and ergodic.

In the third part of the paper, we consider applications of our ergodicity results
and examine more deeply relations between expanding cocycles and GPS systems.

In Section [13| we observe that two expanding coarse-cocycles with coarsely the
same magnitudes have coarsely the same periods, and vice versa. In Section [14] we
establish Proposition and in Section [I5| we establish Theorem [1.6

The results in the next two sections partly answer the question of whether every
expanding (coarse-)cocycle is part of a (coarse) GPS system, in addition to describ-
ing a systematic way to find expanding cocycles. In Section [I6] we define what it
means for a coarse-cocycle to be coarsely-symmetric and prove that any expanding
coarsely-symmetric coarse-cocycle is part of a GPS system. In Section [I7] we study
the coarsely additive potentials introduced in Definition above.

Finally, in Appendix [A] we define the notions of conservativity, dissipativity
and Hopf decompositions for a general group action. We also prove that quotient
measures exist when the action is dissipative, which is an essential point in our
construction of a measurable flow space.

1.4. Other approaches and related results. In recent work Cantrell-Tanaka
[CT21], [CT22] study general cocycles on the Gromov boundary 9..I' of a word
hyperbolic group. They show that if two cocycles have a corresponding Gromov
product, then it is possible to use Patterson—Sullivan measures to build a [-invariant
measure on 0T [CT22, Prop. 2.8] and prove ergodicity of the I' action [CT22,
Thm. 3.1]. They also consider a slightly more restrictive notion of the coarsely
additive potentials introduced above (see Remark above) and show that they
give rise to coarse-cocycles satisfying these hypotheses. Our definition of GPS
systems can be viewed as an extension of some of their ideas to general convergence
groups.

A number of recent papers study Patterson—Sullivan theory for metric spaces
where the group need not act as a convergence group on the boundary of the metric
space. The most general of these investigations are perhaps independent works of
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Coulon [Cou22| [Cou23| and Yang [Yan23] which consider the case when X is a
proper geodesic metric space and I" is a group acting properly on X by isometries
with a contracting element. In this case the boundary is the horoboundary of X
and the cocycle is Busemann cocycle. The group action on this boundary may not
be a convergence group action, but satisfies certain contracting properties.

In many ways our approach is orthogonal to Coulon and Yang’s. In our approach,
we start with a convergence group action and find large classes of cocycles that
are amenable to Patterson—Sullivan theory. In Coulon and Yang’s approach, one
studies large classes of metric spaces where the Busemann cocycle is amenable
to Patterson—Sullivan theory. It would also be interesting to develop a uniform
framework which contains both theories.

Part 1. Foundations
2. CONVERGENCE GROUPS

When M is a compact metrizable space, a subgroup I' C Homeo(M) is called a
(discrete) convergence group if for every sequence {7,} of distinct elements in T',
there exist points 2,y € M and a subsequence {v,, } such that 7, |y« {y} converges
locally uniformly to 2. This notion was first introduced in [GMS8T].

Bowditch proved that this is equivalent to asking that I' acts properly discon-
tinuously on the set of distinct triples of M [Bow99, Prop. 1.1].

Given a convergence group, we define the following;:

(1) The limit set A(T') is the set of points © € M where there exist y € M and
a sequence {7, } in I' so that v, |y g,y converges locally uniformly to .

(2) A point z € A(T') is a conical limit point if there exist distinct points
a,b € M and a sequence of elements {7,} in I where lim, ;o 7n(2) = a
and lim, 0o o (y) = b for all y € M ~\ {z}.

We say that a convergence group I' is non-elementary if A(T") contains at least 3
points. In this case A(T") is the smallest I-invariant closed subset of M.
The elements in a convergence group can be characterized as follows.

Fact 2.1 ([Tuk94] Th.2B]). Suppose I' C Homeo(M) is a convergence group, then
every element v € I' is either

e loxodromic: it has two fized points v© and v~ in the limit set A(T) C M
such that 'yi"\M\{W;} converges locally uniformly to v*,

e parabolic: it has one fized point p € A(T') such that ’yi”|M\{p} converges
locally uniformly to p, or

e elliptic: it has finite order.

We next observe that I'UM admits a metrizable compact topology. This topology
plays a similar role in our work as the topology on the union of a transverse group
and its limit set did in [CZZ23|. Our argument is similar to a construction of
Bowditch [Bow99, pg.4 & Prop. 1.8] which produces a natural compact topology
on M®) U M by seeing it as a quotient of M3, where M®) is the space of ordered
pairwise distinct elements of M3.

Definition 2.2. Given a convergence group I' C Homeo(M), a compactifying topol-
ogy on I" LI M is a topology such that:

e I' LU M is a compact metrizable space.
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e The inclusions I' < T'LU M and M — I'U M are embeddings (where in the
first embedding T" has the discrete topology).
e I' acts as a convergence group on I' LI M.

A metric d on I' U M is called compatible if it induces a compactifying topology.

Proposition 2.3. If I' C Homeo(M) is a convergence group, then there exists a
unique compactifying topology. Moreover, with respect to this topology the following
hold:

(1) If {vn} C T is a sequence where v, — a € M and v,' — b € M, then
Ynln~qpy converges locally uniformly to a.

(2) A sequence {v,} C T converges to a € M if and only if for every subse-
quence {7y, } there exist b € M and a further subsequence {%ij} such that
Y, |v~qpy converges locally uniformly to a.

(3) For any compatible metric d and any € > 0 there exists a finite set F C T’
such that

(M~ Bo(y™1)) € Be(w)

for every v € T\ F (where B,.(z) is the open ball of radius v centered at x
with respect to d).
(4) T is open in T'U M and its closure is T' LI A(T).

Proof. We first show that I' U M has a compactifying topology.

Fix three distinct points x1, 22,23 € M. For any open set U C M, let 'y C T’
be the set of v such that #({yx1,vx2,v23} NU) > 2. Fix a countable basis B
of open sets of M. Let B’ be the set of singletons of I" and subsets of I' LI M of
the form I'y U U for some U € B. It is straightforward to check that the topology
generated by B’ is compact Hausdorff and second-countable. Hence, it is metrizable
by Urysohn’s metrization theorem. It remains to show that I acts on I'U M as a
convergence group.

Suppose {7,} C T is a sequence of distinct elements. Then there exist points
a,b € M and a subsequence {7, } such that v, |a 5} converges locally uniformly
to a. We claim that vy, |[rua g5} converges locally uniformly to a. Suppose not.
Then after passing to a subsequence we can find {z;} C T UM where z; — 2z # b
and v, (zj) — ¢ # a. Passing to a further subsequence we can consider two cases:

Case 1: Assume {z;} C M. Then by the choice of {v,,} we have v, (z;) — a,
which contradicts our assumptions.

Case 2: Assume {z;} C I'. First suppose that z € I', then passing to a subsequence
we can suppose that z; = z for all j. At least two zx1, 222, zx3 do not equal b. So
after relabelling we can suppose that zxy # b and zxo # b. Then (vy,,2;)(71) = a
and (vn,2;)(w2) = a. So by the definition of the topology 7v,,2; — a. So we have
a contradiction.

Next suppose that z € M. Then by definition of the topology and passing to a
subsequence we can assume that z;|y\ »y converges locally uniformly to z. Since
z # b, then (v, 2;)|ar\qpry converges locally uniformly to a, which implies that
Yn;2j — a. So we have a contradiction.

Thus I' acts on 'UM as a convergence group and hence I'UUM has a compactifying
topology.

Next we consider I' U M with some compactifying topology and prove the as-
sertions in the “moreover” part of the proposition. Notice that part (2) will imply
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that there is a unique compactifying topology. Let d be a metric which induces this
topology.

(1) Assume vy, — a and v, — b. Suppose for a contradiction that v, | (s}
does not converge locally uniformly to a. Then after passing to a subsequence there
exist € > 0 and {¢,,} C M ~\ B(b, €) such that {y,(c,)} C M \ B(a,e€). Since T acts
as a convergence group on I'LI M, passing to a further subsequence we can suppose
that v, |ruar ey converges locally uniformly to a’ for some a’,b" € I'U M. Since I'
acts by homeomorphisms on M, we must have b/ € M (otherwise when n is large
“n|a would not map onto M). So

1

a= lim 7, = lim 7,(id) = d'.
n—oo n—oo

Also notice that v, (7, 1) = id for all n and so we must have b = t’. Then 7,,(¢,) — a

and we have a contradiction.

(2) (=): Suppose v, — a and fix a subsequence {,, }. Since I' U M is compact,
there exists a subsequence with Y, 1 — b. Then by (1), 7”J‘k| M~{b} converges
locally uniformly to a.

(«<): Suppose a € M and {v,} C I has the property that for every subsequence
{¥n,} there exist b € M and a further subsequence {7y, } such that v, |a (s}
converges locally uniformly to a. Since I'UM is compact, to show that ,, converges
to a it suffices to show that every convergent subsequence converges to a. So suppose
that 7,,, — a’. Passing to a subsequence we can suppose that Vr, L 5 b. Then by
(1), ¥n, |ar vy converges locally uniformly to a’. So by hypothesis, a = a’.

(3) Fix € > 0 and suppose not. Then there exist a sequence {v,} of distinct
elements and a sequence {z,} C I'U M such that

d(’Yn(iCn),’Yn) > € and d(l‘n”y;l) > e

Passing to a subsequence, we can suppose that 7, — a € M and 7,1 — b € M.
Then by (1), v |a~ (s} converges locally uniformly to a. Since

lim d(z,,b) = lim d(z,,v,") > €,
n—oo

n—oo

then v, (z,) = a. So
e < lim d(lyn(xn)a’yn) = d(a7a’) =0
n—o0

and we have a contradiction.
(4) Since M is compact, it must be closed in I U M. Hence I" must be open.
Part (2) implies that the closure of I'in ' U M is T' LU A(T). O

3. CocYCLES AND GPS SYSTEMS

In this subsection, we record basic properties of coarse-cocycles and GPS sys-
tems. We begin with a few simple properties shared by all coarse-cocycles.

Observation 3.1. Suppose I' C Homeo(M) is a convergence group and o is a
k-coarse-cocycle. Then:

(1) If 6,(T") < 400, then o is proper.

(2) |o(id,z)| < & for any z € M.

(3) If y e " and = € M, then

lo(v, v ) +o(vha)| < 2k
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(4) If v1,72 €T, then
max {[ll, = [z, elle = it} =5 < el < vl + el + 5.
Proof. Part (1) follows immediately from the definitions. For part (2), notice that
lo(id, z)| = |U(id2,x) — (o(id,id(z)) + o(id, z))| < k.
Part (3) follows from part (2) and the fact that
lo(v,y ') +o(yv ) — a(id,x)‘ < k.
For part (4), notice that

7172, = sup o(y172,7) < K + sup (0(71,%1:) + 0(72,9:))
xeEM xeM

<k Inlly +[ell,
for all v1,72 € T', giving us the upper bound. For the lower bound, note
e = Izl = ezl = lle
< el + el = e, +#

= |lm2ll, + &
and
Ivall, =[]t = I el = i,
< v, + lell, = il +
= [712ll, +#
for all 1,7 € T. (]

In the majority of our work we will further require that our coarse-cocycles
are expanding, see Definition [I.I] The next result establishes a number of useful
properties for such cocycles.

Proposition 3.2. Suppose I' C Homeo(M) is a convergence group, d is a compat-
ible metric on ' U M, and o is an expanding k-coarse-cocycle, then:

(1) If v € T is lozodromic, then
)

1 1
—k + liminf — |||, < o(v,7") < K+ limsup — [|v"|,
n—oo n n—oo N

and
—k < O—(’Ya 7+)'
(2) If v € T is parabolic with fized point p € M, then

—2k < o(v,p) < 4k.

(3) If {vn} C T is an escaping sequence, {yn} C M and {o(Yn,yn)} is bounded
below, then
lim d(v,Yn,vn) = 0.
n—oo
(4) For any o € T, the function
; M
v el UM {70 ifxe
lozll, = [lzll, #zel

is (2k)-coarsely-continuous.
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(5) For any e > 0 there exists C > 0 such that: if o, € T and d(a™1,3) > ¢,
then

ledly + 118l = € < llagll, -
(6) For any € > 0 there exists a finite subset F C T such that: if o, € T,
lell, < 18]l and B~ a & F, then

d(p", ) <.

Proof of . Suppose v € I' is loxodromic. Since v~ — 4~ when n — oo and
~T # 47, the expanding property implies that there exists C > 0 such that

I, = C <a(y", 7)) < IVl
for all n > 1. By the coarse cocycle property,
no(v,7%) = (n =k <o(y",7") <no(y,7") + (n = s

Combining the two estimates and sending n to infinity yields the first set of in-
equalities.
By the properness assumption there exists N > 1 such that H7N HU > C. Then

0(17) 2 (60 v - (N 1w 2 - (9], ~C) —h > . O

Proof of . Suppose v € T is parabolic with fixed point p € M. Fix y € M ~{p}.
Since y*" — p when n — oo, by the expanding property there exists C' > 0 such
that

o(vE"y) > [|4E]|, - C

for all n > 1. So by the properness assumption, both o(~",y) and o(y~
nonnegative for n large. Therefore

" y) are

1
lim sup— (U(vﬂ, AEODY) 4o (y L A Dy) o o (y y))
n

n—oo

1
> limsupg (U(’Yin7y) - (” - 1)“> Z —k.

n—,oo
Since o is k-coarsely continuous and vy — p, we see that

1
lim sup — (0(7i1ﬁi("’”y) +o(yEAE DY) (Y y)) < o(v, p)+k.
n

n—0o0

Thus, o(yFL, p) > —2k.
Finally, by the coarse cocycle identity, see Observation [3.1{(3)),

o(v,p) +o(y ™ p) < 2.
Hence, o(y*1, p) < 4k. O

Proof of (3)). We prove the contrapositive: if {d(7,yn,7n)} does not converge to
0, then

lim inf o (v, yn) = —o0.
n—oo
Passing to a subsequence, we may suppose that there exists € > 0 such that
d(vn, Yan) 2 €
for all n > 1. Then by the expanding property, there exists C' > 0 such that

ot nyn) = ||, - €
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for all n > 1. In particular, since o is proper, we have

liminf o(y, !, yoyn) = +o0
o0

n—
Since
‘U(’Y'nu yn) - a(ygl,vnyn)‘ <2k

for all n (see Observation 7 this implies that liminf,,_, o 0 (Y5, yn) = —o0.

O

Proof of . It suffices to fix a sequence {~,} in I' converging to € M and show

that
limsup |, 2) = (v, = I7all, )| < 2n.

n—roo

For each n, fix y, € M such that

1
HO"YTLHU ~ on < O(Q’Ynayn)'
2

Notice that ay, — ax and so part implies that (ay, )y, — ax. Hence v,y, — .

Then

1 1
lovnll, = nll, < o(@Vnsyn) — 0(Yn, yn) + o SH o(a, Ynyn) + o
and so

limsup [lavn ||, — [, < 26+ 0(a, ).
n— 00

Next for each n, fix z, € M such that

1
ally = 57 < 0m,20).

Then part implies that v,z, — x. Then
1 1
Ha'Yan - H'7n||a 2 U(afynvzn) - U('Ynazn) T on > U(aa'ynzn) — kK= on
and so

liminf o], — [all, > o(a,2) — 2x.

O

Proof of . Suppose not. Then there exist sequences {a,,} and {f,} in I" where

d(a;t, Bn) > € and
Jim lanll, + [18all, = llanBall, = +o0.
By Observation [3.1}
lenBally > llemlly, + 18all, = (IBall, + 182]],) = &

and hence {f3,,} is an escaping sequence. For similar reasons, {a,} is an escaping
sequence. Then passing to a subsequence we can suppose that 5, — = € M and

a, ' — y € M. Notice that, by assumption, x # y.
For each n, fix z,, € M such that
U(ﬂn,mn) 2 ||6nHU - ]-
Then part implies that 8,x, — . So

liminf d(a; !, Buz,) > €
n—oo

So by the expanding property, there exists C’ > 0 such that

U(CVn»ﬂnmn) > ||an||a -
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for all n > 1. But then
||04nﬁn||a > U(anﬁnaxn) > O'(Oénvﬁnxn) + U(ﬂnv‘rn) — K
> |lanlly, +1Ball, =C" =1 =&

and we have a contradiction. O

Proof of @ This is essentially the contrapositive of Part . By that part there
exists C' > 0 such that: if o, 3 € I and d(a~ 1, 8) > ¢, then

lally + 1181, = € < leBll, -

Then let
Fe={yel:|nll, <C}

Notice that F is finite since ¢ is proper.
Now if o, B € T, [la||, < ||B]l,, and B~ ' ¢ F, then

1Bl + (187 all, = C > llall, = [|887 o],
So by our choice of C' we must have d(871, 371a) < e. O

Finally, we observe that the coarse-cocycles in a coarse GPS system are expand-
ing.

