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1. Introduction

In previous work [8], we introduced the theory of Patterson–Sullivan measures
for Gromov–Patterson–Sullivan (GPS) systems. We recall that a GPS system con-
sists of a pair of cocycles for a discrete convergence groups action which are re-
lated by a Gromov product. More precisely, given a GPS system we constructed
Patterson–Sullivan measures, a flow space and a Bowen–Margulis–Sullivan (BMS)
measure. We established a Hopf–Tusji–Sullivan dichotomy for these flows and their
Bowen–Margulis–Sullivan (BMS) measures. In this paper, we obtain mixing and
equidistribution results when the BMS measure is finite and the length spectrum
is non-arithmetic.
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In the case when the convergence group action is geometrically finite, we are able
to establish a stronger equidistribution result which will allow us to obtain counting
results. We apply our abstract results to obtain equidistribution and counting
results for relatively Anosov groups in semisimple Lie groups which generalize earlier
work of Sambarino [42, 44] for Anosov groups. In the relatively Anosov setting such
counting results were previously known only when the semisimple Lie groups has
rank-one, or for special classes of Anosov groups, see the discussion after Corollary
1.7 for more details.

1.1. Main results. We will assume through the paper that M is a compact metriz-
able space and Γ ⊂ Homeo(M) is a non-elementary convergence group. A continu-
ous cocycle σ : Γ×M → R defines a natural magnitude

‖γ‖σ := max
x∈M

σ(γ, x)

and period

`σ(γ) :=

{
σ(γ, γ+) if γ is loxodromic

0 otherwise
.

One of the primary aims of this paper is to study counting results for these quan-
tities. To that end, we restrict our study to the case when σ is proper, that is if
{γn} is a sequence of distinct elements then ‖γn‖σ → +∞. In this case the critical
exponent is defined to be

δσ(Γ) := lim sup
R→∞

1

R
log #{γ ∈ Γ : ‖γ‖σ ≤ R}.

We also assume our cocycle is part of a (continuous) Gromov–Patterson–Sullivan
(GPS) system, which is a triple (σ, σ̄, G) where σ, σ̄ : Γ ×M → R are continuous
proper cocycles and G : M (2) → [0,∞) is a continuous function such that

(1) σ̄(γ, x) + σ(γ, y) = G(γx, γy)−G(x, y)

for all γ ∈ Γ and (x, y) ∈ M (2), where as usual M (2) ⊂ M ×M denotes the space
of distinct pairs. Many geometrically important cocycles appear as part of a GPS
system, see [8] for examples.

Given a GPS system, the length spectrum is

L(σ, σ̄, G) := {`σ(γ) + `σ̄(γ) : γ ∈ Γ is loxodromic}
and we say that L(σ, σ̄) is non-arithmetic if it generates a dense subgroup of R.

In the case when Γ is geometrically finite we obtain the following counting result
for periods of elements in [Γlox]w, the set of weak conjugacy classes of loxodromic
elements (defined in Section 10 below). If Γ is torsion-free, then [Γlox]w is simply
the set of conjugacy classes of loxodromic elements.

Theorem 1.1 (Corollary 10.2). Suppose (σ, σ̄, G) is a continuous GPS system for
a geometrically finite convergence group Γ ⊂ Homeo(M) where δ := δσ(Γ) < +∞.
If

(1) L(σ, σ̄, G) is non-arithmetic and
(2) δσ(P ) < δ for all maximal parabolic subgroups P ⊂ Γ,

then

#{[γ]w ∈ [Γlox]w : 0 < `σ(γ) ≤ R} ∼ eδR

δR
,

i.e. the ratio of the two sides goes to 1 as R→ +∞.
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Theorem 1.1, in combination with the main result of [14], will allow us to prove
counting results for relatively Anosov representations. We will describe these results
in Section 1.2 below after developing the appropriate terminology to state them.

Remark 1.2. The condition that L(σ, σ̄, G) is non-arithmetic holds whenever Γ
contains a parabolic element. Moreover, it can be replaced with the weaker as-
sumption that the cross ratio spectrum CR, see Section 4, is non-arithmetic which
holds whenever some infinite path component of the limit set Λ(Γ) contains a loxo-
dromic fixed point, see Section 5. In particular, in the geometrically finite case, the
cross ratio spectrum is non-arithmetic whenever Γ is not a virtually free uniform
convergence group.

Motivated by previous work concerning specific GPS systems, the proof of Theo-
rem 10.2 is based on studying the dynamical properties of the flow space associated
to the GPS system. We briefly introduce this flow space and state the dynamical
results we prove. For more precise definitions, see Section 2.

Let Λ(Γ) ⊂ M denote the limit set of Γ and let Λ(Γ)(2) denote the space of
distinct pairs in Λ(Γ). One may define a flow space

ŨΓ := Λ(Γ)(2) × R

with flow

ψt(x, y, s) = (x, y, s+ t),

which corresponds via the famous Hopf parametrisation to the (nonwandering part
of the) unit tangent bundle of Hn when Γ ⊂ Isom(Hn), M = ∂Hn and σ is the
Busemann cocycle from the hyperbolic metric. Using this analogy, one then defines

an action of Γ on ŨΓ by

γ(x, y, s) = (γ(x), γ(y), s+ σ(γ, y)).

When σ is part of a GPS system, the action of Γ on ŨΓ is properly discontinuous
(see [8, Prop. 10.2]) and commutes with the flow, so ψt descends to a flow on the
quotient

UΓ := Γ\ŨΓ

which we also denote ψt.
In the case of GPS systems associated to Anosov groups this flow space was

constructed by Sambarino [42, 43, 44] and in the case of GPS systems associated to
transverse groups this flow space was constructed by Kim–Oh–Wang [30]. In the
general setting considered here, one can easily adapt the proof of [30, Th. 9.1] to

show that Γ acts properly discontinuously on ŨΓ.
In our previous paper [8], we showed that if the Poincaré series associated to σ,

given by

Qσ(s) =
∑
γ∈Γ

e−s‖γ‖σ ,

diverges at the critical exponent δσ(Γ), then UΓ has a unique (BMS) Bowen–
Margulis–Sullivan measure mΓ and the flow ψt : (UΓ,mΓ) → (UΓ,mΓ) is ergodic
and conservative (see Section 2 for the definition of mΓ and a precise statement).

In this paper, we further show that the flow is mixing when the BMS measure
is finite and the length spectrum is non-arithmetic.
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Theorem 1.3 (see Theorem 4.2 below). Suppose (σ, σ̄, G) is a continuous GPS
system for a convergence group Γ ⊂ Homeo(M) where δ := δσ(Γ) < +∞ and
Qσ(δ) = +∞. If the BMS measure mΓ is finite and the length spectrum L(σ, σ̄, G)
is non-arithmetic, then the flow ψt : (UΓ,mΓ)→ (UΓ,mΓ) is mixing.

In the geometrically finite setting, we are able to adapt arguments of Dal’bo–
Otal–Peigné [20] in the setting of geometrically finite negatively curved manifolds
to provide the following criterion for when the BMS measure to be finite.

Theorem 1.4 (see Theorem 9.1 below). Suppose (σ, σ̄, G) is a continuous GPS
system for a geometrically finite convergence group Γ ⊂ Homeo(M) where δ :=
δσ(Γ) < +∞. If δσ(P ) < δ for any maximal parabolic subgroup P of Γ, then
Qσ(δ) = +∞ and the BMS measure mΓ is finite.

As an application of mixing, we prove an equidistribution result for fixed points
of loxodromic elements in terms of the Patterson–Sullivan measures associated to
the cocycles in a GPS system. In our earlier work [8], we proved that Patterson–
Sullivan measures exist in the critical dimension and are unique when the Poincaré
series diverges at its critical exponent, see Section 2.2 for details. In the statement
below, Γlox denotes the set of loxodromic elements of γ and Dγ± denotes the unit
Dirac mass based at the attracting/repelling fixed point of γ ∈ Γlox.

Theorem 1.5 (see Theorem 6.1 below). Suppose (σ, σ̄, G) is a continuous GPS
system for a convergence group Γ ⊂ Homeo(M) where δ := δσ(Γ) < +∞ and
Qσ(δ) = +∞. Let µ be the unique σ-Patterson–Sullivan measure of dimension δ
and let µ̄ be the unique σ̄-Patterson–Sullivan measure of dimension δ.

If the BMS measure mΓ is finite and mixing, then

lim
T→∞

δe−δT
∑
γ∈Γlox

`σ(γ)≤T

Dγ− ⊗Dγ+ =
1

‖mΓ‖
eδG(x,y)dµ̄(x)⊗ dµ(y)

in the dual of compactly supported continuous functions.

The above theorem can be expressed as an equidistribution result for closed
orbits of the geodesic flow on UΓ. For every R, let m̃R be the sum of Lebesgue
measures on axes of loxodromic elements of Γ with period at most R, which is a
locally finite measure on M (2) × R. Denote by mR the quotient measure on UΓ.
Then the conclusion of Theorem 1.5 can be reformulated as

lim
R→∞

δe−δR
∫
fdmR =

1

‖mΓ‖

∫
fdmΓ

for any continuous function f : UΓ → R with compact support.
In the context of geometrically finite convergence groups, we can establish the

following stronger equidistribution result which is needed to obtain our counting
results.