Proposition 3.3. If I' C Homeo(M) is a convergence group and (0,5,G) is a
coarse GPS system where §,(I") < +o0, then:

(1) There exists C' > 0 such that
I, =c <l < v, + €

for all v €T.

(2) o and & are expanding.

(3) If G is k-coarsely continuous, then there exists C' > 0 such that for any
(a,0) € A(D)®),

—C'" + limsup G(a, ) < G(a,b) < liminf G(a, B) + ',

a—a,B—b a—a,—b

where, given o, € T' we write
Gl B) = [la™ [, + 118ll, = lla~" B, -

Proof of . Fix € > 0 such that for every z € M there exists y € M with
d(z,y) > e. Then let

C = sup{G(z,y) : d(z,y) > €}.
Notice that C' < +00 since G is locally bounded.
Fix v € T'. Then fix y € M such that |||, —1 < o(v,y). Pick 2’ € M such that
d(a2’,vy) > € and let z := vy~ 1(2’). Then
Il <o(vy) +1 < Glyz,yy) — Gla,y) —o(v,2) +r+1
< G(yz,vy) — Gla,y) + (v ) + 3k +1
<SC-0+ |y, +3c+1=|y",+C+3c+1

The same reasoning can be used to show that

v, < lIVll, +C + 36+ 1. O
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Proof of (2). Fix € > 0. We wish to find C > 0 such that o(v,z) > |||, — C
whenever d(y~1,z) > e.
To this end: fix € € (0,€) such that M ¢ Be(p) U Be(q) for all p,g € T U M.
Let
C1 = sup{G(p,q) : d(p,q) > €'/2}.
Notice that C7 < 400 since G is locally bounded. By Proposition there exists
a finite subset F' C I' such that

(1) Y (M = B ja(v)) C Berja(vh)
for any v € I' — F'. Then let
Cy :=sup{|lg|l, —o(g,xz) :9g € Fand x € M}.
We claim that C' := max{Cq, 2Cy + 2x + 1} suffices.
Fixyeland z € M — B.(y!). If y € F, then
o(v,2) 2 [7ll, = Co-
Otherwise fix y € M such that |||, < 1+ o(v,y). By the definition of € there
exists 2’ € M — (Be (yy) U Ber(7)). Then let z :=y71(z’). By Equation (1)),
FAS Be//2(771)
and hence
d(z,2) > d(x,y ') —d(z,y 1) >e—€/2> /2.
Then
o(v,x) =y 2 o(v,2) + (7, 2) = (e(v,9) +0(v,2)) — 1
> Gyz,yx) = G(z,2) = G(yz,7y) + Glzy) =26 = 1
> —G(z,z) — G(yz,vy) =2k — 1> =2C1 — 2k — 1. O

Proof of (3). Fix € > 0 such that M ¢ B.(z) U Bc(y) for all z,y € ' L M.

Fix a # b € A(T") and sequences {a, }, {8,} C I' converging to a, b respectively.
Passing to a subsequence we can assume that a;, ' — a_ and 8,1 — b_. Note that
a # b implies that a;; '3, — a_ and B, a,, — b_.

Fix z,y, z € M such that

d(z,a), d(y,b-), d(z,b), d(z,a_) > €.

Passing to a further subsequence and using the facts that o, 'z — a_, a2z — a
and 3, ta,z — b_, we can assume that

d(an,a), d(B,1,0-), d(e, w,a"), d(ay, Bn,a_), d(anz,a), d(B; tanz,b ) <

N

This implies that
d(an, @), d(B; " y), d(z,07"2), d(z,05,'8n), d(anz,2), (B anz,y) >
Then using the constant C' from Part we have
Glan, Bn) < [l [, + 1Ball, = |87 ], + C.

Since o, are expanding, there exists C. such that

DO ™

o(v,p) Z W, = Ce and a(y,p) = [ll; — C-
whenever d(p,7™!) > 5. Since d(an,z) > § and d(8,*,y) > §, we get

Glan, Bn) < o(ayta) +0(Ba,y) — (B, an, 2) + C +2C..
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Using the fact that & is a coarse-cocycle and Observation , it follows that
G(an, Bn) < oot 2) + 0(Bn,y) + (0, B, B anz) + C 4+ 2C, + 2k
<olatz) +0(Bnyy) + (et anz) + (B, By tanz) + C + 20, + 3k.
Next we use the GPS system property (Definition , which implies
G(an, Bn) < G(z,a; ) = Glanz, z) + Glanz, Bny) — G(B; Lanz, y) + C +2C, + 5k.
Finally since G is locally finite there is C7 > 0 such that G(p,q) < C! whenever
d(p,q) > §. Since G is nonnegative and d(z, a;;*x) > §, this implies
G(an, Bn) < G(anz, Bny) + C +2C. + 5k + C.
We get a lower bound for G(ay,, 8,) in a similar way:
Glon, Bn) = [lag ||, 4 1Ball, = 182" el — €
>o(a, b z) +0(Bu,y) — (B, fan, 2) — C — C.
> ooy, x) +0(Bn,y) + (e, Bn, B anz) —C — C. — 2k
> ol z) +0(Bn,y) + (et anz) +6(Bn, By tanz) — C — Ce — 3k
> Gz, 0, ) — Glanz, ) + Glanz, Buy) — G(B, tanz,y) — C — C. — 5k
> Glanz, Bry) — C — C. — 5k — 2C..

As Bry — b and a,z — a, we can conclude using the k-coarse continuity of G.
O

4. PATTERSON—SULLIVAN MEASURES

Using the results established in Proposition we can carry out the standard
construction of a Patterson—Sullivan measure due to Patterson [Pat76] in the pres-
ence of an expanding coarse-cocyle.

Theorem 4.1. If o is an expanding k-coarse-cocycle for a convergence group
I' C Homeo(M) and § := 6,(T") < 400, then there exists a 2kd-coarse o-Patterson—
Sullivan measure of dimension 6 on M, which is supported on the limit set A(T).

Proof. By |[Pat76, Lemma 3.1], there exists a non-decreasing function x: R>¢ —
R>; such that

(a) For every € > 0 there exists R > 0 such that x(r +t) < e“x(r) for any
r>Randt>0,
(b) Y ger x(llgll,)e?M9le = +oo
(when >° cr e 0l9lls = 400, we can take x = 1).
Endow I' U M with the compactifying topology (see Proposition . For z €

I'u M, let D, denote the Dirac measure centered at .
For s > 6, define a Borel probability measure on I' LI M by

1 _
ps == > X(lgll,)e*19l-D,,
Qs (s) ger

where QX(s) == >_ p x(lgll,)e=sl9llo. Then fix s, N\, d such that ps, — p in the
weak-* topology. We claim that u is a 2kd-coarse o-Patterson—Sullivan measure of
dimension 6 on M.
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By property @ of x,

)
Slggan(S) +00.

Hence p is supported on A(T") by Proposition

To verify the Radon-Nikodym derivative condition, fix v € I'. Then define
Xy:I'UM — R by

_ Ix( el ) /xl=ll,) zeT
xle) = {1 r e M.

Property @ of x and Observation imply that x, is continuous. Next define
fy: MU — R by

||771x||0* Iz, zel
fia) =4, fmen e, = llenl, 2 € AT
v, z € M~ AD).

Then by definition f, is upper semicontinuous and hence Borel measurable. Further
Proposition [3.2f}4]) implies that

|f7(m) — a(’y*l,m)| <2k

when z € A(T).
Then

1 ]_ -1 7
__ ~slollep. = = 11 eIl p,
Tells = Gx 0y %F:X(”g“”)e Dy = gx 2 X eIl e Dy

g'er
1 _ / slle’ _
= = > (@) PO e 1 Dy = et
QU(S) ’
g’er
Since x, is continuous and g is supported on A(T'), taking the limit s, \, ¢ we
obtain that p and v.p are absolutely continuous and that
—2&6—60(771,‘) < dfy*/’t < 62K5—50(’771,')
=T S
S0  is a 2kd-coarse o-Patterson-Sullivan measure of dimension 4. (]

e

)

One can use the above Patterson—Sullivan measure to obtain the following clas-
sical entropy gap result (see [DOPO0, Prop. 2]).

Theorem 4.2. Suppose I' C Homeo(M) is a convergence group, o is an expanding
coarse-cocycle, and §,(I") < +oo. If G C T is a subgroup where A(G) is a strict
subset of A(T') and

3 8 @lalls — foc,
geG

then 6,(G) < 0,(I).

Proof. Fix an open set U C M such that UNA(T) # @ and U N A(G) = @.
By the definition of A(G), G acts properly discontinuously on M ~ A(G). Hence
there exists N > 0 such that every point in M is contained in at most N different
G-translates of U.
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Now fix a Cy-coarse o-Patterson—Sullivan p for T' of dimension §,(T") supported
on A(T), so

o Cor0o(Ma(v ) « Dl Coms, (Do)
= =
for all v € T, for some constant Co > 0.
Suppose for a contradiction that d,(G) = d,(I"). Since I' acts minimally on A(T")
we must have p(U) > 0. Then

N> pugU) = (g )uU) > e ) /Ue*‘sf’(”"(g’“du(w)

geG geG geG
pU) ~5.(G)llgll, _
Z G > ° = oo
geG

So we have a contradiction. O

5. SHADOWS AND THEIR PROPERTIES

In this section we define our shadows, establish some of their basic properties,
relate them to a notion of uniformly conical limit points, and compare these shadows
to the classically defined shadows in the Gromov hyperbolic setting.

5.1. Basic properties. Suppose for the rest of the section that ' C Homeo(M) is
a convergence group. Fix a compatible metric d on I' U M and let B.(z) CT UM
denote the open ball of radius r > 0 centered at x. Given € > 0 and v € I', the
associated shadow is

S(7) =7 (M—B(y)).
Proposition 5.1. If ¢ > 0 and 0: I' x M — R is an expanding coarse-cocycle,
then:
(1) There exists C1 > 0 such that: if x € Sc(v), then

a(v,7 (@) = ], — Cu.
(2) If {vn} CT is an escaping sequence, then
lim diamSc(y,) =0 and lm d(vn, Se(vw)) =0,
n—oo n—oo

where the diameter is with respect to d. In particular, the Hausdorff distance
with respect to d between the sets {yn} and Sc(vn) converges to zero.
(3) There exists Cy > 0 such that: if a, B €T, ||a|, < ||B]l,, and

S.(a) NS(B) # @,
then
18I, = |la™'8]l, + llell, — Co.

(4) There exists 0 < € < e such that: if o, 8 € T, ||, < ||B]l,, and Se(o) N
Sc(B) # 2, then

Se(B) C Ser(a).
(5) There exists 0 < € < € such that: if I C T, then there exists J C I such
that the shadows {Sc(y) : v € J} are disjoint and

U Se(v) C U Ser (7)-

yel yeJ
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Proof. Part (1)) follows from the definition of expanding coarse-cocycles and part

is a consequence of Proposition [2.3((3]).
Part : suppose for a contradiction that the claim is false. Then for each n > 1

there exist ap,, B, € I' such that ||y, < ||Bx]l,,
Se(an) NSc(Bn) # @ and Hﬁ’ﬂHo’ < H%fﬁan + HanHa - n.

In particular
e Bull, = 18ull, = llanll, +n >,

so {a,'B,} is escaping. Since |8, > [lan|,. this implies that {8,} is also
escaping. Then by Proposition [3.2{[6]) we have

lim d(8;,'an,B,") = 0.
n—oQ
For each n, fix z,, € Sc(a,) N Sc(Bn). By definition, d(B8;, 1z, ;1) > € and so
(B, n, By o) 2 (B, M, B,1) = d(By s B 1) 2 /2

for n large enough. Also, d(a, 'z, o t) > € for any n.
Since o is expanding, there exists C' > 0 such that

o(v,z) =z vl, - C
for all y € T and © € M — B./5(y~!'). Thus

”/BnHU > U(ﬂmﬁ;lxn) = U(anaﬁlﬁnvﬂglxn)
> 0 (o, ') + 00y B, By tn) — K
> llanlly = C + ||y ' Bul|, = C — &
and we have a contradiction. Thus part is true.
Part (4): suppose for a contradiction that there exist {c,, }, {8,} C T and €, — 0
such that ||ay ||, < ||Bnll,: Se(an) NSe(Br) # @, and Sc(Byn) ¢ S, (o). Then
ay  Bu(M = Bo(8,1)) = a,'Sc(Bn) € ' Se, (an) = M — Be, (e, )

for all n > 1. Since ¢, — 0, by continuity of the action of I' on I' U M, the sequence
{a,;18,} must be escaping.
Then {8, *a,} is also escaping and so by Proposition @ we have

nhﬁnolo d(B;t, B, ta) = 0.
Thus for n large enough
0 ' Se(Bn) = 0 B (M = Be(B;)) € 0 B (M — Bepa (B o)) = Seya(0, Bn).
Then, applying part to the escaping sequence {a;'f3,}, we obtain that the
diameter of

aT_LlSe(Bn) C 85/2(a7:15n)
tends to zero, and hence is less than /2 for n large enough. Further, by assumption,
a; t8.(By) intersects a;, *Sc(ay,) = M — Be(a;; 1) for all n. Hence

0, 'Sc(By) € M — Beja(ayh)

for n large enough, which implies that S.(8,) C S, (a,) for n large enough. Thus
we have a contradiction.

Part : using part , the proof of the proposition is standard, see e.g. [Fol99L
Lemma 3.15].
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Let € be as in part (4). Enumerate I = {v1,72,...} such that

rilly < llvelly < -

Inductively define j; < jo < ... as follows: let j; = 1, then supposing ji,...,jk
have been selected pick jix+1 to be the smallest index greater than j; such that

k
SG(Pij+1) N U '56(7]7) =d.

i=1

We claim that J = {v;,,7;,,...} suffices (it is possible for J to be finite). By
definition the shadows {S.(y) : v € J} are disjoint. Further if -y, ¢ J, then there
exists some index ji < m such that

Se(m) NSe(vj,) # @
(otherwise we would have -y, € J). Then part implies that

Se(Vn) C S (7jk)~
So
U Se(V) C U Se/(’}/)' U

yel yeJ

5.2. Uniformly conical limit points. Next we introduce a notion of uniformly
conical limit points and relate them to the shadows defined above.

Definition 5.2. Given € > 0, the e-uniform conical limit set, denoted AS™(T"), is
the set of points y € M such that there exist a,b € M and a sequence of elements
{»} in T where d(a,b) > €, lim, oo ¥n(y) = b, and lim, o Y (2) = a for all
x € M~ {y}.

Notice that by definition

) Ao = [ aenm) = |J A ().
>0 n=1

We also observe that these limit sets are invariant.
Observation 5.3. If ¢ > 0, then A2 (T") is I'-invariant.

Proof. Fix y € A®™(I") and v € T'. Then there exist a,b € M and a sequence of
elements {v,} in I" where d(a,b) > €, lim, 00 7n(y) = b, and lim,, o Yo(z) = a
for all x € M ~ {y}. Then lim, o v, (yy) = b and lim,, 0. ¥y~ ' (x) = a for
all z € M ~ {vy}. So vy € Ac¢™(T). O

Next we relate the shadows to this notion of uniformly conical limit set.

Lemma 5.4.

(1) If © € AL™(T) and 0 < € < €, then there exists an escaping sequence
{m} C T such that x € (,, Se'(7n)-
2) If there exists an escaping sequence {v,} C I' such that x € Se(Vn), then
g i n e\
x € Ae™(D).
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Proof. First suppose that @ € A (T'). Then by definition there exist a,b € M
so that d(a,b) > € and {v,} C T such that v,z — a and 7, 'y — b for any
y € M —{z}. Thus 7,1 — b # a. So if € < ¢, then d(v,,'z,7,1) > € for n

sufficiently large. Thus
T = 'Yn’%;l(x) € (M — Be ('Yr?l)) = Ser(1n)

for n sufficiently large.

Next suppose that x € (1, Sc(7,) for some € > 0 and some escaping {v,} C I.
Passing to a subsequence we can assume that v, 'z — a, ;! — b and v, — c.
In particular v, 'y — b for any y € M ~\ {c}. Since x € S.(7,) for every n, we
have by definition d(v,x,7,,!) > €. Passing to the limit we get d(a,b) > e, so
a # b. Moreover x = ¢, as otherwise {~, 'z} would have to converge to b. Hence
x € A&™(T). O

5.3. Comparison to classical shadows. Suppose that X is a proper geodesic
Gromov hyperbolic space. Let T' C Isom(X) be a discrete group. Then T" acts as a
convergence group on the Gromov boundary 0., X of X.

Given b,p € X and r > 0 the associated shadow O,.(b,p) C 90X is the set
of all © € 0 X where there is some geodesic ray £: [0,00) — X where £(0) = b,
lim; o (t) = x, and ¢ intersects the open ball of radius r > 0 centered at p.

Now fix a compatible metric d on I' U 95X, and for € > 0 and v € T let
Se(7) C 050X denote the shadow defined above.

Proposition 5.5.
(1) For any b € X and r > 0 there exists € > 0 such that

O, (b,7(b)) C Se(7)

for all v € T.
(2) For any b € X and € > 0 there exists r > 0 such that

Sc(7) € Or(b,7(b))
for all v €T.

Proof. (1): Suppose that no such € > 0 exists. Then there exist {,} C I" and {e, }
such that e, — 0 and O, (b,v,(b)) ¢ S, (v») for all n. Equivalently, for each n
there exists

20 € 013, (0),6) N (90X = Be, (1)) = O0(7,1(8),6) N Be, (7).

Passing to a subsequence we can suppose that x, — x and v,' — a. Then
by definition there exists a geodesic line ¢: R — X where lim; o ¢(t) = a,
limy, o £(t) = x, and £ intersects the closed ball of radius r centered at b. In
particular, a # z and hence z,, ¢ B, (7, ') for n sufficiently large. So we have a
contradiction.

(2): This is very similar to the proof of (1). O

6. THE SHADOW LEMMA AND ITS CONSEQUENCES

In this section we establish a version of the classical Shadow Lemma. We then
derive some of its immediate consequences.
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Theorem 6.1 (The Shadow Lemma). Suppose I' C Homeo(M) is a convergence
group, o: I'x M — R is an expanding coarse-cocycle, and p is a coarse o-Patterson—
Sullivan measure on M of dimension §. For any sufficiently small € > 0 there exists
C = C(e) > 1 such that

%eﬂsnvua < 1 (S.(7)) < Ce=Ihll,
for ally €T.

Using the results established in Sections [3|and [5] the proof of the shadow lemma
is essentially the same as Sullivan’s original argument [Sul79, Proposition 3].

Lemma 6.2. For every n > sup, ¢, n({x}) there exists € > 0 such that
p(71Se(n) = (M = Be(v) 21 -1
for ally €T.

Proof. Otherwise there would exist {v,} C T' and {e,} such that ¢, — 0 and
w(MnN B, (y,) = n for all n. Passing to a subsequence we can suppose that
Y — x € TUM. Let §, := d(v,,2) and pass to a further subsequence so that
{€n + 0, } is decreasing. Then

u({a}) = lim (M0 By, 45,(2)) > 1.
which contradicts our choice of 7. O
Proof of Theorem[6.1 Notice that

sup pl{z}) < 1.

Otherwise, u would be supported on a single point, which is impossible since I" is
non-elementary. Hence by Lemma there exists eg > 0 such that

bo = 7irelfru(v‘lSeo (’Y))
is positive.
Fix € < €y. By Proposition |5.1{(1)) there exists C7 > 1 such that: if v € I', then
d -1
Lo, < (D). m
Cl d,u

almost everywhere on 7~ 1S, (7).
Fix v € I'. Then

-4
< Oyl

_ _ d(y'), m
p(Se) = (1), n(r7Se(7) =/ (d)du.
Y1Se(v) K
Hence 5
20 =dlvll,, < M(Se(’}/)) < 01675‘”””2. 0

Cq

The following results now also follow from the standard arguments from the
classical case.

Proposition 6.3. Suppose I' C Homeo(M) is a convergence group, o: ' x M — R
is an expanding coarse-cocycle, and p is a coarse o-Patterson—Sullivan measure on

M of dimension 3. Then:
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(1) If y € M is a conical limit point, then p({y}) = 0.

) If
S el < too,

~yel
then p(A°™(T")) = 0.

(3) B> 0,(T).
(4) There exists C' > 0 such that

#{y €Tt nll, < R} < Ce> R
for any R > 0.

Proof of (1). Suppose y is a conical limit point. By Equation and Lemma
there exist € > 0 and an escaping sequence {7,} C I" such that y € Sc(y,) for all
n. Hence, by the Shadow Lemma (Theorem , there exists C' > 0 such that

1({y}) < u(Se(yn)) < CePlmlls

for all n. Since ¢ is expanding, it is proper (by definition) and so ||v,||, — +oo.
Hence pu({y}) =0. O

Proof of (2). By Lemma [5.4] for every mg > 0 we have

e | N U Symb).

m2mo n>1||v[|,>n

By the Shadow Lemma (Theorem , for all m sufficiently large there exists
C,, > 0 such that

/i(51/m(’7)) < Cmefﬂ\lvllg
for all v € T'. Hence for all m sufficiently large,

el U Sym( | <lim Y Cpe il

n—oo
n>1|ly|l,2n I7llg=n

which equals zero by assumption. Thus p(A®™(T")) = 0. O
The final two parts of the proposition require a lemma.
Lemma 6.4. Then there exists C > 0 such that
#{y el :|1ll, < R} < Ce’
for any R > 0.

Proof. By the Shadow Lemma (Theorem there exist ¢ > 0 and C; > 1 such
that

(3) p(Se(7)) = Oy te Pl
for all v € I'. By Proposition [5.1{(3]), there exists Cy such that: if v,7" € T,
vl = 11l <1,
and S.(7) NS.(v') # @, then H’y‘l'y’HU < (5. Let
Cs:=#{yel:|l, <Ca}
(which is finite since o is proper). Then, for all z € M and R > 0,
(4) #{yel':R-1<|y]|, < Rand z € S(7)} < Cs.
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Then
#{yel:R-1<|hll, <R}= > 1< 3 u(S(v)
el yel
R-1<]yll, <R R-1<|vll, <R
S Ongu(M)eﬁR = C’lC’geﬁR.
We complete the proof by summing this inequality over N. O

Proof of (3). This follows immediately from Lemma and the definition of the
critical exponent §,(T). O

Proof of (4). By Theorem there exists a Patterson—Sullivan measure with di-
mension d,(I"). Then part (4) follows immediately from applying Lemma to
this measure. O

Part 2. Dynamics of Patterson—Sullivan measures
7. CONICAL LIMIT POINTS HAVE FULL MEASURE IN THE DIVERGENT CASE

In this section we show that any Patterson—Sullivan measure with dimension
equal to the critical exponent is supported on the conical limit set in case when
the associated Poincaré series diverges at its critical exponent. The proof is similar
to Roblin’s argument for the analogous result for Busemann cocycles in CAT(—1)
spaces [Rob03], in that we use a variant of the Borel-Cantelli Lemma. However,
we use a different variant of the lemma and apply it to a different collection of sets.
This approach seems slightly simpler and was also used in [CZZ23].

Proposition 7.1. Suppose I’ C Homeo(M) is a convergence group and o: I'x M —
R is an expanding coarse-cocycle with § := 6,(T') < 4oo0. If p is a coarse o-
Patterson—Sullivan measures of dimension 6 and

Z e 0l = 4o,
veT
then pu (A®™(T")) = 1.

We first show that p(A°*(T")) > 0. To accomplish this we use the following
variant of the Borel-Cantelli Lemma.

Lemma 7.2 (Kochen—Stone Borel-Cantelli Lemma). Let (X, v) be a finite measure
space. If {A,} is a sequence of measurable sets where

3 v(A, N A,
Z v(A,) =400 and liminf Zlgm’nﬁN ( )
n=1 N—o0 (anl I/(An))2

< 400,

then
v({z € M : x is contained in infinitely many of Ay, Asa,...}) > 0.

Fix a compatible metric d on I' U M, and for € > 0 and v € T let S.(v) € M
denote the shadow defined in Section [5} Using the Shadow Lemma (Theorem [6.1]),
fix e > 0 and a constant C; > 1 such that

L s, < u(8:() < il

Gy
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for all v € T'. Next fix an enumeration I" = {v,,} such that

s < el <.
and let
Ay = Sc(n)-
We will show that the sets { A, } satisfy the hypothesis of the Kochen—Stone lemma.
One part is easy: By assumption

- 1
A,) > — e le = 400,

yel

The other part is only slightly more involved. Using Proposition [5.13) there
exists Cy > 0 such that: if 1 <n <m and A, N A,, # &, then

Ynlly + |7 Y], < lvmlly + Co.

Hence, in this case,

Yo tyml|, < llmll, + C2 and

(A N An) < 1(An) < Cre=d1mlle < Cpe=8Inlle =3l amll,

where C3 := 01e9¢2. So, if f(N) :=max{n : ||v.| < |y~ + C2}, then
N
Z (A, N Ap) <2 Z Ay N Ap) < 205 Z efé\lvn\lae*5||%717m”a

m,n=1 1<n<m<N 1<n<m<N

N F(N)
<20 Y et lle 3 ol
n=1 n=1

Thus to apply the Kochen—Stone lemma, it suffices to observe the following.

Lemma 7.3. There exists Cy > 0 such that:

JN) N
Z e~dlhmlle < o, Z e~ 0lnll,
n=1 n=1

for all N > 1.
Proof. Notice if N <n <m < f(N) and A, N A, # 9, then

7 vl < Tyl = [1yall, + C2 < 2C.
Soif Cy :=#{y €T :||7], < 2Cs}, then

FN) FN) F(N)
Y oellmlacor Y oA <G| |J 4] GG
n=N+1 n=N+1 n=N+1
Hence
F(N) N
Y el < (1 + Clc4e5l\"f1\|a) 3 ool 0
n=1 n=1

So by the Kochen—Stone lemma the set
X :={z € M : z is contained in infinitely many of Ay, As,...}
has positive 1 measure. By Lemma[5.4] X C A"(T'). Hence p(A™(T)) > 0.
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Now suppose for a contradiction that p(A®™(T)) < 1. Let Y := M — A®2(T)
and define a measure i on M by
1
() = —<= Y N-).
u(Y)
This is also a coarse o-Patterson—Sullivan measure of dimension § and so the argu-
ment above implies that

0 < A(A" (1)) = (Y 1A (D)) = 0.

So we have a contradiction.

8. ERGODICITY AND UNIQUENESS OF PATTERSON—SULLIVAN MEASURES

In this section we establish uniqueness and ergodicity of Patterson—Sullivan mea-
sures in the divergent case. Our argument is similar to the proof of statement (g)
in [Rob03l pg. 22], see also [DK22, Sublemma 8.7].

For the rest of the section, suppose I' C Homeo(M) is a convergence group and
o: T x M — R is an expanding coarse-cocycle with ¢ := 6, (") < 4o0.

Theorem 8.1. If p is a C-coarse o-Patterson—Sullivan measure of dimension §

and
§ e—0lll, — +00,
yel

then:

(1) T acts ergodically on (M, ).

(2) 1 is coarsely unique in the following sense: if X is a C-coarse o-Patterson—
Sullivan measure of dimension §, then e 4 < X < ey,

(3) w(As™(T')) = 1 when € > 0 is sufficiently small (recall that AS™(T') was

defined in Definition .

The rest of the section is devoted to the proof of Theorem[8.1] We will prove that
T acts ergodically on (M, pu) and then use ergodicity to deduce the other claims.
To prove ergodicity we will first establish a version of the Lebesgue differentiation
theorem (as in [Rob03| Lemme 2]).

Fix a compatible metric d on I" LI M.

Lemma 8.2. Suppose €y > 0 satisfies the Shadow Lemma (Theorem m/ If f e
LY(M, 1), then for p-almost every x € M we have

1

f@),g&uw4%»4wwf@mmw

for every 0 < € < ¢y and escaping sequence {y,} C T with

z € [) Se(m)-

n>1

Proof. Using Proposition , the proof is very similar to the proof of the Lebesgue
differentiation theorem, see e.g. [Fol99, Theorem 3.18].
Let €; := €o/j. For f € L*(M,u) and j > 1, define A;f, B;f: M — [0,00) by
setting
. 1
4;4() $ﬂwﬁ£3uwaw>é4ﬂ”@) 7(@)] dn(y)
.'L'ESej (7)
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and )
Bif(z) = lim sup 7/ fy)| duly
@)= g I, >R #(Se; (7)) sejm)' )
:CESsj('Y)

if z € ASPN(T) and Af(x) = Bf(z) = 0 otherwise.
Now fix f € L'(M, p). We claim that A; f(x) = 0 for p-almost every z € M. To
show this it suffices to fix a > 0 and show that

p{x e M:A;f(z) > a}) =0.

Fix n > 0 and let g be a continuous function with

/ |f —gldu <n.
M

0<A;f(z) < Bj(f —g)(@) +[f(z) — g(z)| + A;g(x).
Since ¢ is continuous, Proposition implies that A;g(z) = 0. Hence

{reM:Ajf(x)>a} CN;U{z e M:|f(z)—g(z)] > a/2}

Then

where
Nj:={z e M:Bj(f—g)(z) > a/2}.
The measure of the second set is easy to bound:

6) oM@ g > a2 <= [ 1r—gldn< 2L

To bound the measure of the first set, notice that for every x € Nj, there exists
Ve € I' such that x € S, (7,) and

(S, (1) < 2 /5 1)~ o) ),

(67

Using Proposition [5.1{[5]), we can find N]’» C Nj and eg < ¢; such that the shadows
{Se; (72) : € Nj} are disjoint and

Nj C U Sﬁj(’yw) C U Se;('yx)-
TEN; a:ENJ’.

Applying the Shadow Lemma (Theorem , there exists a constant C; > 1 such
that

1(Ser (7)) < Ciu(Se; (7))
for all vy € I'. Then

PN <7 il(Ser (1)) < C5 D S, ()

IENJ’. J:ENJ’.
2C;
<2 [ 1) - sl datw)
@ zeN] Sej (1)
2C; 2C;
=4 £ (y) = g(y)] dly) < =22,
@ U,eny Se; (0 «

Then using Equation ,

p{xze M:Ajf(x) > a}) < w.
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Since n > 0 was arbitrary, we have p({x € M : A; f(x) > a}) = 0. Since a > 0 was
arbitrary, we see that A, f(z) = 0 for p-almost every x € M.

Next we show that the full g-measure set Nj>1{z : Af(z) = 0} satisfies the
lemma. To that end, fix x with A; f(x) = 0 for all j > 1, € € (0, ¢¢] and an escaping
sequence {v,} where

T € m Se(Vn)-

n>1

Fix j > 1 such that ¢; < e. Then S, (y) D Se(v). By the Shadow Lemma
(Theorem , there exists a constant ¢ > 0 such that

w(Se(v)) > CPJ(Sej )
for all v € . Then

1
@) - 5 /S R

|f(z) — f(y)] du(y)

lim sup
n—oo

1
<limsup —————~ /

n—oo ,UJ(SE (’yn)) Se ("/n)
< limsup

¢t /
— |f(x) = f(y)ldu(y)
n—00 M(Sq (Yn)) Se; (vn)
<ctAjf(x) =0. O
Next we use Lemma [8.2] to prove the following.