Theorem 1.6 (see Theorem 10.1 below). Suppose (σ, σ̄, G) is a continuous GPS
system for a geometrically finite convergence group Γ ⊂ Homeo(M) where δ :=
δσ(Γ) < +∞. If

(1) L(σ, σ̄, G) is non-arithmetic and
(2) δσ(P ) < δ for all maximal parabolic subgroups P ⊂ Γ,
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then

lim
R→∞

δe−δR
∫
fdmR =

1

‖mΓ‖

∫
fdmΓ

for any bounded continuous function f : UΓ → R.

The counting result in Theorem 1.1 is obtained by applying Theorem 1.6 to the
constant function with value 1.

1.2. Applications to relatively Anosov groups. We now develop the termi-
nology necessary to explain how to obtain counting result for relatively Anosov
subgroups of SL(d,R) from Theorem 1.1. In Section 11 we describe the same result
in the more general setting of semisimple Lie groups.

Let sl(d,R) = k⊕p denote the standard Cartan decomposition of the Lie algebra
of SL(d,R), where k is the Lie algebra of SO(d) and p consists of symmetric matrices
with trace zero. Let a ⊂ p denote the standard Cartan subalgebra consisting of
diagonal matrices with trace zero and let

a+ = {diag(a1, . . . , ad) ∈ a : a1 ≥ a2 ≥ · · · ≥ ad}
denote the standard choice of positive Weyl chamber. The associated simple roots
are

∆ = {α1, . . . , αd−1}
where αj(diag(a1, . . . , ad)) = aj − aj+1. The Cartan projection κ : SL(d,R) → a+

is given by

κ(γ) = diag
(

log σ1(γ), . . . , log σd(γ)
)

where σ1(γ) ≥ · · · ≥ σd(γ) are the singular values of γ and the Jordan projection
λ : SL(d,R)→ a+ is given by

λ(γ) = diag
(

log λ1(γ), . . . , log λd(γ)
)

where λ1(γ) ≥ · · · ≥ λd(γ) are the moduli of the generalized eigenvalues of γ.
Given φ ∈ a∗, one can define the φ-period of γ ∈ SL(d,R) by

`φ(γ) := φ(λ(γ))

and the φ-magnitude by φ(κ(γ)). Also, given a discrete subgroup Γ ⊂ SL(d,R) and
φ ∈ a∗, one can define a, possibly infinite, critical exponent

δφ(Γ) := lim sup
R→∞

1

R
log #{γ ∈ Γ : φ(κ(γ)) ≤ R}.

Given a subset θ ⊂ ∆, let Fθ denote the partial flag manifold associated to
θ, i.e. Fθ is the set of partial flags with subspaces of dimensions {j : αj ∈ θ}.
When θ is symmetric (i.e. αj ∈ θ ⇔ αd−j ∈ θ), a discrete subgroup Γ ⊂ SL(d,R)
is Pθ-relatively Anosov if Γ (as an abstract group) is relatively hyperbolic with
respect to a finite collection P of finitely generated subgroups of Γ and there exists
a Γ-equivariant embedding of the Bowditch boundary ∂(Γ, P ) into Fθ with good
dynamical properties.

Associated to θ ⊂ ∆ is a natural subspace of a defined by

aθ := {a ∈ a : β(a) = 0 if β ∈ ∆− θ}.
Then a∗θ is generated by {ωj |aθ : αj ∈ θ} where ωj ∈ a∗ is the fundamental weight
associated to αj and satisfies

ωj(diag(a1, . . . , ad)) = a1 + · · ·+ aj .
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Hence we can identify a∗θ as a subspace of a∗.
In Section 11 we will show that if Γ ⊂ SL(d,R) is Pθ-relatively Anosov, φ ∈ a∗θ

and δφ(Γ) < +∞, then there exists a GPS system on the Bowditch boundary of
Γ whose periods are exactly the φ-lengths defined above (in fact we will show that
this is more generally true for the wider class of Pθ-transverse groups in semisimple
Lie groups). We then use results in [14] to verify that the conditions of Theorem 1.1
are satisfied and obtain the following counting result.

Corollary 1.7 (see Section 11 below). Suppose θ ⊂ ∆ is symmetric and Γ ⊂ SL(d,R)
is Pθ-relatively Anosov with respect to P. If φ ∈ a∗θ and δ := δφ(Γ) < +∞, then

#{[γ]w ∈ [Γlox]w : 0 < φ(λ(γ)) ≤ R} ∼ eδR

δR
.

Corollary 1.7 was previously known only when G has rank-one (see Roblin [41]),
when Γ is the image of a relatively Anosov representation of a finitely generated
torsion-free Fuchsian group [12], and when Γ is {α1, αd−1}-Anosov in PGLd(R),
preserves a properly convex domain in P(Rd) and φ = ω1 + ωd−1 [9, 50].

1.3. Historical remarks. There is a long history of using dynamical methods to
obtain asymptotic counting results for the number of closed orbits of a flow. The
first counting result of the form of Corollary 1.6 was established by Huber [26]
for cocompact Fuchsian groups, as an application of Selberg’s trace formula. In
his Ph.D. thesis, Margulis [34] established mixing, counting and equidistribution
results for negatively curved manifolds, and his proofs provide the template for
much subsequent work. More generally, Margulis’ work applies to all flows φt on
closed manifolds M that are Anosov, i.e. for which there is an invariant splitting
of the tangent bundle of M into the flow direction, a “stable” sub-bundle which is
exponentially contracted by the flow, and a “unstable” sub-bundle which is expo-
nentially dilated.

Margulis’ approach, combined with the theory of Patterson–Sullivan measures
[36, 46], was used in Roblin’s work on (not necessarily cocompact) discrete isometry
groups of CAT(−1) spaces [41]. This is the approach we use here. In the context of
discrete subgroups of Lie groups, which is our main application, this method was
also used in [50, 9] to obtain counting results for certain subgroups of PGLn(R) pre-
serving convex domains of P(Rn). The results use the geometry of these domains,
and are for a certain length function called the Hilbert length. The combination
of Margulis’s ideas and Patterson–Sullivan theory was also used to prove counting
results for groups acting on rank-one CAT(0) spaces in [40]. Note that these con-
vex projective and rank-one CAT(0) settings are not encompassed by the present
work, as the natural boundary action in these cases are not necessarily convergence
actions, due to the presence of flats.

Parry and Pollicott [35, Th. 2] used symbolic dynamics and the Thermodynamic
Formalism to establish counting results for Axiom A flows, which are generalizations
of Anosov flows to compact spaces other than manifolds, and this was extended to
an even more general class of flows on compact spaces called metric Anosov or
Smale flows in [38, Th. 8]. Sambarino [42, 43] established counting, mixing and
equidistribution results for Anosov groups isomorphic to the fundamental groups of
negatively curved manifolds M , by showing that the length functions coming from
Anosov groups corresponds to periods of a reparametrization of the geodesic flow on
T 1M , and this reparametrization is a metric Anosov flow, where counting results
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are already known. With additional results established by Bridgeman–Canary–
Labourie–Sambarino [7], Sambarino’s arguments generalize to all Anosov groups.
A similar idea was used earlier by Benoist [4, Cor. 5.7] in the setting of Anosov
representations acting cocompactly on strictly convex projective domains. Later
Chow–Fromm [16] established a general result that implies Sambarino’s counting
result for Anosov groups.

Lalley [32] used symbolic dynamics and a renewal theorem to establish counting
and equidistribution results for convex cocompact Fuchsian groups. This approach
was generalized by Dal’bo and Peigné [21] to the setting of geometrically finite
negatively curved manifolds with free fundamental group. This approach was later
implemented in Bray–Canary–Kao–Martone [12] for relatively Anosov representa-
tions of finitely generated torsion-free Fuchsian groups.

“Local” mixing results can be used to obtain finer counting estimates. Chow–
Sarkar [15] establish stronger mixing results in the Anosov case, which were used
to obtain counting results in affine symmetric spaces by Edwards–Lee–Oh [22].
Recently, Delarue–Monclair–Sanders [19] obtained exponential mixing results in
the {α1, αd−1}-Anosov case, yielding a counting estimate with an exponential error
term.

1.4. Outline of paper. In Section 2, we recall some results from the theory of
convergence group actions and also some results from [8] about GPS systems.

The first part of the paper, Sections 3, 4 and 6, follows a classical strategy
to prove equidistribution of closed geodesics (Theorem 1.5), combining Margulis’s
ideas and Patterson–Sullivan theory. This portion of the work relies heavily, and
follows fairly quickly, from the machinery developed in [8]. In Section 5, we adapt
several classical criteria for non-arithmeticity of length spectra to our setting.

In Section 3, we construct natural stable/unstable manifolds in UΓ. In Section 4,
we use these stable/unstable manifolds and Coudène’s criterion for mixing [17] to
establish mixing (under a non-arithmeticity assumption). Finally, in Section 6, we
combine the mixing property, the explicit product structure of the BMS measure,
and a closing lemma (Lemma 6.7), to establish equidistribution of closed geodesics.
In contrast to Roblin’s [41] work in the setting of CAT(−1) spaces, we do not prove
nor use an equidistribution of double Γ-orbits.