Lemma 8.3. Suppose €y > 0 satisfies the Shadow Lemma (Theorem . If E C
M is measurable, then for p-almost every x € E we have

_ 1
1= lim pu(y, E)
for every 0 < € < ¢y and escaping sequence {vy,} C T' with
x € ﬂ Se(Vn)-
n>1

Proof. Applying Lemma [8:2] to 1, there is a full pg-measure set N C M such that

I i MEOS()
n— oo ,U(Se ('Vn)) /Se('yn) lE(y)d,LL(y) nl—mo M(Se('Yn))

whenever t € NNE, 0 <e<¢ and {v,} CT is an escaping sequence with
z € [) Se(ym)-
n>1

We claim that the full y-measure set N satisfies the lemma. To that end, fix
x € ENN, 0 < e <e¢ and escaping sequence {v,} C T' with

z € [) Se(m)-
n>1
Notice that

T e ﬂ Se/j(’)/n)'

n>1
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for all j > 1, since Sc(7y) C S¢/j(7). So we have
1(ENSesi(n))

n—-00 /J(SE/J'(’YTL))
for every j > 1. Now

H(ENSesj(m)) = m(Sesi(vn) = n(E N Sey5(m))
= 1(Serj () = (Y et "B N LS ey ()
Hence
o (e (v tEC Ny Sy (m)
0= lim — — .
oo (v )xett(vn Seyi(n))
By Proposition [5.1{[1) , there exists C; > 1 (independent of n) such that

—1
R N . L e
Oj - du -

almost everywhere on 7, 'S /;(7,). Thus
_lEcﬁ _186 (Y
0= L MOm Ak /()
nmeep(n Seyi(m))

Recall that v, 'S,/;(7n)) = M — Be/j (7). Further, by Proposition and Propo-
sition |6.3} 1 has no atoms. Hence

lim inf g (v, "'S./(v))) = 1.

j—oon>1
Thus u(y, LE€) — 0, which implies that (v, *E) — 1. O
Now we are ready to prove the three assertions in Theorem 8.1
Lemma 8.4. T' acts ergodically on (M, ).

Proof. Lemma [8.3|implies that any I'-invariant set with positive u-measure has full
measure. 0

Lemma 8.5. If A is a C-coarse o-Patterson—Sullivan measure of dimension 0, then
6_4C/.L < A < 640/.1/.

Proof. For any t € [0,1] the measure p; := (1 — t)u + tA is also a C-coarse o-
Patterson—Sullivan measure of dimension 4. Indeed, for any v € T, letting f(x) =

e=97("10) we have Clfu<vpu < Cfuand C7LHEX < A < CfA, so
Vbt = V(L =) +tA) = (1 = ) vup + A < (1 = )Cfu+tCfA = Cfpu,

and similarly vip; > C71fuy.

Fix s,t € (0,1). Then the measures ps and p; are absolutely continuous. Since
e and pg are both coarse Patterson—Sullivan measures of the same dimension,
the Radon-Nikodym derivative gﬁ is coarsely I'-invariant, more precisely: for any

s
~ € T' we have
2o die i o D
dps — dps dus
s-almost everywhere.
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Next fix €; \( 0. Then for each j there exists r; € R such that the set A; :=
{r; < % < r;+¢€;} has positive pys-measure. Then I'- A; is I'-invariant and hence,
by ergodicity, must have full measure. Further,

d
-A; c{e?r; < SR < e*“r; + %%}
dps
and so
e 2ridps < dpy < (€297 4+ e2%ej)dps.
Since u; and ps are both probability measures, we must have
efzcrj <1 and eQer + 6206]' >1

for all j. Thus any limit point of {r;} is in [e72¢, ¢2¢], which implies that

e 4y < dpy < e*“dps.
Since s,t € (0,1) were arbitrary, we then see that e=4¢u < X < €. a
Lemma 8.6. p(A™(T")) =1 when € > 0 is sufficiently small.

Proof. Propositionimphes that p(A°"(I')) = 1. Since A“*(T) = J o AL(D),
this implies that p(AS™(T')) > 0 when e > 0 is sufficiently small. By Observa-
tion[5.3] the set AC"(T') is -invariant. Hence, by ergodicity, (A" (I')) = 1 for all
sufficiently small € > 0. (]

9. BMS MEASURES ON M (?)| CONSERVATIVITY AND DISSIPATIVITY
Suppose I' C Homeo(M) is a convergence group and let
M® = {(z,y) € M?: x # y}.
In this section we study the action of I' on M),

9.1. BMS measures. We first observe that a coarse GPS system can be used to
produce a I'-invariant measure on M (?). To that end, suppose (0,5,G) is a coarse
GPS system, and p, i are coarse Patterson—Sullivan measures of dimension § > 0
for o, respectively.

We use a lemma from [BEF17] to show that i ® p can be scaled to become I'-
invariant. Note that this lemma is unnecessary in the continuous case, i.e. when
% = 0 in Definition [['7

Lemma 9.1. There exists a Borel measurable function G: M — [0,00) such that
(0,5,G) is a coarse GPS system and the measure

V= e‘SGﬂ ® .

is locally finite and T'-invariant. We call v a BMS (Bowen—Margulis—Sullivan)
measure of dimension § on M®) associated to (0,5, G, u, i).

Proof. Define H: M®) — [0, 00) by
H(z,y) = limsup G(p,q).

p—T,q—y

Since (0,7, G) is a coarse GPS system, we see that (¢, 5, H) is a coarse GPS system.
By construction H is upper semicontinuous and hence Borel measurable (while G
may not be).
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Let vy := e i ® pu and
dv; '

(z,y).

By uniqueness of Radon—-Nikodym derivatives, there is a full (i ® p)-measure I'-
invariant Borel measurable subset E C M(?) such that p(v,x,y) is defined for all
v €T and (z,y) € E, and p(vy', z,y) = p(v, 7'z, v'y)+p(v, x,y) for any additional
7" € T. We extend p to a cocycle on the whole set M(?) by setting it to zero on
the complement of E. Further, since (0,7, H) is a coarse GPS system and p, i are
coarse Patterson—Sullivan measures for o, 5, one may check that p is bounded on a
full measure set. So up to changing it on a null measure set we may assume that

1
p(v,x,y) = -5 log v

sup lp(y, 2, y)| < +oo.
YET, (z,y)EM

By [BF17, Lem. 3.4] there exists a bounded Borel function ¢: M(?) — R such that

p(v,2,y) = d(vz,vy) — d(z,y).
for all v € T and (x,y) € M®). Then let

G=H+¢— inf ¢(z,y)

(z,y)eM @)
(notice that the constant term is added so that G is non-negative).
Since ¢ is bounded, G is at bounded distance from H, which immediately implies

that (0,7, G) is a coarse GPS system. The fact that v := e®“[i @ p is locally finite
comes from the fact that G is locally finite. To see the I'-invariance of v, note

’Y*_ly — 066(7507’}/*_11/0 _ C€6¢°76_6P(W")1/0 _ O€6¢l/0 - 0

9.2. Conservative—dissipative dichotomy for BMS measures. In this sec-
tion, we consider the conservativity/dissipativity of the I action on M%),

We say that an orbit T'(z,y) C M) is escaping if {y € T : y(x,y) € K} is finite
for any compact subset K ¢ M3,

Lemma 9.2. An orbit T'(z,y) € M@ is escaping if and only both = and y are not
conical limit points.

Proof. Let d be a compatible metric on I" Ll M.

Suppose one of z,y is conical, say x. Then there exists {y,} CT anda #be M
such that v,z — a while v,z — b for any z € M ~\ {z}. In particular v,(z,y) —
(a,b) € M@, s0 T'(x,%) is not escaping.

Suppose I'(z,y) is not escaping, i.e. d(y,x,Vny) stays away from zero for some
escaping sequence {v,} C I'. Passing to a subsequence, there are ¢,b € M such
that v,z — b for any z € M ~ {c}. Since {y,2z} and {v,y} cannot both converge
to b, one of x,y must be equal to ¢, say . Then passing to a further subsequence,
e — a € M ~ {b}, so x is conical. O

As a corollary we obtain the following dichotomy, which is a part of our Hopf-
Tsuji-Sullivan dichotomy (Theorem [1.8)).

Corollary 9.3. Let (0,5,G) be a coarse GPS system and let v be a BMS measure
of dimension & on M3,
o If> cr e 0ls = 00, then the action of T on (M), v) is conservative.
o If> cr e 0ls < 00, then the action of T on (M®),v) is dissipative.
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Proof. By definition v = ’“i ® u where p, fi are coarse Patterson-Sullivan mea-
sures for 0,5 and G : M® — R. Suppose e Ille = 400 (resp. < +00). By
Proposition (resp. Proposition ) and Proposition, w and fi give full
measure to A°*(T) (resp. M — A"(I")). Hence v gives full measure to A" (I")(2)
(resp. (M —A™(I"))2)) in M®) | and hence gives full measure to the set of I-orbits
in M that do not escape (resp. that do escape) by Lemma which is the con-
servative (resp. dissipative) part in the Hopf decomposition of Lemma ([

10. A FLOW SPACE

In this section, we use our Patterson—Sullivan measure to define a flow space
which admits a measurable action by I'. In the presence of a GPS system we
construct a I'-invariant flow-invariant measure on this flow space. The construction
of the measurable action comes from work of Bader—Furman [BF17].

For the rest of the section suppose I' C Homeo(M) is a convergence group and
o: T x M — R is an expanding coarse-cocycle. As in Section [J] let

M® = {(z,y) € M? s 2 # y}.
The space M) x R has a natural flow defined by

Yz, y,s) = (z,y,5 + 1).

10.1. An action of T' on M x R. In this section we show that any Patterson—
Sullivan induces a measurable action of I on M) x R.

Suppose u is a coarse o-Patterson—Sullivan measure of dimension §. Then let
ops: I' x M — R be the measurable cocycle defined by

1. dyt
ops(v,x) = —glog ’YdMM(x).

Observation 10.1. We can assume that opg is everywhere defined and that opg
is a cocycle:

ops(7172, ) = ops(71,722) + ops(V2, 7)
for all y1,72 €' and x € M.

Proof. By uniqueness of Radon—Nikodym derivatives, there exists a I'-invariant set
E C M where u(E) =1 and

ops(1172, %) = ops(71, 722) + ops(y2, x)

for all 1,72 € T and = € E. Since u(E°) = 0, we may assume that opg|rxge = 0.
Then opg is a cocycle. U

Using Observation we can define a I" action on M) x R by

v (I,y,t) = ("}/"E,"}/y,t + O—PS(’Yay))'

Notice that this action commutes with the flow ¢.
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10.2. A measure on the flow space. Now we assume that o is part of a coarse
GPS system (0,5, G) and i is a coarse 5-Patterson—Sullivan measure of dimension
d. In this case, we will construct a flow-invariant measure on M 2 x R.

Let v = e%“[i ® u be a I'-invariant BMS measure associated to (0,0,G,u, i) as
in Section where G : M(?) — [0, 00) is measurable and (o, 5, G) is a coarse GPS
system.

Then let 7 := v @ dt, which is a measure on M(?) x R. Notice that:

(1) Since G is locally bounded on M), the measure 7 is locally finite on
M® xR,
(2) m is T-invariant and v!-invariant.

Next we show that the action of ' on (M) xR, ) is dissipative (see Appendix
for the definition).

Since p is a coarse Patterson—Sullivan measure, there exists C' > 0 such that for
each v € T" there is some M, C M with p(M,) =1 and

sup |ops(y,2) —o(v,2)| < C.

€M,

Let

(6) M'::ﬂoz ﬂM,y

acl yel’
Then M’ is I-invariant, u(M’) = 1, and

(7) sup |ops(y,z) —o(y,z)| < C.
zeM’ el

Finally let
Z = {(z,y,t) e M? xR:y e M'}.

Then Z is I'-invariant and t)!-invariant, and has full m-measure.
The next result implies that if v € Z, then its [-orbit is escaping, i.e. {y: v €
K} is finite for any compact set K. In particular, m-almost every orbit is escaping.

Proposition 10.2. For any compact subset K C M) x R the set
{yel: (KNZ)Nny(KNZ)+# &}
is finite. In particular, the action of I' on (M(z) x R,m) is dissipative.

Proof. Suppose for a contradiction that there exist a compact set K € M®) x R
and a sequence {~,} of distinct elements of I" such that

(KNZ)Ny(KNZ)#2

for all n. Passing to a subsequence we can assume that v, — a € M and 7, —
be M, ie. fy;l|M,{a} converges locally uniformly to b.
For each n fix

(Tny Yns tn) € (KN Z) Ny (KN Z).

Passing to a subsequence we can suppose that x,, — = and y,, — y # x.
Since {t,} is bounded and

(7;1xn77;1ynatn + UPS(’Y;layn)) = '7;1(xn7ynatn) ceKnz,
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we see that {ops(7,*, yn)} is bounded. Then Equation (7)) implies that {o (7,1, yn)}
is bounded. Then Proposition [3.2)(3) implies that ~,, 'y, — b. Since

liminf d(,, '@, v, 'yn) > 0
n— oo

and v, 1| M—{a} converges locally uniformly to b, we must have x = a. Hence y # a.
Since o is expanding, there exists C’ > 0 such that

oy ym) = | |, = C
for all n > 1. In particular, this quantity diverges to +oco as n — oo, which
contradicts our earlier observation that {o (v, !, y,)} must be bounded. O

10.3. The quotient flow space and quotient measure. In this section we show
that the quotient T\ M (2) X R is a reasonable measure space, the flow descends to
a measurable flow on the quotient, and the measure m descends to a flow-invariant
measure on the quotient.

Endow the quotient T'\M(?) x R with the quotient sigma-algebra (of the Borel
sigma-algebra). By Proposition the action of I is dissipative with respect to
the measure m = v ®dt = e6éﬂ®,u® dt. Thus by the discussion in Sectionthe
space I'\ M (2) x R admits a quotient measure m, which we also call a BMS measure
associated to (0,7, G, u, [i).

Recall that the flow ¢(x,y,s) = (z,y,t + s) commutes with the I action. So
Y descends to a measurable flow on the quotient space I'\ M (2) x R, which we also
denote by !. Since m is ¥’-invariant, the uniqueness of quotient measures, again
see Section implies that m is ¢'-invariant.

Finally, by the discussion in Section N\M () x R has a t'-invariant full
m-measure subset that is standard (i.e. measurably embeds into [0, 1]).

10.4. The continuous case. The construction above involves a number of choices,
for instance a different choice of Patterson—Sullivan measure could lead to a different
I" action on M® x R and hence a different quotient space.

In this section we show that in the continuous case, some of the technicalities
and all of the choices made in the above construction can be avoided.

First suppose that ¢ : I' x M — R is an expanding 0-coarse-cocycle. Then, in
the discussion above, can assume that opg = 0, M’ = M, and Z = M® x R.
Then (the proof of) Proposition implies that T" acts properly discontinuously
on M® x R and hence the quotient

Ur :=D\AD)® xR,

is a metrizable locally compact topological space. Further the flow v* descends to
a continuous flow, also called v, on Ur.

Next we assume that o is part of a continuous (i.e. x =0 in Deﬁnition GPS
system (0,7, G) with § := 6, (') < oo and > e ?1lle = 400 By Theorems
and there are unique probability measures p, i on M which satisfy

d'y*,u _ 6750.(,\{71,_) and d’Y*,L_L _ 6755(7—1’.)'

dp dji

Then, since (0,5, G) is a continuous GPS system, the measure v := ¢*“fi ® p on
M® is T-invariant. Note v is supported on A(T)®).

Finally, the measure m := ¢’“di @ dp @ dt on A(T)?) x R descends to a -

invariant Borel measure mp on Ur. In this construction, no choices were made and
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so we call m the Bowen—Margulis—Sullivan (BMS) measure associated to (0,5, Q)
and denote it by mr.

11. ERGODICITY OF PRODUCT MEASURES

In this section we prove ergodicity of the product action for coarse GPS systems
whose Poincaré series diverges at the critical exponent.