One notable difference with previous works concerns our construction of stable
and unstable manifolds. Unlike previous settings such as those of CAT(−1) spaces
or Hilbert geometries (see [6, Fact 6.11 & Prop. 6.14]), we do not have a natural
metric on the flow space UΓ to use to check that our algebraic definition matches
Coudène’s metric definition. We address this issue by observing that in fact any
metric on the one-point compactification of UΓ does the job.

The second part of the paper specializes to geometrically finite groups, and is
more involved than the first. To be able to apply the results of the first part to
geometrically finite groups, we need to build a decomposition of UΓ into a union
of a compact part and finitely many disjoint cusp-like parts, which are quotients
of horoballs in ŨΓ, and to understand the behavior of the BMS measure in these
cusps.

In Section 7, we define a convenient topology on ŨΓtΛ(Γ) that compactifies ŨΓ,

and we define a Dirchlet domain for the action of Γ in ŨΓ. In Section 8, we define
horoballs in the space ŨΓ. We show that it is possible to construct a Γ-equivariant
choice of disjoint horoballs at bounded parabolic points and that Γ acts cocompactly
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on the complement in ŨΓ of such a collection. In Section 9, we prove Theorem 1.4
which gives a criterion guaranteeing that geometrically finite groups are divergent
and have finite BMS measure. In Section 10, we prove Theorem 1.6. As in Roblin
[41, Th. 5.2], the proof is based on estimating the measure of “cusps” in UΓ with
respect to the measure mR appearing in the statement of the theorem. One of the
main ingredients is a version of the classical Shadow Lemma, which we verified for
GPS systems in [8].

Finally, in Section 11 we explain how to apply our results in the setting of
transverse and relatively Anosov subgroups of semisimple Lie groups.

Acknowledgements: We have been informed that the ongoing work of Kim and
Oh [29] contains a proof, using different techniques, that the BMS measure associ-
ated to a relatively Anosov group is finite and that the flow is mixing with respect
to BMS measure in this setting.

2. Background

2.1. Convergence group actions. When M is a compact metrizable space, a
subgroup Γ ⊂ Homeo(M) is called a (discrete) convergence group if for every se-
quence {γn} of distinct elements in Γ, there exist points x, y ∈M and a subsequence
{γnj} such that γnj |Mr{y} converges locally uniformly to x. This notion was first
introduced in [24]. Recall the following classification of elements of Γ.

Lemma 2.1 ([47, Th. 2B]). If Γ ⊂ Homeo(M) is a convergence group, then every
element γ ∈ Γ is either

• loxodromic: it has two fixed points γ+ and γ− in M such that γ±n|Mr{γ∓}
converges locally uniformly to γ±,
• parabolic: it has one fixed point p ∈ M such that γ±n|Mr{p} converges

locally uniformly to p, or
• elliptic: it has finite order.

Given a convergence group, as in [11, 47], we define the following:

(1) The limit set Λ(Γ) is the set of points x ∈M where there exist y ∈M and
a sequence {γn} in Γ so that γn|Mr{y} converges locally uniformly to x.
(Note that fixed points of elements of Γ are in the limit set.)

(2) A point x ∈ Λ(Γ) is a conical limit point if there exist distinct points
a, b ∈ M and a sequence of elements {γn} in Γ where limn→∞ γn(x) = a
and limn→∞ γn(y) = b for all y ∈M r {x}.

(3) A point p ∈ Λ(Γ) is a bounded parabolic point if no element of

Γp := StabΓ(p)

is loxodromic and Γp acts cocompactly on Λ(Γ) r {p}.
We say that a convergence group Γ is non-elementary if Λ(Γ) contains at least 3
points. In this case Λ(Γ) is the smallest Γ-invariant closed subset of M (see [47,
Th. 2S]). Finally, we say that a non-elementary convergence group Γ is geometrically
finite if every point in Λ(Γ) is either a conical limit point or a bounded parabolic
point. The stabilizers of the bounded parabolic points are called the maximal
parabolic subgroups of Γ.

The rest of this section recalls several results about convergence groups that we
will need later. We first recall a closing lemma due to Tukia.
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Lemma 2.2 (Tukia [47, Cor. 2E]). Suppose Γ ⊂ Homeo(M) is a convergence group.
If {γn} ⊂ Γ is a sequence where γn|Mr{b} converges locally uniformly to a and

a 6= b, then for n sufficiently large γn is loxodromic, γ+
n → a and γ−n → b.

Lemmas 2.1 and 2.2 have the following immediate consequence.

Lemma 2.3 ([11, Prop. 3.2]). If Γ ⊂ Homeo(M) is a convergence group, the sta-
biliser of x ∈ M is infinite and contains no loxodromic elements, then x is not a
conical limit point. In particular, parabolic fixed points are not conical limit points.

If Γ is geometrically finite, there are only finitely many conjugacy classes of
subgroups stabilizing a parabolic fixed point.

Lemma 2.4 ([48, Th. 1B]). If Γ ⊂ Homeo(M) is a geometrically finite convergence
group, then there are finitely many Γ-orbits of parabolic fixed points.

In [8], we observed that the spaceM can be used to compactify Γ, see also [11, 13].

Definition 2.5. Given a convergence group Γ ⊂ Homeo(M), a compactifying topol-
ogy on Γ tM is a topology such that:

• Γ tM is a compact metrizable space.
• The inclusions Γ ↪→ ΓtM and M ↪→ ΓtM are embeddings (where in the

first embedding Γ has the discrete topology).
• Γ acts as a convergence group on Γ tM .

A metric d on Γ tM is called compatible if it induces a compactifying topology.

In [8], we observed that compactifying topologies exist, are unique, and have the
following properties.

Proposition 2.6 ([8, Prop. 2.3]). If Γ ⊂ Homeo(M) is a convergence group, then
there exists a unique compactifying topology on Γ tM . Moreover, with respect to
this topology the following hold:

(1) If {γn} ⊂ Γ is a sequence where γn → a ∈ M and γ−1
n → b ∈ M , then

γn|Mr{b} converges locally uniformly to a.
(2) A sequence {γn} ⊂ Γ converges to a ∈ M if and only if for every subse-

quence {γnj} there exist b ∈M and a further subsequence {γnjk } such that

γnjk |Mr{b} converges locally uniformly to a.

(3) Γ is open in Γ tM and its closure is Γ t Λ(Γ).

We will also use the following result about this compactification.

Proposition 2.7. Suppose Γ ⊂ Homeo(M) is a convergence group. If p ∈ M
is a bounded parabolic point and Γp := StabΓ(p), then Γp acts cocompactly on
(Γ t Λ(Γ)) r {p}.

Proof. Fix a compact set K0 ⊂ Λ(Γ) r {p} such that Γp ·K0 = Λ(Γ) r {p}. Then

fix an open set U ⊃ K0 in ΓtΛ(Γ) such that p /∈ U . Fix an enumeration Γ = {γk}
so that γ1 = id and let Fn := {γ1, . . . , γn}. Then Kn := U ∪ Fn is compact in
(ΓtΛ(Γ))r {p}. We claim that for n sufficiently large, Γp ·Kn = (ΓtΛ(Γ))r {p}.

Suppose not. Since Λ(Γ) r {p} = Γp · K0, then for each n we can find γkn ∈
Γ− Γp ·Kn. Since γkn /∈ Γp, we must have γkn(p) 6= p. Then for each n ≥ 1, there
exists αn ∈ Γp such that αnγkn(p) ∈ K0. Since γkn /∈ Γp ·Fn, we see that {αnγkn} is
an escaping sequence in Γ. So passing to a subsequence we can suppose that there
exists b+, b− ∈M such that αnγkn(x)→ b+ for all x ∈M r {b−}. We can further
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suppose that αnγkn(p) → a ∈ K0. If a 6= b+, then p = b− and p is a conical limit
point, which is impossible by Lemma 2.3. So we must have b+ = a ∈ K0. So for n
large, αnγkn ∈ U , which implies that γkn ∈ Γ ·Kn. So we have a contradiction. �

2.2. Cocycles and Patterson–Sullivan measures. In [8] we introduced the no-
tion of an expanding cocycle and proved that the cocycles in a GPS system are
expanding. In this section we recall the definition and their basic properties.

Recall from the introduction that given a cocycle σ, the σ-magnitude of γ ∈ Γ is

‖γ‖σ := max
x∈M

σ(γ, x).

Definition 2.8. Suppose Γ ⊂ Homeo(M) is a convergence group and d is a com-
patible distance on Γ t M . A continuous cocycle σ : Γ × M → R is expanding
if

(1) σ is proper, i.e. ‖γn‖σ →∞ whenever {γn} is an escaping sequence in Γ.
(2) For any ε > 0 there exists C > 0 such that: if γ ∈ Γ, x ∈ M and

d(γ−1, x) ≥ ε, then

σ(γ, x) ≥ ‖γ‖σ − C.

In previous work, we established the following results about expanding cocycles.

Proposition 2.9 ([8, Prop. 3.2]). Suppose Γ ⊂ Homeo(M) is a convergence group,
d is a compatible distance on Γ tM and σ is an expanding cocycle, then:

(1) `σ(γ) = σ(γ, γ+) > 0 for all loxodromic γ ∈ Γ and σ(γ, p) = 0 for any
parabolic element γ ∈ Γ with fixed point p.

(2) If {γn} is a divergent sequence in Γ and

lim inf
n→∞

σ(γn, yn) > −∞,

then d(γnyn, γn)→ 0.
(3) For any ε > 0 there exists C > 0 such that: if α, β ∈ Γ and d(α−1, β) ≥ ε,

then

‖α‖σ + ‖β‖σ − C ≤ ‖αβ‖σ .
(4) For any compact subset K ⊂M (2) there exists C > 0 such that: if γ ∈ Γ is

loxodromic and (γ−, γ+) ∈ K, then

`σ(γ) ≥ ‖γ‖σ − C.

Proof. The only claim that doesn’t appear in [8, Prop. 3.2] is (4). Let

ΓK := {γ ∈ Γ : γ is loxodromic and (γ−, γ+) ∈ K}.

Since K is a compact subset of M (2), there exists ε > 0 so that if γ ∈ ΓK , then
d(γ+, γ−) ≥ ε. The set FK of elements of ΓK such that d(γ−1, γ−) ≥ ε

2 is finite

(since γn− → z if and only if γ−1
n → z). If γ ∈ ΓK r FK , then d(γ+, γ−1) ≥ ε

2 , so
the expanding property implies that there exists C0 > 0 such that

`σ(γn) = σ(γn, γ
+
n ) ≥ ‖γn‖σ − C0.

Claim (4), then follows if we take C1 := maxγ∈Fk ‖γ‖σ and C := max(C0, C1). �

Suppose Γ ⊂ Homeo(M) is a non-elementary convergence group and σ : Γ ×
M → R is a continuous cocycle. A probability measure µ on M is called a
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σ-Patterson–Sullivan measure of dimension β if for every γ ∈ Γ the measures γ∗µ,
µ are absolutely continuous and

dγ∗µ

dµ
= e−βσ(γ−1,·).

Recall from the introduction that the σ-critical exponent is

δσ(Γ) = lim sup
R→∞

1

R
log # {γ ∈ Γ : ‖γ‖σ ≤ R} ∈ [0,∞].

Equivalently, δσ(Γ) is the critical exponent of the series

Qσ(s) :=
∑
γ∈Γ

e−s‖γ‖σ ,

that is Qσ(s) diverges when 0 < s < δσ(Γ) and converges when s > δσ(Γ).
In previous work, we showed if σ is an expanding cocycle for a convergence

group action Γ ⊂ Homeo(M) with finite critical exponent δσ(Γ), then there is a
σ-Patterson–Sullivan measure of dimension δσ(Γ). We also proved that this mea-
sure is unique and ergodic when the σ-Poincaré series diverges at its critical expo-
nent.

Theorem 2.10 ([8, Th. 1.3 and Prop. 6.3]). If σ is an expanding cocycle for a
convergence group Γ ⊂ Homeo(M) and δ := δσ(Γ) < +∞, then there exists a
σ-Patterson–Sullivan measure of dimension δ, which is supported on the limit set
Λ(Γ). Moreover, if

Qσ(δ) =
∑
γ∈Γ

e−δ‖γ‖σ = +∞,

then:

(1) there is a unique σ-Patterson–Sullivan measure µ of dimension δ,
(2) µ has no atoms, and
(3) the action of Γ on (M,µ) is ergodic.

2.3. GPS systems and flow spaces. We recall from [8] properties of the cocycles
in a GPS system and the flow space associated to them.

Proposition 2.11 ([8, Prop. 3.3]). Suppose (σ, σ̄, G) is a continuous GPS system
for a convergence group Γ ⊂ Homeo(M).

(1) There exists C > 0 such that∥∥γ−1
∥∥
σ̄
− C ≤ ‖γ‖σ ≤

∥∥γ−1
∥∥
σ̄

+ C

for all γ ∈ Γ.
(2) δσ(Γ) = δσ̄(Γ).
(3) σ and σ̄ are expanding cocycles.

We also established a version of the Hopf–Tsuji–Sullivan dichotomy.

Theorem 2.12. [8, Th. 1.7] Suppose (σ, σ̄, G) is a continuous GPS system and
δσ(Γ) < +∞. Let µ and µ̄ be Patterson–Sullivan measures of dimension δ for σ
and σ̄. Then ν := eδGµ̄⊗µ is a locally finite Γ-invariant measure on M (2), and we
have the following dichotomy:

(1) If
∑
γ∈Γ e

−δ‖γ‖σ = +∞, then:

(a) δ = δσ(Γ).
(b) µ(Λcon(Γ)) = 1 = µ̄(Λcon(Γ)).
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(c) The Γ action on (M (2), ν) is ergodic and conservative.
(2) If

∑
γ∈Γ e

−δ‖γ‖σ < +∞, then:

(a) δ ≥ δσ(Γ).
(b) µ(Λcon(Γ)) = 0 = µ̄(Λcon(Γ)).
(c) The Γ action on (M (2), ν) is non-ergodic and dissipative.

Next we carefully describe the flow space associated to a GPS system (σ, σ̄, G),
which was briefly described in the introduction. In the case when M = ∂∞X is
the geodesic boundary of a Hadamard manifold X (simply connected with pinched
negative curvature), the group Γ ⊂ Isom(X) is discrete, and σ is the Busemann
cocycle, this flow space is topologically conjugate to the non wandering part of the
geodesic flow on the quotient Γ\T 1X of the unit tangent bundle T 1X of X.

For the rest of the section suppose (σ, σ̄, G) is a continuous GPS system for a
convergence group Γ ⊂ Homeo(M). As in the introduction, let Λ(Γ)(2) ⊂ Λ(Γ) ×
Λ(Γ) denote the set of distinct pairs and let ŨΓ := Λ(Γ)(2) × R.

By Proposition 2.11, the cocycles σ and σ̄ are expanding. Hence, by [8, Prop. 10.2],

the action of Γ on ŨΓ given by

γ(x, y, t) = (γx, γy, t+ σ(γ, y))

is properly discontinuous. Therefore UΓ := Γ\ŨΓ is a locally compact metrizable

space. Further the flow ψt : ŨΓ → ŨΓ defined by

ψt(x, y, s) = (x, y, s+ t)

descends to a flow on UΓ, which we also denote by ψt.
Now suppose, in addition, that δ := δσ(Γ) < +∞ and Qσ(δ) = +∞. By

Theorem 2.10 and Proposition 2.11 there is a unique σ-Patterson–Sullivan measure
µ of dimension δ and a unique σ̄-Patterson–Sullivan measure µ̄ of dimension δ. By
Equation (1), the measure m̃ on ŨΓ = Λ(Γ)(2) × R defined by

m̃ := eδG(x,y)dµ̄(x)⊗ dµ(y)⊗ dt
is flow-invariant and Γ-invariant. So m̃ descends to a flow-invariant measure mΓ on
the quotient UΓ = Γ\ŨΓ (see Section 2.4 below for the definition of quotient mea-
sures). We refer to mΓ as the Bowen–Margulis–Sullivan (BMS) measure associated
to (σ, σ̄, G). In [8, Th. 11.1] we used Theorem 2.12 to show that the flow is ergodic
with respect to its Bowen-Margulis-Sullivan measure in this setting.

2.4. Quotient measures. In this short expository section we review properties of
quotient measures. Suppose X is a proper metric space and ν̃ is a locally finite
Borel measure on X. Assume Γ is a discrete group which acts properly on X and
preserves the measure ν̃. Given a measurable function f : X → [0,+∞], define
P (f) : Γ\X → [0,+∞] by

P (f)([x]) =
∑
γ∈Γ

f(γx).

Then the quotient space Γ\X has a unique Borel measure ν such that

(2)

∫
Γ\X

P (f)dν =

∫
X

fdν̃.

for all measurable functions f : X → [0,+∞]. The existence of such a measure is
classical and also follows from the discussion in [8, Appendix A].
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Next suppose that φt : X → X is a measurable flow which commutes with the Γ
action and preserves the measure ν̃. Then φt descends to a flow on the quotient Γ\X
which we also denote by φt and preserves ν. We recall that φt : (Γ\X, ν)→ (Γ\X, ν)
is mixing if ‖ν‖ := ν(Γ\X) is finite and whenever A and B are measurable subsets
of Γ\X, we have

lim
t→∞

ν(A ∩ γφt(B)) =
ν(A)ν(B)

‖ν‖
.

The following observation interprets this fact in terms of the flow on X.

Observation 2.13. Suppose ‖ν‖ = ν(Γ\X) < +∞ and φt : (Γ\X, ν) → (Γ\X, ν)
is mixing. If A,B ⊂ X have finite ν̃-measure, then

lim
t→∞

∑
γ∈Γ

ν̃(A ∩ γφt(B)) =
ν̃(A)ν̃(B)

‖ν‖
.