Theorem 11.1. Suppose (0,5,G) is a coarse GPS system with § = 6,(T') <
+o00 and u, i are coarse Patterson—Sullivan measures of dimension 6 for o, &

respectively. If
Z e 0Mle = 400,
~el

then I' acts ergodically on (M(z), B ).

As described in Section in the continuous case there is a canonical flow
space and in this case our arguments will yield the following, see Section for
the proof.

Theorem 11.2. If (0,5,G) is a continuous GPS system with 6 := 6,(I") < 400

and
Z eI, — +00,

~ver

then the flow ¥ on (Ur, mr) is conservative and ergodic, where mr 1is the (unique)
BMS measure associated to (0,5, G) defined in Section[10.4)

The general strategy of the proof goes back to Sullivan’s original work in real
hyperbolic geometry [Sul79]. In particular, we use the Hopf ratio ergodic theorem
to prove ergodicity of the flow space introduced in Section which in turn will
imply ergodicity of the action of ' on M?). Some of our arguments also use ideas
from work of Bader-Furman [BF17].

11.1. Notations. We will freely use the notations and objects introduced in Sec-
tions [0] and [I0} in particular:

(1) the measurable cocycle opg introduced in Section the associated action
of T on M x R given by

v ($7y7t) = (’Wca’ﬂ/at + UPS(’Yv?J))?

and the associated measurable quotient T\ M(?) x R;
(2) the I'-invariant measure v = e9C @ 1 on M@ constructed in Section
(3) the flow ¥t(z,y,s) = (x,y,t +s) on M) x R and the quotient flow, also
denoted by 1t, on I\M® x R;
(4) the flow-invariant measure m = v ®dt on M) x R and the associated flow-
invariant quotient measure m on T'\M(?) x R described in Section m;
(5) the set M’ C M defined in Equation (6)), which is T-invariant, has full
p-measure, and where

(8) C:= sup |o(7,y) —ops(v,y)| < +o0.
yel', yeM’
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We will also use the following notation from Section For f € LY(M® xR, )
let P(f) be the m-almost everywhere defined function on M (2) x R given by

P(f)w)=>_ f(v-v)

and let P(f) be the m-almost everywhere defined function on the quotient given

by P(f)([v]) = P(f)(v). By Equation
(9) [ Ptrydm = [ i

for all f € L'(M® x R,7) and the map
P: LNM® x R,m) — LY(T\M® x R,m)
is continuous. We also observe that

(10) P(H)(®'(v)) = P(f)(&*([v]))
whenever both sides are defined.
Finally, given € L'(R) and f € LY(M®),v), let f®0 € L*(M® xR, m) denote
the function
(f Y 9)($’ Y, t) = f(.l?, y) e(t)
Notice that with a, b fixed, the map

FELNM®P v) = f@ 1y € LN(M®P x R, )
is a continuous operator.

11.2. Constructing a weight function for the Hopf ratio ergodic theorem.
In this section we construct a weight function to use in the Hopf ratio ergodic
theorem.

We begin by relating conical limit points to recurrence properties of the flow. To
that end, fix a compatible metric d on I' L/ M. Then given € > 0, let

KE = {(xvy70) : d(l’,y) 2 6}‘
Proposition 11.3. Fiz 0 <€ <e andy € M.

(1) If y € Ac°™(T), then there exists a sequence of distinct elements {v,} C T
such that: for any x € M~{y}, there is a sequence {t,} C R with t, — +00
so that (z,y,t,) € vn(Ke) for n sufficiently large.

(2) If there exist a sequence of distinct elements {~,} CT, x € M ~{y}, and a

sequence {t,} C R so that {t,} is bounded below and (x,y,t,) € YK, for
all n, then y € Ac™(T).

Proof. (1) If y € A°™(T"), there exist a,b € M so that d(a,b) > € and a sequence
{¥n} C T such that v, 'y — a and v, 'z — b for all z € M ~ {y}. In particular,
71— band v, — .

Fix z € M ~ {y}. Then (v,,'z,7,'y) — (b,a) and so (v, 'z, v, 'y,0) € K. for
all sufficiently large n. Then

Yo (0 2, Y0 95 0) = (2,9, 08 (s 1 ') € T (Ker)
for sufficiently large n. Since v, 'y — a, v, — b, and a # b, Equation and the
expanding property for o imply that

lim ops(Yn, 7, 'y) = —C + lim o(y,,7, 'y) = +oc.
n—oo n—oo
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Hence if t,, := ops(Yn, v, ty), then t, — +o0 and (z,y,t,) € ¥, K for all suffi-
ciently large n.

(2) Now suppose there exist a sequence of distinct elements {v,} C T, x € M \
{y}, and a sequence {t,,} C R so that {t,} is bounded below and (x,y,t,) € vn(Ke)
for all n. Passing to subsequence, we may assume that v, '(y) — a € M and
yEL — b*. By assumption, d(v; 'z, 7, ty) > € for all n, so d(a,b”) > ¢, and hence
y € Acn(D). O

Using Theorem [8.1) we can fix ¢y > 0 sufficiently small so that
p(AL™(IT)) = 1.

Then by Proposition there exists a compact subset K ¢ M® x R such that
for every v € M) x R with v* € AZ™(I') N M’ there exist sequences {7, } C T' and
{tn} C [0,00) where t,, — 400 and

Y (v) €y (K)

for all n > 1. Then fix a non-negative pg € C.(M®)) and R > 0 such that
po®@1l_ppr =1

on Jye(p1) ¥ (K). Then let

p:=Plpo®@1_rp) and p:=P(po®1l_gRp])-
Notice that p € LY(T\M® x R, m).
Lemma 11.4. Ifv e M® xR and vt € AZ(T) N M’, then

T
lim P! (v))dt = +oo.
T—oo Jo
In particular,
T
lim p('(v))dt = +o0
T—oo Jo

for m-almost every v € T\M® x R and so the quotient flow ¥': T\M® x R —
N\M® xR is conservative (see Fact.

The fact that ¢® is conservative can also be deduced from Corollary and
[Bla21l, Fact 2.29].

Proof. Fix v e M® x R with v* € A®(T') N M’. By our choice of K, there exist
{7} CT and {t,} C [0,00) where ¢, + 1 < ;11 and

P (v) € m(K)
for all n > 1. Then

T o0 tn+1
tpin [ o)=Y [ 0 @)de = +oc,
n=1 tn

T—oo Jo

since p(yt(v)) > 1 for any t € [t,, t, + 1].
The “in particular” statement then follows from Equation . O
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11.3. Applying the Hopf ratio ergodic theorem. Next we apply the Hopf
ratio ergodic theorem to the conservative flow ¥¢ on (T'\M®) x R, m).

This theorem was first proved by Stepanoff [Ste36] and Hopf [Hop37]. For a
modern reference: Krengel states the result for discrete actions of Z>; [Kre85
Th. 2.7 & 3.4] and explains how to then deduce the result for flows [Kre85, §2 p.10].

This theorem yields the following. If f € L'(T\M ) x R, m), then the limit

T
ol S )
= lim S
T=ee [y pldt(v))dt
exists for every v in a t'-invariant set of m-full measure. Further, the m-almost

everywhere defined function ®(f) is measurable and ’-invariant, and ®(f)p is
integrable with

(11) oo an= [ fim

for any t!-invariant subset A C T\M?) x R. Since |®(f)| < ®(|f]), Equation
implies that

o(f)(v)

o: LHM\M®P x R,m) — LYT\M®P x R, pm)
is continuous.
We will also let ®(f): M x R — R denote the lift of ®(f), which is m-almost
everywhere defined, I'-invariant and v*-invariant.
Using a Hopf Lemma type argument, we will deduce the following.

Proposition 11.5. If f € C.(M®)) and a < b, then ® o P(f ® L{a,p)) is constant
m-almost everywhere.

This proposition will be proved by first showing P o P(f ® 1[q)) is almost
surely constant along “weak stable manifolds” of the form M x {y} x R, which
are parametrized by y € M. Thus P o P(f ® 1[q,)) induces a I'-invariant function
on M defined by ~

y— Po P(f ® 1[a,b])(M7va)‘
Then Theorem [8.1] which says that T" acts ergodically on (M, u), implies that this
function is constant.

Delaying the proof of Proposition [I1.5] we deduce Theorem
Lemma 11.6. T acts ergodically on (M@ ,v) and hence also on (M@, i ® p).

Proof. Suppose for a contradiction that there exists a I'-invariant measurable set
A C M® where v(A) > 0 and v(A°) > 0. By inner regularity, there exists a
compact subset K C A® with v(K) > 0.

Let {f,} be a sequence of compactly supported continuous functions on M (?)
converging to 1x in LI(M(Q), v). Since ¢, P and - ® 1[0,1) are continuous operators,
we have

P o P(fn X 1[071]) —®o P(IK ® 1[0)1]) =do P(lKX[O,l])
in LY(T\M® xR, pm).

By Proposition each ®o P(f, ®1j9 1)) is constant m-almost everywhere and
hence constant pm-almost everywhere. Hence the limit ® o P(1 [0’1]) is constant
pm-almost everywhere (since the convergence is in L'(T\M®) x R, pm)).

By definition, K C A° and so ® o P(1xx[p,17) is well defined and equal to zero on
I\A x R. This set is t’-invariant and has positive m-measure (see Remark ,
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hence it also has positive pm-measure since [~ p(¢'(v))dt = +oo for m-almost
v e T\M® xR by Lemmam
So ® o P(1xxo,1]) = 0 pm-almost everywhere. Hence

/q) o P(lKX[O,l])pdm =0.
However, by Equations and @7
/‘I’ o P(1gxo))pdm = /P(le[O,l]) dm = Lxx[o,1) dm > 0.

M(2) xR
So we have a contradiction. O

11.4. Proof of Proposition We start with a technical lemma similar to
[BET7, Lem.2.6]. The statement of the lemma is somewhat opaque, but can be
interpreted as a boundary version of the assertion that the flow t: M3 x R —
M® x R has “weak stable manifolds” of the form M x {y} x R. In the case when
the GPS system is continuous, this assertion about “weak stable manifolds” can be
made precise, see [BCZZ24, §3].

Recall d is a compatible metric on I' LI M.

Lemma 11.7. For any €,7 > 0 and b € R there exists a finite subset FF C I' such
that: if x1,29,y € M,y € TN F, o(v,y) <b and
min{d(ml, y)? d(ﬂ?g, y)} > T,

then

d(yz1,yz2) < €.
Proof. Suppose not. Then there exists a sequence {v,} C I of distinct elements
such that for every n > 1 there are =1, %2 n,yn € M where

min{d(z1,n,¥n), d(@2,n,Un)} =7, 0(Yn,yn) <b, and d(¥nZ1n, YnT2n) > €.

Passing to a subsequence we can suppose that 7' — a®* € M. Since {v,} are

distinct, the properness property of expanding coarse-cocycles implies that ||y, |, —
400. Then since
(Y, Yn) < b
and o is expanding, we must have y,, — a~. Then since
min{d(xl,myn)vd(-TQ,nayn)} >,
we have v,z1, — at and y,22,, = a™. So

lim d(v,%1.n, TnT2n) =0
n—oo
and we have a contradiction. (]
We now begin our investigation of functions of the form P(f ® 1(,))-
Lemma 11.8. Suppose f € Co(M®), a < b, g .= P(f ® l{ap)), and h =
I:’(lsupp(f) @ Lay). Ifv,w e MP xR satisfy vt = wt € M’ and e > 0, then there
exists C = C(g,v,w,€) > 0 such that

T T T T
/0 o (0 (0)dt — / g(0 (w))dt §0+e</0 B (v))dt + / Wy (w))dt>

for all'T > 0.
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Proof. Let v = (x1,y,s) and w = (x2,y,s’). By Proposition there is N € N
such that for any u with «* € M’, at most N elements v € T" send u in supp(f) x
[a,b], which implies |g(u)| < N ||f]|,,. Then, since

T T
‘ | ot enysar= [ gt s)ar <2V 17l = o1,

we can assume that s = ¢’
Let X be the Lebesgue measure on R and let

L,(T) := )\([O,T] Nla—s—ops(7,y),b—s— ops(%y)})-
Then

T T
/0 g(¥t(v))dt - / @ w)dt = 3 (f(w1,79) — (v, 7w)) Ly (T).

~ver

So by the uniform continuity of f and Lemma [T1.7] there exists a finite set F C I’
such that: if y € I' N\ F and L (T) # 0 (hence opg(7,y) < b—s), then

|f (v, vy) — flyaz, )l < e
Then, writing S := supp(f),

/OT 9" (v))dt — /OT g(¥' (w))dt

<Y 20 fle 0—a)+e > (Ls(yrr,vy) + 1s(v22, 7)) Ly (T)

VEF ~yeDNF
T T
s%zllflw(b—a)+e</0 h(v) (v))dt+/0 h(y) (w))dt>. 0

Recall that Lemma says that imr_, e fOT p(¢*(v))dt = +oo for any v with
vt e APM(T) N M’'. The next lemma shows that, on a full measure set, the con-
vergence to infinity is asymptotically identical for flow lines with the same forward
endpoint.

Lemma 11.9. There is a full m-measure set Y, C M® xR such that: If v,w € Y,
satisfy vt = wt € AL™() N M, then
p(Yt(v))dt
i Ja 202
T=eo fo (W (w))dt
Proof. Recall that p = 15(,00®1[_R,R]) where pg € Co(M®@). Let h := P(Lsupp(po) @
1{—gr,r))- By the Hopf ratio ergodic theorem, there is a full measure subset Y,, where
®(h) exists.
Fix v,w € Y, with vt = w* € A2™(I') N M" and let
_ Jo AW (v))dt
=
Jo AW (w))dt
By Lemma there exists Tp > 0 such that rp € (0,00) for all T > T,

=1
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Suppose for a contradiction that
i %1
Then after possibly relabeling v, w there exists T,, — oo such that
Teo 1= lim 77, € (1,400].
n—oo
By Lemma for any € > 0 there exists C. > 0 such that
T ) ﬁwt(w))dt
Jo AW (w)
T
))dt h(y* (w))dt
.G ( fo vty (' (w) )

I Bt (w)) dt U ptw)dt [T At (w))dt
for all T' > T,. Hence,

T t
(1_€fo hv <v>>dt> B < SN I G CO)L
fo p(t(v))dt fo p(t(w))d t fo p(t(w)
for all T > T,. Lemma [TT.4] implies that

T

lim (Y (w))dt = +oo

T—o0 Jo

So for any € > 0 we have
(1 - eé(h)(v)) reo <14 €d(h)(w)
Since € > 0 is arbitrary, we have r,, < 1 which is a contradiction. O

We are now ready to finish the proof of Proposmon Fix f € C.(M®) and
a<b. Let g:= P(f®1[) and h := P(lgpp(y) ®1[a b)) By the Hopf ratio ergodic
theorem, there is a full m-measure set Y where ®(g) and ®(h) both exist.

We claim that

(12) b (g)(v) = (g)(w)
when v,w € Y satisfy v = wt ¢ AL™(T) N M'. Indeed, for such vectors v,w,
Lemma [T1.4] implies that

T

lim [ A (v))dt =

T—o0 Jo

So by Lemmas and for any € > 0 we have
[B(9)(0) = Blg)(w)| < e(B()(v) + B(h)(w) ).

So @(g)(v) = ®(g)(w). )

Now suppose for a contradiction that ®(g) is not constant m-almost everywhere.
Then there exists a measurable set A C R such that the sets {v : ®(g)(v) € A}
and {v : ®(g)(v) € A°} both have positive ri-measure. As before, let A denote the
Lebesgue measure on R. Then let

A :={ye M:®(g)(z,y,t) € Afor p® Mae. (x,t)}.

Since ®(g) is a T-invariant function, A’ is a T-invariant set. Further Equation
implies that p(A’) > 0. Since I' acts ergodically on (M, ), see Theorem we
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then have p(A’) = 1. But this contradicts the assumption that {v : ®(g)(v) € A°}
has positive m-measure.

Thus <i>(g) is constant 7m-almost everywhere, which implies that ® o P(f ® 1;44))
is constant m-almost everywhere. O

11.5. Proof of Theorem [11.2} The continuous case. In this section, we ob-
serve that the arguments we have just given immediately establish Theorem [11.2
We will freely use the objects introduced in Section

First notice that the flow #¢: (Ur, mr) — (Ur, mr) introduced in Section m
coincides with the flow 1!: (T\M®) x R,m) — (I'\M® x R, m) considered in the
proof of T heorem So Lemma implies immediately that v is conservative
on (Ur,mr).