Proof. Notice that

P (f) · P (g) =
∑
γ∈Γ

P
(
f · (g ◦ γ)

)
.

Hence ∑
γ∈Γ

ν̃(A ∩ γφ−t(B)) =
∑
γ∈Γ

∫
1A · (1B ◦ φt ◦ γ−1)dν̃

=
∑
γ∈Γ

∫
P
(
1A · (1B ◦ φt ◦ γ−1)

)
dν =

∫
P (1A) · (P (1B) ◦ φt)dν

which tends to

∫
P (1A)dν

∫
P (1B)dν

‖ν‖
=
ν̃(A)ν̃(B)

‖ν‖
as t→∞. �

3. Stable and unstable manifolds

Given a flow φt : X → X on a metric space, the strongly stable manifold of v ∈ X
is

W ss(v) :=
{
w ∈ X : lim

t→∞
d(φt(v), φt(w)) = 0

}
and the strongly unstable manifold of v is

W su(v) :=

{
w ∈ X : lim

t→−∞
d(φt(v), φt(w)) = 0

}
.

In this section we study these sets for the flow associated to a GPS system. (In
our general setting we do not expect these to be manifolds, but the terminology is
conventional.)

Fix a GPS system (σ, σ̄, G) for a convergence group action Γ ⊂ Homeo(M) and
let

p : ŨΓ → UΓ

denote the quotient map. As observed in Section 2.3, the quotient UΓ = Γ\ŨΓ is a
locally compact metrizable space. Hence the one-point compactification UΓ t {∞}
of UΓ admits a metric d?, see [33]. Then for v ∈ UΓ, let W ss(v) and W su(v) denote
the strongly stable and unstable manifolds for the metric d? restricted to UΓ.

We first show that the strongly stable manifold of p(v−, v+, t0) contains quotients
of all elements with the same forward endpoint v+ and time parameter t0.
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Proposition 3.1. If (v−, v+, t0) ∈ ŨΓ and v := p(v−, v+, t0) ∈ UΓ, then

p(y, v+, t0) ∈W ss(v)

for all y ∈ Λ(Γ) r {v+}.

Proof. Fix y ∈ Λ(Γ) r {v+} and let w := p(y, v+, t0). Then fix a sequence {tn}
where tn →∞ and

lim sup
t→∞

d?(ψ
t(v), ψt(w)) = lim

n→∞
d?(ψ

tn(v), ψtn(w)).

Passing to a subsequence we can assume that one of the following cases hold:

Case 1: Assume {ψtn(v)} is relatively compact in UΓ. Passing to a further subse-
quence, we can find a sequence {γn} in Γ such that

lim
n→∞

γn(v−, v+, tn + t0) = lim
n→∞

(γn(v−), γn(v+), tn + t0 + σ(γn, v
+))

exists in ŨΓ. Passing to another subsequence we can suppose that γn → a ∈ Λ(Γ),
γ−1
n → b ∈ Λ(Γ). Then γn(z)→ a uniformly on compact subsets of M r {b}.

Notice that, since σ is a cocycle,

0 = σ(id, v+) = σ(γ−1
n γn, γ

−1
n (γn(v+)) = σ(γ−1

n , γn(v+)) + σ(γn, v
+).

Since tn → +∞, we must have

lim
n→∞

σ(γ−1
n , γn(v+)) = lim

n→∞
−σ(γn, v

+) = +∞.

So Proposition 2.9(2) implies that d(γ−n (γn(v+)), γ−1
n ) = d(v+, γ−1

n ) → 0. Since
γ−1
n → b, we see that b = v+. Therefore, γn(z)→ a for all z ∈ Λ(Γ) r {v+}. So

lim
n→∞

γn(y) = a = lim
n→∞

γn(v−).

Thus

lim
n→∞

γnψ
tn(y, v+, t0) = lim

n→∞
γnψ

tn(v−, v+, t0),

which implies that

lim
n→∞

d?(ψ
tn(v), ψtn(w)) = 0

and hence that w ∈W ss(v).

Case 2: Assume {ψtn(w)} is relatively compact in UΓ. By Case 1, v ∈ W ss(w) so
w ∈W ss(v).

Case 3: Assume {ψtn(v)} and {ψtn(w)} both converge to ∞ in UΓ t {∞}. Then

lim
n→∞

d?(ψ
tn(v), ψtn(w)) = d?(∞,∞) = 0

and hence w ∈W ss(v). �

We establish the analogous result for the strongly unstable manifold.

Proposition 3.2. If (v−, v+, t0) ∈ ŨΓ and v := p(v−, v+, t0) ∈ UΓ, then

p
(
v−, x, t0 +G(v−, x)−G(v−, v+)

)
∈W su(v)

for all x ∈ Λ(Γ) r {v−}.
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Proof. Fix x ∈ Λ(Γ) r {v−} and let

w := p
(
v−, x, t0 +G(v−, x)−G(v−, v+)

)
.

Then fix a sequence {tn} where tn → −∞ and

lim sup
t→−∞

d?(ψ
t(v), ψt(w)) = lim

n→∞
d?(ψ

tn(v), ψtn(w)).

Passing to a subsequence we can assume that one of the following cases hold:

Case 1: Assume {ψtn(v)} is relatively compact in UΓ. Then passing to a further
subsequence, we can find a sequence {γn} in Γ such that

lim
n→∞

γn(v−, v+, tn + t0) = lim
n→∞

(γn(v−), γn(v+), tn + t0 + σ(γn, v
+))

exists in ŨΓ. Passing to another subsequence we can suppose that γn → a ∈ Λ(Γ),
γ−1
n → b ∈ Λ(Γ). Then γn(z)→ a uniformly on compact subsets of M r {b}.

Since tn → −∞, we must have

lim
n→∞

σ(γn, v
+) = +∞.

So Proposition 2.9(2) implies that γn(v+)→ a. Let b′ := limn→∞ γn(v−). Since

lim
n→∞

γn(v−, v+) = (b′, a) ∈ Λ(Γ)(2)

and γn(z) → a for all z ∈ M r {b}, we must have v− = b. Then γn(x) → a since
x ∈ Λ(Γ) r {v−} = Λ(Γ) r {b}.

Then, by Equation (1),

lim
n→∞

σ(γn, v
+)− σ(γn, x) = lim

n→∞

(
σ̄(γn, v

−) + σ(γn, v
+)
)
−
(
σ̄(γn, v

−) + σ(γn, x)
)

= lim
n→∞

G(γn(v−), γn(v+))−G(v−, v+)−G(γn(v−), γn(x)) +G(v−, x)

= G(b′, a)−G(v−, v+)−G(b′, a) +G(v−, x)

= G(v−, x)−G(v−, v+).

Thus

lim
n→∞

tn + t0 + σ(γn, v
+) = lim

n→∞
tn + t0 +G(v−, x)−G(v−, v+) + σ(γn, x)

and so

lim
n→∞

γnψ
tn(v−, v+, t0) = lim

n→∞
γnψ

tn(v−, x, t0 +G(v−, x)−G(v−, v+)),

which implies that

lim
n→∞

d?(ψ
tn(v), ψtn(w)) = 0

and hence that w ∈W su(v).

Case 2: Assume {ψtn(w)} is relatively compact in UΓ. By Case 1, v ∈ W su(w) so
w ∈W su(v).

Case 3: Assume {ψtn(v)} and {ψtn(w)} both converge to ∞ in UΓ t {∞}. Then

lim
n→∞

d?(ψ
tn(v), ψtn(w)) = d?(∞,∞) = 0

and hence w ∈W su(v). �
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4. Mixing

In this section we establish mixing for the flow associated to a GPS system when
the Bowen–Margulis is finite and the length spectrum is non-arithmetic. In fact, we
can slightly weaken the assumption of non-arithmetic length spectrum and instead
assume that the “cross ratios” generate a dense subgroup of R.

For the rest of the section suppose that (σ, σ̄, G) is a continuous GPS system
for a convergence group action Γ ⊂ Homeo(M) where δ := δσ(Γ) < +∞ and
Qσ(δ) = +∞. Let mΓ denote the BMS measure on UΓ constructed in Section 2.3.

We define a cross ratio

B(x, x′, y, y′) := G(x, y) +G(x′, y′)−G(x′, y)−G(x, y′)

for x, x′, y, y′ ∈ M such that {x, x′} and {y, y′} are disjoint. We then define the
cross ratio spectrum

CR := {B(x, x′, y, y′) : y, y′, x, x′ ∈ Λ(Γ) and {x, x′} ∩ {y, y′} = ∅} .

We say that the cross ratio spectrum is non-arithmetic if it generates a dense
subgroup of R.

The next lemma shows that the cross ratio spectrum CR contains the length
spectrum

L(σ, σ̄) = {`σ(γ) + `σ̄(γ) : γ ∈ Γ loxodromic}.

Lemma 4.1. If γ ∈ Γ is loxodromic and x ∈M − {γ+, γ−}, then

B(x, γx, γ−, γ+) = `σ(γ) + `σ̄(γ).

Proof. Notice that

σ̄(γ, γ+) + σ(γ, γ−) = G(γ+, γ−)−G(γ+, γ−) = 0.