If ¢, is not ergodic on (Ur, mr), then there exists a flow-invariant subset A of Up
so that mp(A) > 0 and mp(A°) > 0. Then A lifts to a flow-invariant, I'-invariant
subset A of M® xR of the form B xR. Then, (i®u)(B) > 0 and (a® p)(B) > 0,
which contradicts the ergodicity of the action of I on (M(Q), i ® p). Therefore, 1)t
is ergodic on (Up,mr).

12. PROOF OF DICHOTOMY

In this section we complete the proof of Theorem Suppose (o,7,G) is a
coarse GPS system and 6,(I') < +oo. Let u, i be coarse Patterson—Sullivan mea-
sures of dimension ¢ for o, & respectively. By Lemn}a there exists a measurable
nonnegative function G' on M such that v := ¢ ® p is T-invariant.

We already have most of the proof. There is one lemma left to prove:

Lemma 12.1. If the action of T on (M(Q), v) is ergodic, then v has no atoms, and
hence the T action on (M), v) is also conservative.

Proof. We argue by contradiction: suppose the I" action on (M @), v) is ergodic and
(€,7) is an atom. Then O :=T'- (£, 7)NM?) must have full v-measure by ergodicity.
Now note that we can find v € T" such that (§,vn) ¢ O, which contradicts the fact
that O has full measure.

Conservativity of the I' action then follows by [Aar97, Prop. 1.6.6] (see also
[Burl). O

12.1. Divergent case. First suppose Zyer el = 400,
(a) By the definition of the critical exponent, § < é,(T"). By Proposition [6.3{[3]),
0 > 6,(T"). Hence 6 = 5,,(1“).

(b) By Prop051t10n w (A (T)) = 1.
(c) By Theorem the action of T on (M), v) is ergodic. Conservativity of
the action can be seen from Corollary [9.3] or from Lemma [12.1

12.2. Convergent case. Now suppose ZweF e 0l < 400.

(a) By the definition of the critical exponent, 0 > 6.(I).

(b) By Proposition ﬂ, w(A™(I)) = 0.

(¢) The T" action on ( ,A® ) is d15$1pat1ve by Corollary- Non-ergodicity
of the action then follows from Lemma
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Part 3. Applications, Examples, and other Remarks
13. PERIODS VERSUS MAGNITUDES

In this section we observe that two expanding coarse-cocycles have coarsely the
same magnitudes if and only if they have coarsely the same periods. The key
observation, Lemma that relates these two quantities is a convergence group
action version of the fact (see [AMS95]) that elements in a strongly irreducible
linear group are uniformly close to compact sets of proximal elements.

Proposition 13.1. IfT" C Homeo(M) is a convergence group and o1,09: I'x M —
R are two expanding k-coarse-cocycles, then the following are equivalent:
(1) sup |o1(7,x) — oa(y,2)] < 400,
vyel', xeM
(2) sup ||17ll,, = 17ll,,| < +oo,
yel’
(3)  sup  ou(y,y") —o2(v, ") < 25,

yel
~ loxodromic

(4)  sup  |ou(y,7") = o2y, 7)) < +oo.
0% loxVo%l;omic
Notice that the implication (1) = (2) is clear, the implication (2) = (1) follows
from Proposition [3.2{{4), the implication (2) = (3) follows from Proposition [3.2|(1)
and the implication (3) = (4) is clear. To show that (4) = (2), we will use the
following two lemmas to relate a general element to a loxodromic one.

Lemma 13.2 ([Tuk94, Lem. 2C]). Suppose I' C Homeo(M) is a convergence group.
If {vn} is a sequence of distinct elements, v, — a, v, 1 — b, and a # b, then for n
sufficiently large 7, is lozodromic and ;" — a, v, — b.

Lemma 13.3. Suppose I' C Homeo(M) is a non-elementary convergence group
and d is a compatible metric on T' U M. Then there exist € > 0 and a finite set
F C T with the following property: for any v € I there is some f € F where yf is
loxodromic and

min {d((vf)*, (v)7), d(vf, ()7 AV (v ) TH > e
Proof. Fix four distinct points x1, z2, x3, x4 € M in the limit set of I'. Let
1 .
€= Juin d(z;, ;).

Since I" acts minimally on its limit set, for every i # j € {1,2,3,4} we can find an
element g; ; € I' such that
Gij (M \ B (ac])> C Be(z;) and gijjl (M \ B, (mz)) C Be (x;) .
We claim that there exists a finite set Fy C I" such that: if v € T'\ Fp, then there
exist i # j € {1,2,3,4} such that g, ; is loxodromic and
min {d((v9:,) ", (v9:.5) ), d(V93,5, (79:,5) ), d((v93,5) T, (v95,5) ™)} > €.

Suppose not. Then there exists an escaping sequence {7,} in I' where each 7,
does not have this property. Passing to a subsequence we can suppose that there
is a,b € M such that 7, — a and 7, — b.
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Since the balls { Boc(z;) }1<i<4 are pairwise disjoint we can pick ¢ # j € {1,2,3,4}
such that a,b ¢ Ba(z;)UBac(z;). Thenv,g; ; — aand (y,9:;) "' — gi_jb € Be(z;).
Then, by our choice of i and 7,

d(a,g;j-l(b)) > €.

Thus Lemma implies that v,g;,; is loxodromic for n sufficiently large. Further,
(Yngi,;)T — a and (yn9i,) — g;f (b). So for n sufficiently large we have

min {d((vn9i;) ", (mgi.5) ")y d(Wnigs (19i,5)7)s A((Wngii) T (Vngi ) )} > e

Thus we have a contradiction. Thus there exists a finite set Fy C I" with the desired

property.
Now fix a loxodromic element h with

min {d(h,h7), d(h,h7), d(hT,h71)} > e
Then the set
Fo={gi;i#7j€{1,2,3,4}U{f 'h: feF}
satisfies the lemma. O

Proof of Proposition[13.1, As discussed above, it only remains to show that (4) =
(2). Suppose that

Cr= sup |o1(17") —oa(1, 7 )| < +o0.
yel’
7 loxodromic

Fix a compatible metric d on I' U M. Then fix a finite set F' C I" and € > 0 as in
Lemma [13.3] By the expanding property, there exists Co > 0 such that

lzll,, = Ca < oj(v,2) <z,
for j € {1,2}, vy €T, and x € M with d(z,y!) >e. Let

o —1 —1
G x=max (I1f1l, + 117, +11fl, +177].,) -

Given v € I, choose f € F as in Lemma [13.3] Then Observation [3.1] implies
that

llo, = 1Vllo,| < Cs+ 26+ [17F 15, = 7Sl |

< C3 426420 + |or(vf, (V) ) — o2(0f, (V) )]
< C3+2k+2Cy + C1. O

14. RIGIDITY OF PATTERSON—SULLIVAN MEASURES

In this section, we prove that in the divergent case Patterson—Sullivan measures
are either absolutely continuous or mutually singular. Furthermore, we characterize
the absolutely continuous case in terms of rough similarity between magnitudes.

For the rest of the section, suppose I' C Homeo(M) is a convergence group and
01,02: I'x M — R are two expanding coarse-cocycles with finite critical exponents
01 := 05, (1), 02 := 6,,(T). For i = 1,2, let p; be a coarse o;-Patterson—Sullivan
measure of dimension ¢;.

Proposition 14.1. If Y e ley = oo, then either:

(1) p < pg and po < py, or
(2) pa L po.
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Proof. By the Lebesgue decomposition theorem, we can write
dpy = dX + fdps

where A | ps and f is a non-negative ps-measurable function.
Since A L u9, we can fix a decomposition M = AUB where A has full A-measure,
B has full ps-measure, and A(B) = u2(A) = 0. Since us is I-quasi-invariant, by
replacing A by (J Jer ~vA, we can assume that A is I-invariant. Then by ergodicity,
see Theorem A either has zero or full p;-measure. If A has zero u;-measure,
then p; = fuo and py < po. If A has full pi-measure, then po = A and py L po.
It remains to show that p; < pso implies po < py. Since Zver e oulllo, — +00,

Theorem implies that u; (A®*(T")) = 1. Then since p; < 2, this implies that
pa(A°™(T")) > 0. So by Theorem we must have . e %2los — 400, Then
we can repeat the argument in the first two paragraphs to see that pe < p1. (I

We can also characterize when the measures are absolutely continuous.

Proposition 14.2. If Z'yel‘ e 0o, — 400, then the following are equivalent:

(1) p1 < pa-

(2) 1 < po and ps < fi1.

(3) supyer |01 [7]l5, = 02 [Vl | < oo

(4) There exist C > 0 such that C~ 1y < pg < Cpy.

Proposition implies that (1)) < . By definition = . By the Shadow
Lemma (Theorem [6.1)), (4)) = (3).

The implication (3)) = (4)) is a consequence of Propositionand Theorem
Indeed, if (3 holds, then Proposition implies that

sup |510—1(77x) 7520—2(7355” < 0.
~yel',xeM
This in turn implies that us is a coarse o1-Patterson—Sullivan measure of dimension
61. Then by the coarse uniqueness statement in Theorem we see that is true.
We will complete the proof by showing that (1) = (4).

14.1. Proof of (1)) = (4). By Theoremthere exists € > 0 such that ps (AS2(I)) =
1. By shrinking ¢y > 0 we may also assume that it satisfies the hypothesis of the
Shadow Lemma (Theorem for uy and po.

Let f:= %. Notice that for every v € T,

-1 -1
(13) fory= dr, 1#1 _ dy, d/ilz = 65202(%.)_5101(%.)f
dyi p2 dpy  dyi e
po-almost everywhere. Since po and p; = fue are probability measures, there
exists Dy > 1 such that the set
E:={Dy' < f < Do}

has positive po-measure.
Using Lemmas and we can fix xg € E'N A2 (") such that: if 0 < e < ¢
and {7,} C I' is an escaping sequence with zg € (1,5, Se(7n), then

(14) 1= lim pz(y, ' E)
n—oo
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and

, 1 . (Se(m))
15 fx():hmi/ fy)dus(y) = lim ————=.
Sy T = 8 ) Sy TV T e (S.C)
We will construct two sequences of group elements to use in the above limits.
Since zy € ALM(I'), Lemma implies that there exists an escaping sequence

260

{71,n} such that
20 € (1) Seo(y1.m)-

n>1
Passing to a subsequence we can suppose that 7, L(x0) = a1 € M and M, L ob e
M. Then fix o € T such that a~'b; # b;. Then let Yo,n = Y1,n¢ and
1 . -1
= =1 .
b= et =l 7z
Lemma 14.3. After passing to a subsequence, there exists € > 0 such that

o € ﬂ SE('YQJL).

n>1

Proof. Notice that 71_7;(960) € 'yl_’,lLSe(’yLn) =M — Bg(vii). So ay # by. Hence € :=

2d(a a1, a7 by) is positive. Since (y1,,) txg — a"tag and (y1,,0) 7t = a7 by,

after passing to a subsequence we can suppose that d((y1,a) 12g, (y1.,0)71) > €
for all n. Then xg € Sc(71,n0) = Se(Y2,,) for all n. O

Shrinking € > 0 we can assume
(M — Bgﬁ(bl)) U (M — Bgs(b2)> =M
and that ¢ < ¢y. Since Vi 5 — b;, passing to a further subsequence we can also
suppose that
M — Bae(b;) € M — Be(v; )
for all n > 1.
Lemma 14.4. There exists D1 > 1 such that
Di' < f(x) <Dy
for pa-almost every point x € M.
Proof. Since € < ¢y, Equation implies
H1 (Se (’Yi n))
f(zo) = lim —————=.
n—=00 t2(Se(Yi,n))

Since zo € E, we have f(xo) € [Dy*, Dg]. So by the Shadow Lemma (Theorem7
there exists Cy > 0 such that

<Cy

61 [¥inllg, = 02 1Vinll,,

for every n > 1. Then, since the cocycles are expanding, this implies that there
exists Cy > 0 such that

0101 (Yi,n, T) — 0202(Yi,n, )| < C2
when x € M — Bo(b;) C M — Be(fy;ﬁ). So Equation implies that

Dyle™@2 < f(x) < Dpe?
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pe-almost everywhere on 7, L E N (M — Ba(b;)). Then Equation implies that
Dofle_c2 < flz) < Doe®?
po-almost everywhere on M — Ba(b;). Since (M — Bae(b1)) U (M — Bac(bs)) = M,
this completes the proof. O
15. CONVEXITY OF CRITICAL EXPONENT

In this section we prove Theorem [1.6] which we restate below. For the rest of the
section fix a convergence group I' C Homeo(M) and two expanding coarse-cocycles
00,01: I' x M — R such that d,,(T') =1 = 64, (T'). For 0 < A < 1, notice that

ox=(1—=MNoo+ Aoy
is also a coarse-cocycle.
Theorem 15.1. If 0 < A < 1, then
0s, (') < 1.

Moreover, if 3 p e S MIlle, — +00, then the following are equivalent:

(1) 65, (I) = 1.
(2) sup [[[ll,, = IVl | < +oo.
yel

We start that by observing that the magnitudes of group elements behave nicely
under convex combinations of cocycles.

Lemma 15.2. o) is expanding and there exists D > 0 such that:

A =Xy + A Vls, =D <MVl < A=) IVl + Ao,
for ally €T.

Proof. The upper bound on ||7]|,,, is by definition. Then the expanding properties
for og and o7 imply the lower bound on ||’yHaA and the fact that o) is expanding. O

Lemma 15.3. §,, (T') < 1.

Proof. By Hélder’s inequality and the previous lemma,

A 1—X
§ :e*SIIVHUA < esD E :e*SHVHUO § :e*SHWHal
~v€r ver ver
Hence §,, (T') < 1. O

We now consider the “moreover” part of the theorem. So fix A € (0,1) where

ZeiH’YHU — Zeféo,\(r)”'\/”a)\ — +OO

~ver yel

It is clear that (2) = (1). The proof that (1) = (2) is much more complicated and
will occupy the rest of the section.

To that end, suppose that d,, (I') = 1. For ¢t € {0,\, 1}, let u; be a coarse
o¢-Patterson-Sullivan measure of dimension 1 (which exists by Theorem |4.1)).

The key step in the proof is to show that uy is absolutely continuous to pg + p1.

Proposition 15.4. uy < po + p1.



PATTERSON-SULLIVAN THEORY FOR COARSE COCYCLES 51

Assuming Proposition 4.1|for a moment we finish the proof that (1) = (2). Since
< po + p1, at least one of pg or pp is not singular to puy. So by relabelling we
can assume that uy is not singular to pg. Then Proposition implies that

sup [ [Vl 5, — 17llo, | < 400
yer

Then Lemma [15.2|implies that

sup [17ll,, = Iy, | < +oo.
yel’

15.1. Proof of Proposition The idea is to use the Shadow Lemma to relate
the measures.

Fix a compatible metric on I' U M and let S.(y) denote the associated shadows.
By the Shadow Lemma (Theorem , there exists ¢g > 0 such that for every
0 < e < ¢ there is constant Cp(e) > 1 where

L iy o =,
me el SMt(Seh/)) < Co(e)e Il

for all y e T and all ¢t € {0, A\, 1}.
We first establish bounds for the measure of shadows and then extend these
bounds to arbitrary sets using the covering result in Proposition [5.1/(5).

Lemma 15.5. For any 0 < € < ¢ there exists C1 = C1(€) > 1 such that: if y €T,
then

pix (Se(7)) < Crlpo + 1) (Se(7)) -
Proof. By the Shadow Lemma and Lemma [15.2
fix (Se(7)) < 00(6)6—H'Y2H” < CO(e)eDe—(l—/\)H*mll(,o—Ml’vzl\a1
< Cole)*eP o (S:(1))' ™ 1 (Se(7))*
Then the desired estimate follows from the weighted arithmetic-geometric mean
inequality. t
Lemma 15.6. There exists Co > 1 such that: if A C M is Borel measurable, then
pa(A4) < Ca(po + pa)(A).
Hence py < o + p1-

Proof. Fix n > 0. By outer regularity we can find an open set U C M such that
A CU and

(ko + 1) (U) <+ (o + p1)(A).
Using Theorem and possibly shrinking €y > 0, we may assume that
(16) pa(AG™ (D)) = 1.
Now fix 0 < € < ¢p and let
I.={yel:8(y) CU}.