So, by Equation (1),

B(x, γx, γ−, γ+) = G(x, γ−) +G(γx, γ+)−G(γx, γ−)−G(x, γ+)

= G(γx, γ+)−G(x, γ+)−G(γx, γ−) +G(x, γ−)

= σ̄(γ, x) + σ(γ, γ+)− σ̄(γ, x)− σ(γ, γ−)

= σ(γ, γ+) + σ̄(γ, γ+) = `σ(γ) + `σ̄(γ). �

By Lemma 4.1, the following theorem is a (slight) extension of Theorem 1.3

Theorem 4.2. If the BMS measure mΓ is finite and the cross ratio spectrum CR
is non-arithmetic, then the flow ψt : (UΓ,mΓ)→ (UΓ,mΓ) is mixing.

Our proof is inspired by earlier work of Blayac [6] in the setting of rank-one
convex projective manifolds with compact convex core. This strategy of proof goes
back to work of Babillot [1]. In particular, to establish mixing, we will use a criterion
due to Coudène. To state his result we need a preliminary definition.

Suppose is a measurable flow φt : X → X on a metric space and µ is a flow-
invariant measure, then a function f : X → R is W ss-invariant if there exists a
full µ-measure subset X ′ ⊂ X such that if v, w ∈ X ′ and w ∈ W ss(v), then
f(v) = f(w). Likewise, f is W su-invariant if there exists a full µ-measure subset
X ′′ ⊂ X such that if v, w ∈ X ′′ and w ∈W su(w), then f(v) = f(w).
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Proposition 4.3 (Coudène [17]). Let X be a metric space, µ be a finite Borel
measure on X, and φt : X → X a measure-preserving flow on X. If any measurable
function which is W ss-invariant and W su-invariant is constant almost everywhere,
then φt : (X,µ)→ (X,µ) is mixing.

We are now ready to prove the theorem.

Proof of Theorem 4.2. As in Section 3, we fix a metric d? on the one-point compact-
ification of UΓ and consider the stable/unstable manifolds relative to this metric.

By Coudène’s result, it suffices to show that every measurable function f on
UΓ which is W ss-invariant and W su-invariant is mΓ-almost everywhere constant.
Let f be such a function, and let f̃ denote the lift of f to ŨΓ. Let A ⊂ UΓ be
a full measure subset such that for all v, v′ ∈ A, if v′ ∈ W ss(v) or W su(v) then

f(v′) = f(v). Let Ã ⊂ ŨΓ denote the preimage of A.

By Theorem 2.10, the measures µ and µ̄ have no atoms and so Ã is a full measure
set for the product measure µ̄⊗ µ⊗ dt on Λ(Γ)× Λ(Γ)× R.

For (x, y) ∈ Λ(Γ)(2) and y′ ∈ Λ(Γ) r {x}, let

ρx,y(y′) = G(x, y′)−G(x, y).

Notice that ρx,y(y′) + ρx′,y′(y) = −B(x, x′, y, y′).
Since f is W ss- and W su-invariant, by Propositions 3.1 and 3.2 we have

f̃(x, y, t) = f̃(x′, y, t) = f̃(x, y′, t+ ρx,y(y′))

for µ̄2 ⊗ µ2 ⊗ dt-almost any (x, x′, y, y′, t). Since, for µ̄2 ⊗ µ2 ⊗ dt-almost any

(x, x′, y, y′, t) we have (x, y, t) ∈ Ã and (x′, y, t) ∈ Ã and (x, y′, t + ρx,y(y′)) ∈ Ã,
and the projection of (x′, y, t) in UΓ is in the strong stable manifold of the projection
of (x, y, t) (by Proposition 3.1) while (x, y′, t + ρx,y(y′)) is in the strong unstable
manifold of (x, y, t) (by Proposition 3.2).

Hence, by Fubini’s Theorem, we can find x0, y0 ∈ Λ(Γ) such that

f̃(x0, y0, t) = f̃(x0, y, t+ ρx0,y0
(y)) = f̃(x, y, t+ ρx0,y0

(y))

for µ̄⊗ µ⊗ dt-almost any (x, y, t).

In particular it suffices to show that g(t) := f̃(x0, y0, t) is Lebesgue-almost ev-
erywhere constant. Consider the additive subgroup

H := {τ ∈ R : g(t+ τ) = g(t) for Lebesgue-almost any t ∈ R}.

The following classical result says that H is a closed subgroup of R. For the reader’s
convenience we recall its proof after we finish the current proof.

Lemma 4.4. If g : R→ R be a measurable function and H(g) := {τ ∈ R : g(t+τ) =
g(t) for Lebesgue-almost any t ∈ R}, then H(g) is a closed subgroup of R.

We now claim that CR ⊂ H. The assumption that CR generate a dense subgroup
of R then implies that H = R, and hence that g is Lebesgue-almost everywher
constant, as desired.

To this end, we observe that, for µ̄-almost all x and x′, µ-almost all y and y′ and
Lebesgue-almost any t, the four points x, x′, y, y′ are distinct (since µ and µ̄ do not
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have atoms by Theorem 2.10) and

g(t) = f̃(x, y, t+ ρx0,y0
(y))

= f̃(x′, y′, t+ ρx0,y0
(y) + ρx,y(y′))

= f̃(x, y, t+ ρx0,y0
(y) + ρx,y(y′) + ρx′,y′(y))

= f̃(x, y, t+ ρx0,y0(y)−B(x, x′, y, y′)) = g(t−B(x, x′, y, y′)).

So B(x, x′, y, y′) ∈ H.
Since the Patterson–Sullivan measures µ and µ̄ have full support in Λ(Γ), B is

continuous, and H is closed, we obtain that CR ⊂ H. Therefore, g is Lebesgue-
almost everywhere constant, so f̃ is m̃-almost everywhere constant, so f is mΓ-
almost everywhere constant, which completes the proof. �

Proof of Lemma 4.4. The fact that H(g) is a subgroup of R is an immediate con-
sequence of the invariance of the Lebesgue measure under translation. It remains
to check H(g) is closed.

Note that

H(g) =
⋂
R>0

H(g · 1|g|≤R),

so we can assume φ is bounded by some R > 0.
For any compactly supported continuous function α : R→ R, let

Hα(g) :=

{
τ :

∫
α(t)g(t+ τ)dt =

∫
α(t)g(t)dt

}
.

It is an easy exercise in measure theory that

H(g) =
⋂

α∈Cc(R)

Hα(g).

So it suffices to prove Hα(g) is closed. This a consequence of the fact that∫
α(t)g(t+ τ)dt =

∫
α(t− τ)g(t)dt

is continuous in τ , which follows from the fact that α is uniformly continuous. �

Remark 4.5. (1) It follows from Theorem 1.5, that if mΓ is mixing then {`σ(γ) :
γ ∈ Γ loxodromic} generates a dense subgroup of R. However this does not imply
that the length spectrum L(σ, σ̄) is non-arithmetic, unless σ is symmetric (i.e. if
σ = σ̄). If σ is symmetric, we have an equivalence between mΓ being mixing, the
length spectrum being non-arithmetic, and the set of cross ratios generating a dense
subgroup of R.

(2) There exist cases when mΓ is finite but not mixing (and the length spectrum
generates a discrete group). For instance, take M to be the Gromov boundary of
an infinite 4-regular tree with all edges of length 1, take Γ to be the nonabelian
free group with two generators acting on M , and define σ and σ̄ to be the Buse-
mann cocycles on this CAT(−1) space. Then the free group action is a uniform
convergence action, hence mΓ is finite, but the length spectrum generates a dis-
crete additive subgroup which is contained in Z, the measure mΓ is not mixing,
and Re−δΓR#{[γ] ∈ [Γ] : `σ(γ) ≤ R} does not converge as R→∞.
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5. Non-arithmeticity of the cross ratio spectrum

In this section, we investigate when the length spectrum or cross ratio spectrum
is non-arithmetic. Our results and arguments are very similar to earlier work in
the context of Riemannian manifolds, see Dal’bo [18, §II].

When Γ contains a parabolic element, the length spectrum itself is always non-
arithmetic.

Proposition 5.1. Suppose (σ, σ̄, G) is a continuous GPS system for a convergence
group Γ ⊂ Homeo(M). If Γ contains a parabolic element, then the length spectrum
L(σ, σ̄) is non-arithmetic.

Proof. Let α ∈ Γ be a parabolic element with fixed point p ∈M and choose β ∈ Γ
that does not fix p. Set γn := βαn for each n ≥ 0. Note that γn → β(p) while
γ−1
n = α−nβ−1 → p 6= β(p). So, by Lemma 2.2, for n large enough γn is loxodromic

with γ+
n → β(p) and γ−n → p. Hence it suffices to prove that

lim
n→∞

`σ(γn+1)− `σ(γn) = 0 = lim
n→∞

`σ̄(γn+1)− `σ̄(γn).

By definition,

`σ(γn) = σ(βαn, γ+
n ) = σ(β, αnγ+

n ) + σ(αn, γ+
n ).

Notice that σ(β, αnγ+
n ) → σ(β, p). Further σ(αn+1, γ+

n+1) = σ(α, αn(γ+
n+1)) +

σ(αn, γ+
n+1) and σ(α, αn(γ+

n+1))→ σ(α, p) = 0. So,

lim sup
n→∞

|`σ(γn+1)− `σ(γn)| = lim sup
n→∞

∣∣σ(αn, γ+
n+1)− σ(αn, γ+

n )
∣∣ .

Since α−nβ(p)→ p, we see that

σ(αn,γ+
n+1)− σ(αn, γ+

n ) = σ̄(αn, α−nβ(p)) + σ(αn, γ+
n+1)− σ̄(αn, α−nβ(p))− σ(αn, γ+

n )

= G(β(p), αn(γ+
n+1))−G(α−nβ(p), γ+

n+1)−G(β(p), αnγ+
n ) +G(α−nβ(p), γ+

n )

→ G(β(p), p)−G(p, β(p))−G(β(p), p) +G(p, β(p)) = 0.

The proof that `σ̄(γn+1)− `σ̄(γn)→ 0 is completely analogous. �

We verify that the cross ratio spectrum is non-arthimetic in the following cases.

Proposition 5.2. Suppose (σ, σ̄, G) is a continuous GPS system for a convergence
group Γ ⊂ Homeo(M). If any one of the following hold, then the cross ratio spec-
trum CR is non-arithmetic:

(1) there exists x ∈ Λ(Γ) so that the path component of Λ(Γ) containing x is
infinite and limy∈Λ(Γ)→xG(x, y) = +∞,

(2) there exists a conical limit point x ∈ Λcon(Γ) so that the path component of
Λ(Γ) containing x is infinite, or

(3) Γ is uniform convergence group (i.e. every limit point is conical) and is not
virtually free.

The rest of the section is devoted to the proof of Proposition 5.2. We will see
that (3) is a particular case of (2), which is a particular case of (1).

Proof of non-arithmeticity given (1). Fix a continuous path c : [0, 1] → Λ(Γ) such
that c(0) = x and c(0) 6= c(t) for any t ∈ (0, 1] and c( 1

2 ) 6= c(1). The function

t ∈ (0, ε) 7→B(c(0), c( 1
2 ), c(t), c(1))

= G(c(0), c(t)) +G(c( 1
2 ), c(1))−G(c( 1

2 ), c(t))−G(c(0), c(1))
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is well-defined and continuous for ε > 0 small enough, and goes to infinity as t→ 0
because G(c(0), c(t)) → ∞ by assumption, while G(c( 1

2 ), c(t)) → G(c( 1
2 ), c(0)).

By the intermediate value theorem, the image of that function contains a whole
nontrivial segment of R and hence CR generates R as a group. �

The next two lemmas show that the condition limy∈Λ(Γ)→xG(x, y) = +∞ is
automatically satisfied at conical and parabolic limit points. It follows from the
previous part and the next lemma that (2) implies non-arithmetic cross ratio spec-
trum.

Lemma 5.3. If x ∈ Λ(Γ) is conical, then

lim
(y,z)∈M(2)→(x,x)

G(y, z) = +∞.

Proof. Since x is conical there exist {γk} ⊂ Γ and a 6= b ∈ Λ(Γ) such that γkx→ a
and γky → b for any y 6= x, which implies γk → b.

Then by the expanding property there exists a constant C > 0 such that for any
k we have

σ(γ−1
k , γkx) ≥ ||γ−1

k ||σ − C and σ̄(γ−1
k , γkx) ≥ ||γ−1

k ||σ̄ − C.
Using Equation (1), the non-negativity of G, and the continuity of σ(γk, ·) we obtain

lim inf
y 6=z→x

G(y, z) = lim inf
y 6=z→x

G(γky, γkz) + σ̄(γ−1
k , γky) + σ(γ−1

k , γkz)

≥ σ̄(γ−1
k , γkx) + σ(γ−1

k , γkx)

≥
∥∥γ−1

k

∥∥
σ̄
− C +

∥∥γ−1
k

∥∥
σ
− C.

Letting k →∞ we get lim infy 6=z→xG(y, z) = +∞. �

Lemma 5.4. If x ∈ Λ(Γ) is bounded parabolic point, then

lim
y∈Λ(Γ)→x

G(x, y) = +∞ = lim
y∈Λ(Γ)→x

G(y, x).

Proof. Since x is a bounded parabolic point there exists a compact subset K of
Λ(Γ) r {x} such that Γx(K) = Λ(Γ) r {x}.

Fix a sequence {yn} ⊂ Λ(Γ) r {x} converging to x. For each n, choose γn ∈ Γx
so that γn(yn) ∈ K. Since σ is expanding and γn → x, there exists C > 0 such
that

σ(γ−1
n , γnyn) ≥ ||γn||σ − C

for all n ≥ 1. Since σ̄(γ−1
n , x) = 0, see Proposition 2.9(1), Equation (1) implies that

G(x, yn) = G(x, γn(yn)) + σ(γ−1
n , γn(yn)) ≥ ||γ−1

n ||σ − C.
Since γn → x, we see that ||γ−1

n ||σ → +∞, so G(x, yn)→ +∞. A similar argument
shows that G(yn, x)→ +∞, where we use σ̄ in place of σ. Since {yn} ⊂ Λ(Γ)r{x}
was an arbitrary sequence converging to x, the lemma follows. �

Finally we verify (3).

Proof of non-arithmetic length spectrum given (3). Since Γ is a uniform convergence
group, Γ is word hyperbolic and there exists a equivariant homeomorphism between
the Gromov boundary and the limit set Λ(Γ). Then, since Γ is not virtually free, a
result of Bonk–Kleiner [10] implies that the limit set contains an embedded circle.
It then follows from (2) that the group generated by CR is dense in R. �
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6. Equidistribution

We are now ready to prove Theorem 1.5, which we restate here. The proof
follows a classical strategy that goes back to Margulis [34]. Our particular imple-
mentation of this strategy is influenced by Roblin [41], although, unlike Roblin,
we directly establish equidistribution of closed geodesics, without first establishing
double equidistribution of orbit points in ŨΓ.

Theorem 6.1. Suppose (σ, σ̄, G) is a continuous GPS system for a convergence
group Γ ⊂ Homeo(M) where δ := δσ(Γ) < +∞ and Qσ(δ) = +∞. Let µ be
the unique σ-Patterson–Sullivan measure of dimension δ and let µ̄ be the unique
σ̄-Patterson–Sullivan measure of dimension δ.

If the BMS measure mΓ is finite and mixing, then

lim
T→∞

δe−δT
∑
γ∈Γlox

`σ(γ)≤T

Dγ− ⊗Dγ+ =
1

‖mΓ‖
eδG(x,y)dµ̄(x)⊗ dµ(y)

in the dual of compactly supported continuous functions.

The rest of the section is devoted to the proof of the theorem. Reformulating in
terms of measures on the flow space, the conclusion of the theorem is equivalent to

‖mΓ‖δe−δT
∑
γ∈Γlox

`σ(γ)≤T

Dγ− ⊗Dγ+ ⊗ dt −−−−→
T→∞

m̃ = eδG(x,y)dµ̄(x)⊗ dµ(y)⊗ dt.

For ease of notation, let

νT :=
∑
γ∈Γlox

`σ(γ)≤T

Dγ− ⊗Dγ+ ⊗ dt.

Lemma 6.2. For any compact set K ⊂M (2) and bounded interval I ⊂ R,

sup
T≥0

e−δT νT (K × I) < +∞.

Proof. By Proposition 2.9(4), there exists C1 > 0 such that: if γ ∈ Γlox and
(γ−, γ+) ∈ K, then

`σ(γ) ≥ ‖γ‖σ − C1.

Further, by [8, Prop. 6.3] there exists C2 > 0 such that

#{γ ∈ Γ : ‖γ‖σ ≤ R} ≤ C2e
δR.

Hence

sup
T≥0

e−δT νT (K × I) ≤ C2e
δC1Leb(I). �

The above lemma implies that the family of measures {e−δT νT } is relatively
compact. As a consequence, it is enough to fix an accumulation point

m̃′ := lim
n→∞

‖mΓ‖ δe−δTnνTn

(where Tn → +∞) and prove that m̃ = m̃′.
The heart of the proof consists of the following lemmas that give measure esti-

mates for rectangles A×B × I ⊂M (2) × R which satisfy

(3) |G(a, b)−G(a′, b′)| ≤ ε and |G(b, a)−G(b′, a′)| ≤ ε ∀(a, b), (a′, b′) ∈ A×B
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for some ε > 0. We will postpone the proof of these lemmas until after we conclude
the proof of Theorem 1.5.

Lemma 6.3. For any ε > 0 and any relatively compact subset A×B×I ⊂M (2)×R
with m̃, m̃′-null boundary satisfying (3) and diam I ≤ ε,

m̃(A×B × I) ≤ e7εδm̃′(A×B × I).

Lemma 6.4. For any ε > 0 and any relatively compact subset A×B×I ⊂M (2)×R
with m̃, m̃′-null boundary satisfying (3) and diam I ≤ ε,

m̃(A×B × I) ≥ e−6εδm̃′(A×B × I).