By Lemma for each 2 € AL (T') there exists an escaping sequence {7,} such
that

z € [) Se(m)-

n=1
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Moreover, for each such sequence, Proposition implies that diam S,(v,,) — 0
as n — o0o. Hence

UNASHT) C | Se(y) cU.
yel

So by Equation ,

(@) = | | Se(0)

vyel

Let J C I and ¢ < e satisfy Proposition [5.1{[5). Then repeatedly using the
Shadow Lemma,

/l)\(A) < ,u,)\(U) = A U Se(’V) < Z//w\ (Se’('}/))

yel ~yeJ

< Co()Co(€') Y 1a (Se(7)) < Col€)Col(e)Crl€) D (1o + 1) (Se(7))

yEJ ned
< Co(e)Co(€)Cr() (o + 1) (U) < Col€)Co(€)Ca(€) (10 + ) (A) + 7).

Since 1 > 0 was arbitrary, this completes the proof. (I

16. SYMMETRIC COARSE-COCYCLES

In this section we consider the case when an expanding coarse-cocycle is “coarsely-
symmetric.” For the rest of the section, fix a convergence group I' C Homeo(M).
A coarse-cycle o : I' x M — R is coarsely-symmetric if

sup  |o(v,7) —o(v )| < Foc.
yel
7 loxodromic

The next result shows that coarsely-symmetric can also be defined using magni-
tudes and that expanding coarsely-symmetric coarse-cocycles are always contained
in a coarse GPS system.

Proposition 16.1. Suppose o: I' x M — R is an expanding coarse-cocycle. Then
o is coarsely-symmetric if and only if

sup [l = 77l | < +oe.
yel’

Moreover, if o is coarsely-symmetric, then (o,0,G) is a GPS system for T acting

on A(T') C M, where G: A(T')?) — [0,00) is defined by
G(z,y) = £+ limsup |af, + HBAHU - ||B*1a||g
a—z,f—y
(notice that G > 0 by Observation .

Remark 16.2. One could also define a Gromov product using a limit infimum instead
of a limit supremum.

As a corollary to Proposition and Theorem [11.1) we have the following.
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Corollary 16.3. Suppose o: I'x M — R is a coarsely-symmetric expanding coarse-
cocycle with § 1= 6,(T") < 400 and p is a coarse o-Patterson—Sullivan measure of

dimension §. If
Z e 0l = oo,
yel’

then T' acts ergodically on (M3, 1 ® p).

We prove the proposition via a series of lemma. Fix, for the rest of the section, an
expanding k-coarse-cocycle o: I' x M — R and a compatible distance d on I' U M.

Lemma 16.4. o is coarsely-symmetric if and only if

sup [[1yll, = [[v7H],| < +oe.
yel’

Proof. («<): This follows from Proposition [3.2(|1).
(=): Fix e > 0 and a finite set F' C I satisfying Lemma By Observation[3.1]

Cr:= sup |lvll, = vl |+ Al =l
~yel, feF

is finite. Further, by the expanding property, there exists C; > 0 such that: if
v €T and d(x,7~ 1) > ¢, then

lo(v,2) = ;| < Co.
Now fix v € I". Then there exists f € F' such that vf is loxodromic and
min {d((v/), (vf) 7). d(vf, () 7). ()T, ()TN} > e
Then
Il = 17l | < G+ il = Ian 7l
<Cr 420+ lo(vf, (V)T —a((v )L (V) 7)) -
Then, since o is coarsely-symmetric,

sup ’||7||0 — Hq/_lHU’ < 4o00. O
yel

Lemma 16.5. If o is coarsely-symmetric, then (o,0,G) is a GPS system on A(T).

Proof. Notice that G is locally bounded by Proposition [3.2(5)). Also, by Proposi-
tion [3.2)|4)), for every z € A(T') and v € T we have

—2k 4 limsup |[|[yal|, — [laf, < o(y,x) < 2k + liminf ||yal, — |laf, -
a—T a—T

Then by the previous lemma, there exists C' > 0 such that
—C + lim sup Ha_lfy_lHa - Hoz_lug < o(y,2) < C+liminf Ha‘lfy_lug - Ha‘ng.
a—x

a—x

Fix (z,y) € A(T)® and v € T'. By definition there exist a,, — x and 3, — y
such that

GOyz,vy) =K+ lim_ [[yanll, + {8,777, = (|82 o] -

Then
G(z,y) > K+ limsup ||ay ||, + HB,ng - Hﬁ;lanu i
n—oo
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So

Glye, ) — Gle,y) < tminf [yl — llanl, + 1877, — 1871,
<264+C+H+o(y,z)+o(v,y).

Using the definition of G again, there exist &, —  and 3, — y such that

Gla,y) =k + lim flanl, + |81 — |8 an
n—oo o
Then
G(yx,vy) > K+ limsup [[yén]|, + ‘ 3517_1" - ‘ Bt

n— 00 ag

So

G(y2,79) = Gla.y) = limsup [y, — lanl, + |37 |4

n—oo a o

> 2k—C+o(y,z)+0(7,y).
Thus
‘(U(% ) +a(7, y)) - (G(v(ﬂf), 1Y) = Gz, y))) S26+C
and hence (o,0,G) is a GPS system. O

17. POTENTIALS ON GROMOV HYPERBOLIC SPACES

For the rest of the section let (X,dx) be a proper geodesic Gromov hyperbolic
metric space and fix a basepoint o € X. Also, let I' C Isom(X) be a discrete group.
Then I' acts on the Gromov boundary 0., X as a convergence group.

In this section we consider coarsely additive potentials on X, as defined in Defi-

nition and prove Theorems and (which we restate here).

Theorem 17.1. Suppose ¥ is a U'-invariant coarsely additive potential. Define
Junctions 0,0y I' X 0o X — R and Gy : Do X — [0,00) by

oy (v, 2) = limsup ¥ (v~ 'o,p) — ¥(0,p),

p—T
Gy (v, 2) = limsup ¥ (p,7" o) — ¥(p,0),
p—T
Gy(z,y) = limsup ¥ (p,0) +(0,q) — ¥(p, q).
pP—T,q—Y

Then there exists k1 > 0 such that (Gy,04, Gy + K1) is a coarse GPS system and
sup |||, — ¥(0,70)| < +oc.
yel’

Theorem 17.2. Suppose I' acts co-compactly on X and o : ' X 050X — R is an
expanding coarse-cocycle. Then there exists a T'-invariant coarsely additive potential
where

sup |O-’¢ (77 LC) - 0(77 .’E)| < +o00.
YET, €00 X

In particular, o is contained in a GPS system.
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17.1. Metric perspective. If ¢y : X x X — R is a [-invariant coarsely additive
potential, then by Lemma below there exists a constant C' > 0 such that the
function

Y(pg) +C ifp#q

is a I'-invariant quasimetric, that is a function that satisfies all the axioms of a
metric except for the symmetry property. Using properties and in Defini-
tion one can show that (X, dy) is quasi-isometric to (X,dx) and that (X, dy)
is coarsely-geodesic, i.e. there is some C' > 0 such that every two points in X are
joined by a (1, C)-quasi-geodesic with respect to the quasimetric dy.

Conversely, given a I'-invariant coarsely-geodesic quasimetric d on X which is
quasi-isometric to (X,dx), the Morse lemma implies that the function ¢ (z,y) =
d(z,y) is a T-invariant coarsely additive potential.

Hence Theorems [7.1] and could be instead be stated in terms of I-invariant

coarsely-geodesic quasimetrics which are quasi-isometric to (X, dx).
17.2. Proof of Theorem Suppose 1 : X x X — R is a [-invariant coarsely
additive potential and  : [0,00) — [0, 00) is the function in property .

Since (X, dx) is Gromov hyperbolic, there exists 6 > 0 such that every geodesic
triangle in (X, dx) is d-slim.

We first show that ¢ satisfies a coarse version of the triangle inequality.
Lemma 17.3.

(1) For every r > 0 there exists C(r) > 0 such that:

V(. q) =¥, d")| < C(r)
when dx (p,p’),dx(¢,¢') <.
(2) There exists k1 > 0 such that:
Y(p1,p2) < P(p1,9) + (g, p2) + K1
fOT' all P1,p2,q € X.

Proof. (1). Notice that p’ is in the (r + 1)-neighborhood of any geodesic joining p
to ¢ and ¢’ is in the (r 4+ 1)-neighborhood of any geodesic joining p’ to ¢. So

[U(p,q) — ((p.p') + 0. d) +¢(d,q))| < 26(r +1).
Hence
lo(p,q) =@, d) <26(r+1)+2 sup  [¢(u,v)],

dx (u,v)<r
which is finite by property .

(2). Let m :=inf,, e x ¥(p, ¢), which is finite by property .

Fix p1,p2,q € X and a geodesic triangle [p1, p2]U[p2, ¢]U[g, p1] in X with vertices
p1,P2,q. Since every geodesic triangle is d-slim, there exists u € [p1, p2], P} € [q, p1]
and pj € [pa, q] such that

dX(pllvu)vdX(p/Q,u) <o
Then

Y(p1,p2) < ¥(p1,u) + ¥(u, p2) + £(0) < (p1,pt) + P (ph, p2) + 2C(8) + £(0)
< Y(p1,q) — VP, q) + Vg, p2) — ¥ (g, ph) + 2C(6) + 3k(0)
< (p1,q

(p1,4) + (g, p2) = 2m +2C(9) + 3+(0). 0
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The next lemma states that it coarsely doesn’t matter what sequence we use to
define oy.

Lemma 17.4. There exists ko > 0 such that: if x € 00X and v € T, then
limsup | (¥ (v 0,p) — ¥(0,p)) — (¥(v " 0,q) — ¥(0,q))| < Ka.

p,g—

Proof. Since geodesic triangles are d-slim, for any two geodesic rays rq,rs : [0,00) —
(X,dx) with lims o0 71 () = lims_ o0 r2(t) there exists T' > 0 such that 7 ([T, 00))
is contained in the 24-neighborhood of rs.

Fix z € 05T and v € T'. Then fix sequences {p,},{¢g,} C T' converging to x
where

L= lim [(¥(v" 0,pn) —9(0,pn)) — (¥(v7"0,4n) — ¥(0,4n))]

equals the limit supremum in the lemma statement. Using the fact mentioned
above, after passing to a subsequence, we can find u € X such that u is contained
in the (2 + 1)-neighborhood of any geodesic joining o to either p,, or ¢,, and w is
contained in the (26 + 1)-neighborhood of any geodesic joining v~ o to either p,, or
¢n. Then

|(v(v " 0,pn) —¥(0,pn)) — (V(v 0, u) — ¥(0,u))]
=|((y " o,pn) — (v 0, u) — P(u,pn)) — (¥(0,pn) — ¥(0,u) — P(u, pn))|
< 2k(26 +1).
Likewise,
|(v(v " 0,qn) = ¥(0,qn)) — (v(7 "0, u) — ¥(o,u))| < 26(26 + 1).
So L < 4k(26 +1).

Lemma 17.5. oy : I' X 06X — R is a coarse-cocyle.
Proof. Fix 1,72 € I’ and a sequence {p,} C X converging to z € 9, X. Then by
Lemma [17.4]
oy (172, @) — 0y (71, 722) — 0y (72, @)
< 3ky + limsup |1(75 "1 "0, pn) — ¥(0,pn) — (71 "0, 72pn) + ¥(0, Y2pn)
n—oo
- 1/)(’72_107])71) + w(oapn)’
= 3:%2.

Next fix v € T and {z,} C 0xX converging to x. Then we can fix {p, ;} C X
such that lim;_,o p, ; = ©,. Then Lemma we can fix {j,} such that

Slili |0w(% xn) - w('y_loapn’jn) + 1/J(0apn,jn)| < K2
nz
and p,, ;, — =. Then again using Lemma
lmsup o (7, 2) — 0y (7, 2n)| < k2 + limsup |oy (v, 2) = V(v 0, pnj,) + (0, Pnj,)|
n— o0 n— o0
S 2/‘62.

Thus oy is a (3k2)-coarse-cocycle. O

Lemma 17.6. sup,cr ([[7]l,, — ¥(o, ’yo)‘ < +o0.
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Proof. Fix a geodesic line £ in X and let x,y € 05" denote the endpoints of £. Fix
{pn},{qn} C X converging to z, y respectively along the geodesic line £. Also fix
some u € /.

Fix v € I'. Notice that a geodesic triangle with vertices p,, ¢,,, v~ o is é-slim and
so after relabelling we can assume that w is a §-neighborhood of a geodesic segment
from v~1o to p,. So

(Tw(’}gf) > —kg + limsup w(’yiloapn) - Z/J(O,IDn)

n—oo

> kg — K(8) + limsup (v~ 0, u) + 9 (u, pn) — (0, pn).-

By Lemma [I7.3]
(v 0,0) S p(v o, u) + 4 (u, 0) + ki

and
[t (u, pn) — (0, pn)| < C(dx (u,0)).
So
oy(7,2) > —k2 = K(8) — C(dx (u,0)) = 9(u,0) — K1 + (v 0,0).
For the other direction, fix z € J,,X and {p,} C X converging to z. Then
04(7,2) < o+ Hmsup §(y70,pn) = ¥(0,pn) < K2 + $(7710,0) + k1.

So ||’y||% — (o, Pyo)‘ = ‘HV”% — (v 1o, 0)| is uniformly bounded. O

The next lemma states that it coarsely doesn’t matter what sequence we use to
define Gy.

Lemma 17.7. There exists k3 > 0 such that: if £ is a geodesic line in (X,dx) with
endpoints x,y € 0o X, then

lim sup
P—T,q—Y

$(p,0) + (0, ) — ¥(p, @) — minh(u, 0) + Y(0,u)| < k.

Proof. Fix a geodesic line ¢ with endpoints z,y € 0,,X. Then fix sequences
{pn},{qn} C X converging to x,y which realize the limit supremum in the lemma
statement. Passing to a subsequence we can suppose that

L= lim ¢(pn,0) +¥(0,¢n) = ¥(Pn, an)
n—oo
exists in [—o0, +00]. Then Lemma implies that L € [—k1, +00].

Fix a geodesic [pn, g,] joining p,, to ¢,. Passing to a subsequence we can suppose
that [pn, gn] converges to a geodesic line { with endpoints z, y. Since every geodesic
triangle is d-slim, £ must be contained in a (26)-neighborhood of ¢ and ¢ must be
contained in a (26)-neighborhood of .

First suppose that u € ¢. Then for n sufficiently large, w is in the (2§ + 1)-
neighborhood of [p,, ¢,]. Hence

V(Pn,an) = ¥(Pn,u) +¥(u, qn) — K(26 + 1),
which implies
< k(20 4+ 1) + 2k1 + ¥(0,u) + Y(u,0).
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Thus
L <k(206+1)+ 261 + mei?w(u, 0) + (o, u).
u

Notice that this implies that L < 4oc.

For each n, let [0,p,] U [Pn,qn] U [gn,0] be a geodesic triangle with vertices
0,Pn, Qn. Since every geodesic triangle is d-slim, exist u, € [pn,qn], P, € [0, Dn],
and ¢, € [0, g,] such that

dX(p;m un)v dx (q:w un) <.

Then
Y(pn,0) + (0, ¢n) — V(P an
> P(Pn, un) + Y (un, 0) +P(0,un) + (U, @) — V(P Un) — P (Un, ¢n) — 3K(0)
= P(tn, 0) + (0, un) — 3(3).

Hence

~ ~—

L > —3k(6) + lim sup 1 (un, 0) + ¥(0, uy).

n—oo
Since L < +o0, property implies that {u,} is relatively compact in X. So
for n sufficiently large, w,, is contained in a (20 + 1)-neighborhood of ¢. Thus by
Lemma [17.3

L > —-3k(6) —2C(20 +1) + meirl}d)(u,o) + (o, u). O

Lemma 17.8. (Gy,0y,Gy + K1) is a coarse GPS system.

Proof. Lemma implies that G + k1 is non-negative. Notice that ¥(p,q) =
(g, p) defines a I'-invariant coarsely additive potential. So Lemma implies
that o, = o is a coarse-cocycle.

Next we show that Gy is locally finite. Fix a compact set K C oo X (2). Then
there exists r > 0 such that any geodesic line in (X,dx) joining points in K
intersects the ball of radius r > 0 centered at 0. Then Lemma and property
imply that

sup Gy(z,y) < +oo.
(z,y)eK

Hence G is locally finite.
Finally, arguing exactly as in the proof of Lemma there exists a constant
C > 0 such that

Gy (v2,7Y) = Gu(@,y) = 0y (7, 2) = op(y,y) < C
for all v € T and (z,79) € 00 X@.
Hence (Gy, 0y, Gy + k1) is a coarse GPS system. O

17.3. Proof of Theorem Suppose 0: ' X 0,X — R is an expanding k-
coarse-cocycle and I" acts co-compactly on X. Fix 7 > 0 such that X =T"- B,.(0).
Forpe X let A, :={y €T :dx(p,7(0)) < r}. Then define ¢: X x X — R by

_ 1 1
¢(pa Q) = #Ap#Aq Z H’}/l 72”0 :

V1€Ap,¥2E€A,

We will show that v is a I'-invariant coarsely additive potential.
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Since vA4, = A,,, the function ¢ is I'-invariant. Since o is proper,

lim inf  ¥(p,q) = +oo.
r—oodx (p,q)>r

Since I" acts properly on X, for any r > 0 we have

sup [ (p,q)| < +oo.
dx (p,q)<r

Let B := {v € T : dx(0,7(0)) < 2r}. Then Observation implies that if
a€ A, and § € Ay, then

17 G <C:=2 .
a) lla~*8], - v(a.)] < © = 2max
In particular,

(18) IVlly = ¥(o,70)[ < C

for all v € T.

Lemma 17.9. For everyr > 0 there exists k = k(r) > 0 such that: if u is contained
in the r-neighborhood of a geodesic in (X,dx) joining p to q, then

|¢(pa q) - (7/}(]73 u) + ¢(U7Q))| S K.

Proof. Fix r > 0 and suppose no such x(r) > 0 exists. Then for each n > 1 we can
find pn, qn,u, € X such that u, is contained in the r-neighborhood of a geodesic
joining p, to ¢, and

W(Pm%) - (w(pnvun) + w(uann»’ >n.

Translating by I', we can assume that p, € B, (o), which implies that id € 4, .
Fix o, € A,,, and B, € A, . Then Equation implies that

1Bally = llanlly, = [Jaz Bul| .| = 7 = 3C.
However, Proposition implies that there exists C’ > 0 such that
18all, = Nanll, + [l Ball, = €’
for all n > 1 and by Observation
18all, < llewall, + o Ball, + 5.

So we have a contradiction. O

Thus 9 is a I-invariant coarsely additive potential. Finally, by the definition of
04, Equation , and Proposition [3.24]) we have

sup |0¢ (77 LE) - 0(7) .’E)| < +o0.
YET, €00 X

This completes the proof of Theorem [17.2)
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APPENDIX A. CONSERVATIVITY, DISSIPATIVITY AND QUOTIENT MEASURES

In this appendix we define the notions of conservativity, dissipativity and Hopf
decompositions for a general group action, check that it coincides with several other
definitions in the literature [Kail0l [Aar97, [Rob03], and also that it is consistent with
the classical theory of Hopf decompositions for actions of Z. This expands on the
discussion in [Bla21]. We also prove that quotient measures exist when the action
is dissipative.

We include this appendix because the references we found on this topic were not
entirely suitable for this paper: some sources [Rob03| [Bla21] are missing details,
while others [Kail0l [Aar97] only apply to free actions (while here we allow actions
which are not free).

For the rest of the section fix a measurable space X, a unimodular, locally
compact second-countable group G acting measurably on X, and an G-invariant
sigma-finite measure m. We denote by dg a fixed choice of Haar measure on G: since
G is unimodular, this measure is invariant under both left and right multiplication,

and under the involution g — g~*.

A.1. The Hopf decomposition. There are several reasonable definitions of wan-
dering sets, which generalize in different ways the classical notion of wandering sets
for actions of Z, R and Z>,. We use the following:

Definition A.1. A measurable subset W C X is called wandering (resp. exactly
wandering) if {g € G : gr € W} is relatively compact for m-almost any (resp. for
any) x € W.

When G is discrete, in particular if G = Z, then a set W is sometimes called
wandering if it satisfies the stronger property that W N gW = & for any g € G, or
m(W N gW) =0, see [Aar97, [Kail0]. We will see, in Section the link between
this stronger definition and ours. Roblin defines W to be wandering if it satisfies
the weaker property that [ 1y (gz)dg < +oo for almost any 2 € W [Rob03] p.17].
This gives the same notions of conservativity and dissipativity, as explained below.

Definition A.2. The action of G on (X, m) is called conservative if every wandering
set has measure zero, The action is called dissipative if X is a countable union of
wandering sets.

A Hopf decomposition of X is a decomposition X = C U D into disjoint G-
invariant measurable sets such that the action on C' is conservative and the action
on D is dissipative.

Notice that if X = CU D and X = C’ U D’ are both Hopf decompositions, then
C’'N D is a countable union of wandering sets. Since every wandering set in C’ has
measure zero, we see that m(C’ N D) = 0, and similarly m(C N D’) = 0. So, up to
a set of measure zero, there is a unique Hopf decomposition.

There is another classical characterization of conservativity, dissipativity and
Hopf decompositions in terms of integrable functions. This characterization also
proves the existence of Hopf decompositions.

Fact A.3 ([Bla2l, Fact 2.27]). For any positive integrable function f on X, the
sets C:={x : [ f(gz)dg = +oo} and D := {z : [ f(gz)dg < +oo} form a Hopf
decomposition.
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In particular, the action of G is conservative (resp. dissipative) if and only if for
any/some positive integrable function f on X, we have fG f(gx)dg = +oo (resp.
< 400) for m-almost any x € X.

This result implies that our notion of Hopf decomposition coincides with that of
Roblin [Rob03l p.17]. If not, there would be W C C with positive measure such
that h(z) = [ 1w (gz) dg is finite for m-almost every € W, and up to reducing W
we can assume there exists R such that {h(z) < R} has full m-measure in W. Then
Sy h(x) f(x) dz < +oo, but this quantity equals [ _y. [ f(gx)dgdm(z), which is
infinite since [ f(gx)dg = 400 on C.

A consequence of Fact is that a group G acting on X has the same Hopf
decomposition as any lattice of G acting on X (if G has lattices), see e.g. [Aar97,
Th.1.6.4] in the case of free actions.

A.2. The case of discrete groups. In this section we suppose that G is discrete
and X is standard, i.e. X can be measurably embedded in [0,1]. The goal is to
construct a measurable fundamental domain for the action of G on the dissipative
part. This will allow us to check that our definition of Hopf decomposition agree
with other definitions [Aar97, Kail0] when G is torsion-free.

Lemma A.4. Let A C X be a G-invariant measurable subset which can be written
as a countable union of eractly wandering sets. Then there exists a measurable
subset F C A such that every orbit G - x intersects F at exactly one point. In
particular, F is measurably isomorphic to G\A endowed with the quotient sigma-
algebra, and this quotient is hence standard (can be measurably embedded in [0,1]).

Moreover, there exists such an A C X such that X = AU (X — A) is a Hopf
decomposition.

Proof. Let {W,} be a sequence of exactly wandering sets with A = J,, W,,. Let
Wi := Wy, and let W) =W, — G(Wy U---UW,,_1) for all n > 1. Then {W},} is
a sequence of exactly wandering sets such that the orbits G- W/ form a partition
of A. To conclude the proof, it suffices to find a fundamental domain in each W,
i.e. to select in a measurable way one representative for each orbit which intersects

Let ¢: X — [0,1] be a measurable embedding. Now for each n > 1, we select
in each orbit G- z the point y € W, whose image under ¢ is the smallest, i.e.
y=¢ H(ming(G-zNW))). So

Fn:={z e W/ :¢(x) < ¢(gr) forany g € G with gz € W) }.

This set is measurable since = € F,, if and only if ¢(x) < ¢(g9x) + 1x_w; (gz) for
any g € G, which are countably many measurable conditions. Then F :=J,, F, is
a measurable fundamental domain.

To construct A satisfying the “moreover” statement, consider a Hopf decompo-
sition X = C'U D, write D as a countable union of wandering sets {W,,}, and then
let W/ be the set of € W,, such that {g : gr € W,,} is finite, so that W, is exactly
wandering and has full measure in W,,. Finally set A :=J, G- W}. O

If G is torsion-free, then the action of G on the set A C X constructed in the
last part above is free. As a corollary, any Hopf decomposition X = C LU D for
our definition in Section [A71]is also a Hopf decomposition in the sense of Aaronson
[Aar97, §1.6] and Kaimanovich [Kail0l]: every positive measure subset B C C is
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recurrent, meaning that for almost any x € B the orbit eventually returns to B
(because B is not wandering), and D admits a subset F such that {gF}4cc are
pairwise disjoint and G- F has full measure in D.

A.3. Quotient measures. In this section we assume the action of G on X is
dissipative. Let m: X — G\ X denote the projection map associated to the action
and endow G\ X with the quotient sigma-algebra.

For any non-negative measurable function f: X — [0, 400], the function

P(f)@) = [ [flgz)dg
geG
is measurable and G-invariant, hence it descends to a measurable function on G\ X
which we denote by P(f).
We say that a measure m’ on G\X is a quotient measure for m if for any non-
negative measurable function f : X — [0, +o00] we have

(19) LLjf@wmmwzéﬁwg%ﬂ@mﬂm»

For instance, if X is a smooth manifold, G is discrete and acts freely and properly
discontinuously on X, and m comes from a smooth G-invariant volume form «, then
G\X is a manifold and the quotient measure is induced by the volume form 7.cv.

We will show that quotient measures exist and are unique.

Remark A.5. First we make some observations.

(1) The quotient measure m’ is automatically sigma-finite, since P(f) is a posi-
tive function in L*(G\ X, m’) whenever f is a positive function in L' (X, m).

(2) A G-invariant measurable subset A C X has zero m-measure if and only
if its projection 7(A) (which is measurable) has zero m/-measure. Indeed,
let f be a positive integrable function on X. Then P(f1a) = P(f)1x(a)-.
If m(A) = 0 then fP(f)lﬂ(A)dm/ = fflAdm = 0 so P(f)lﬂ(A) =0
almost everywhere, so m/(7(A4)) = 0. Conversely, if m/(7(A4)) = 0 then
J fladm =0 so m(A) = 0.

(3) If f € L'(X,m), then P(f)(z) = fgeG f(gx)dg is an m-almost everywhere
defined measurable function and hence it descends to a measurable m/'-
almost everywhere defined function on G\X which we denote by P(f).
Equation implies that

[ Pty = [ gam

for all f € LY(X,m). Since |P(f)| < P(|f]), Equation also implies
that
P:LY(X,m)— LY(G\X,m/)

is continuous.

Fact A.6. There is a unique quotient measure on G\X, and it is given by the

formula
1
m' = o ——~m.(fom),

P(fo)
where fo is any integrable positive function on X. Moreover, for any x: G\X —

Rso, if f = ﬁ{;o)x om then P(f) = x m’-almost surely.
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Proof. Since the action of G on X is dissipative, P(fy) is finite m-almost surely by
Fact [A3]

Let us prove uniqueness: let mi,ms be quotient measures. Fix x: G\X —

[0, 4+00] measurable. Set f(z) = X(W(aj))P{;(;ﬁ) and observe that P(f)(q) = x(q)

for any ¢ € G\X such that P(fy)(¢) < oo, Wthh occurs m;-almost surely since
J P(fo)dm; = [ fodm < oo, for any ¢ = 1,2. Thus [ xdmq = [ fdm = [ xdma,
which implies m; = ms since x was an arbitrary non-negative measurable function.

Let us now check that m’ = P(fo) " *m.(fom) is a quotient measure. Fix f: X —
[0, +00]. Then by Fubini, the G-invariance of m, and the invariance of the Haar
measure under g — g~ ', we have

o [ PO@
| o= [ G )

= / / f(gfc)J;%()x) )dm(x)dg
/ / folg dgdm / fly)dm(y). O

If G is discrete, then one can use the existence of a fundamental domain from
Section to give a more concrete description of the quotient measure.

Fact A.7. Suppose X is standard and G is discrete. Let F C X be a measurable
subset that intersects every I'-orbit at most once and such that T'-F has full measure
(as in the “moreover” part of Lemma .

Then m.(fomF) is the quotient measure, where fo(x) = m

Proof. Let f be a measurable non-negative function on X.

For any finite subgroup K C G, let Fx be the set of x € F whose stabilizer is
K. Then F is the disjoint countable union of the Fi’s, and we have 27 lp,oy=
#K 167, and fo(x) = (#K)~! for any # € Fg. So

[ Pt gomiz) = [ fo(w)fo(w)dm(w)
= #K/ Zm f(yx)dm(x)

KCG

=3 [ swmt) = [ sam. .

KCG

A.4. The case G = Z. In this section we consider the case when G = Z. There is
an abundant literature on the notions of conservativity, dissipativity and Hopf de-
composition in this case, and more generally in the case of actions of the semigroup
Z>1. We denote by T™ the transformation of X associated to an element n.

For any reasonable choice of definitions, it is obvious that conservativity of Z>1
always implies conservativity of Z and that dissipativity of Z implies dissipativity
of Z>1. It is well-known, although nontrivial, that the converses are also true. We
shall use Krengel as a reference, and check that our definitions are consistent with
the definitions there:

Fact A.8. Consider a decomposition X = C'U D which is a Hopf decomposition in
the sense of Krengel [Kre85, Th. 3.2]: D admits a measurable subset Wy such that
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D = T*Wy and Wo NT"Wy = @ for any n # 0, and every subset W C C with
WNT"W =@ for any n # 0 has measure zero.
Then X = C U D is a Hopf decomposition for our definition.

Proof. The action on D is clearly dissipative for our definition.

If every subset W C C with WNT"W = & for any n # 0 has measure zero, then
for any measurable A C C, for almost any = € A there exist infinitely many n’ such
that T"x € A [Kre85, Th.3.1]. This implies that the action on C' is conservative
for our definition. O

A.5. A topological Hopf decomposition. Suppose the sigma-algebra of X comes
from a locally compact second-countable topology and the action of G is by homeo-
morphisms. In this case there is a natural Hopf decomposition that does not depend
on m.

We say an orbit G- x is escaping if for any compact set K the set {g : gz € K}
is relatively compact, i.e. gr — 00 as ¢ — oo. Let D C X be the set of x such
that G- x is escaping, and C = X — D. Note that D is measurable because it is a
countable intersection of closed sets of the form

{z:(G-L) -z CcX—int(K)}= (] ¢ (X —int(K))
geG—L
for some compact sets K C X and L C G.

Lemma A.9. X = CUD is a Hopf decomposition for any G-invariant locally finite
measure.

Proof. Our assumptions imply the existence of a positive continuous integrable
function f. Then [ f(gz)dz = +oo for any = € C. Indeed let 2 € C. Then there
is a compact subset K C X such that {g : gz € K} is not relatively compact. Fix
U C G a compact neighborhood of the identity. By continuity there is some € > 0
such that f(uy) > e whenu € U and y € K. Let {g,} C G be an escaping sequence
such that Ug, are pairwise disjoint and g,z € K for any n. Then

/Gf(gac) dg > zn:/uEU f(ugnz) du > ;e -Haar(U) = +o0.

It remains to prove that D is a countable union of wandering sets. In fact it is a
countable union of exactly wandering sets W, ({g : gz € W, } is relatively compact
for any € W,,). Indeed let {K,} be a sequence of compact sets covering X, and
let W,, = K,, N D. Then W, is exactly wandering. O
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