6.1. Proof of Theorem 6.1. Assuming Lemmas 6.3 and 6.4 we prove Theo-
rem 6.1. We start with a general observation that shows that null boundary sets
are abundant.

Observation 6.5. If X is a metric space and λ is a locally finite Borel measure
on X, then for any x0 ∈ X there is r0 > 0 such that the set

{r < r0 : λ(∂Br(x0)) > 0}
is countable.

Proof. Fix r0 > 0 such that λ(Br0(x0)) <∞. Then the function

r ∈ [0, r0] 7→ F (r) = λ(Br(x0)) ∈ R
is monotone increasing. Since a monotone increasing function can have only count-
ably many points of discontinuity, we see that

{r < r0 : F discontinuous at r} ⊃ {r < r0 : λ(∂Br(x0)) > 0}
is countable. �

Next we use Lemmas 6.3 and 6.4 to prove the following.

Lemma 6.6. If A × B × I ⊂ M (2) × R is relatively compact and has m̃, m̃′-null
boundary, then

m̃′(A×B × I) = m̃(A×B × I).

Proof. Fix ε > 0. By the relative compactness of A × B × I, the continuity of G,
and Observation 6.5, we can find finite covers A ⊂

⋃
iAi, B ⊂

⋃
j Bj and I ⊂

⋃
k Ik

such that for all i, j, k, we have

• µ̄(∂Ai) = 0, µ(∂Bj) = 0, and Leb(∂Ik) = 0;

• Ai ×Bj × Ik is relatively compact in M (2) × R and satisfies (3);
• diam Ik ≤ ε.

Set A′i := A ∩ Ai − (Ai−1 ∪ · · · ∪ A1), B′j := B ∩ Bj − (Bj−1 ∪ · · · ∪ B1) and
I ′k := I ∩ Ik − (Ik−1 ∪ · · · ∪ I1) for all i, j, k. Then

A×B × I =
⊔
i,j,k

A′i ×B′j × I ′k.

Further, each A′i ×B′j × I ′k has m̃, m̃′-null boundary, hence by Lemmas 6.3 and 6.4
we have

e−6εδm̃(A′i ×B′j × I ′k) ≤ m̃′(A′i ×B′j × I ′k) ≤ e7εδm̃(A′i ×B′j × I ′k).

So
e−6εδm̃(A×B × I) ≤ m′(A×B × I) ≤ e7εδm̃(A×B × I).
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Since ε > 0 was arbitrary, m̃(A×B × I) = m̃′(A×B × I). �

Proof of Theorem 6.1 . The collection of relatively compact subset A × B × I ⊂
M (2) × R with m̃, m̃′-null boundary is a π-system (i.e. it is closed under finite
intersection) and by Observation 6.5 it generates the Borel sigma-algebra. This
completes the proof, since two measures are equivalent if they agree on a π-system
which generates the Borel sigma-algebra. �

6.2. Proofs of Lemma 6.3 and 6.4. In the proofs of Lemma 6.3 and 6.4 we will
need the following uniform closing lemma for GPS systems. Recall that ψt denotes
the flow on ψt(x, y, s) = (x, y, s+ t) on ŨΓ.

Lemma 6.7. Suppose that A×B × I ⊂M (2) × R is open and relatively compact,
and that A′ × B′ × I ′ is a compact subset of A× B × I. Then there exists T such
that: if γ ∈ Γ, t ≥ T and

A′ ×B′ × I ′ ∩ ψ−tγ(A′ ×B′ × I ′) 6= ∅,
then

(1) γ−1(A)× γ(B) ⊂ A×B,
(2) γ is loxodromic with (γ−, γ+) ∈ A×B.

Proof. If not, then there exist sequences {γn} ⊂ Γ, {tn} ⊂ R and

(xn, yn, sn) ∈ A′ ×B′ × I ′ ∩ ψ−tnγn(A′ ×B′ × I ′),
such that tn → +∞ and each γn fails the conclusion of the lemma.

Since ψtnγ−1
n (xn, yn, sn) ∈ A′ × B′ × I ′, the sequence {sn + tn + σ(γ−1

n , yn)}
is bounded, so σ(γ−1

n , yn) → −∞ and hence {γn} is an escaping sequence. Then,
passing to a subsequence, we may assume that the sequences γ±1

n → p± ∈M .
We claim that (p−, p+) ∈ A′ × B′. Since σ(γn, γ

−1
n yn) = −σ(γ−1

n , yn) → +∞,
Proposition 2.9(2) implies that yn → p+. Therefore, p+ ∈ B′. If K is any compact
subset of M r {p+}, then γ−1

n (K)→ p−. Since A′ is a compact subset of M rB ⊂
M r {p+} and xn ∈ A′ for all n, we see that γ−1

n (xn)→ p− and so p− ∈ A′.
Now since Ā is a compact subset of M rB ⊂M r {p+}, p− ∈ A, and A is open,

we see that γ−1
n (A) ⊂ A for all large enough n. Similarly, γn(B) ⊂ B for n large.

Further, since p− 6= p+, Lemma 2.2 implies that for n large γn is loxodromic and
(γ−n , γ

+
n ) → (p−, p+) ∈ A × B. Since A × B is open, then (γ−n , γ

+
n ) ∈ A × B for n

large. We have achieved a contradiction. �

Proof of Lemma 6.3. It suffices to fix ε′ > 0 and show that

m̃(A×B × I) ≤ e4ε′e7εδm̃′(A×B × I).

We start by reducing to the setting of Lemma 6.7. By considering its interior
(which has full m̃, m̃′-measure since the boundary has zero m̃, m̃′-measure), we can
assume that A × B × I is open. By inner regularity, we find a compact subset
A′ ×B′ × I ′ ⊂ A×B × I such that

(4) m̃(A×B × I) ≤ eε
′
m̃(A′ ×B′ × I ′).

Then by Lemma 6.7 there exists T1 such that: if γ ∈ Γ, t ≥ T1 and

A′ ×B′ × I ′ ∩ ψ−tγ(A′ ×B′ × I ′) 6= ∅,
then γ−1A × γB ⊂ A × B, γ is loxodromic and (γ−, γ+) ∈ A × B. We will show
that in addition
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(a) |`σ(γ)− σ(γ, b)| ≤ ε for every b ∈ B,
(b) |`σ(γ)− t| ≤ 2ε.

In particular,

(c) γ ∈ Θt+2ε := {γ ∈ Γlox : γ−1A× γB ⊂ A×B, (γ−, γ+) ∈ A×B, `σ(γ) ≤
t+ 2ε}.

Indeed (a) is due to assumption (3) and the fact that

`σ(γ)− σ(γ, b) = σ̄(γ, γ−) + σ(γ, γ+)− (σ̄(γ, γ−) + σ(γ, b))(5)

= G(γγ−, γγ+)−G(γ−, γ+)−G(γγ−, γb) +G(γ−, b)

= G(γ−, b)−G(γ−, γb).

Moreover, if (x, y, s) ∈ A′×B′×I ′∩ψ−tγ(A′×B′×I ′) then both s and s−t+σ(γ, y)
are in I ′ so

|t− σ(γ, y)| ≤ diam I ≤ ε,
so (b) and (c) hold.

By Observation 2.13 (mixing) we may choose T2 > T1 such that for any t ≥ T2

(6)
m̃(A′ ×B′ × I ′)2

‖mΓ‖
≤ eε

′∑
γ∈Γ

m̃(A′ ×B′ × I ′ ∩ ψ−tγ(A′ ×B′ × I ′)).

Finally, we may choose T3 > T2, so that if T > T3, then

(7) 1 ≤ eε
′
δe−δT

∫ T

T2

eδtdt.

We now fix (a0, b0) ∈ A×B and T > T3. By Equations (4) and (7),

m̃(A×B × I)2

‖mΓ‖
≤ e2ε′ m̃(A′ ×B′ × I ′)2

‖mΓ‖
≤ e3ε′δe−δT

∫ T

t=T2

m̃(A′ ×B′ × I ′)2

‖mΓ‖
eδtdt.

So by Equation (6) and (c),

m̃(A×B × I)2

‖mΓ‖
≤ e4ε′δe−δT

∑
γ∈Γ

∫ T

t=T2

m̃(A′ ×B′ × I ′ ∩ ψ−tγ(A′ ×B′ × I ′))eδtdt

≤ e4ε′δe−δT
∑

γ∈ΘT+2ε

∫ T

t=T2

m̃(A′ ×B′ × I ′ ∩ ψ−tγ(A′ ×B′ × I ′))eδtdt.

Notice that assumption (3) implies that the integrand satisfies

m̃(A′ ×B′ × I ′ ∩ ψ−tγ(A′ ×B′ × I ′)) ≤ m̃(A× γB × I)

≤ eδεeδG(a0,b0)µ̄(A)µ(γB)Leb(I).

Further, by (a),

µ(γB) =

∫
B

e−δσ(γ,b)dµ ≤ eεδe−δ`σ(γ)µ(B).

By (b),

{t : A′ ×B′ × I ′ ∩ ψ−tγ(A′ ×B′ × I ′) 6= ∅} ⊂ [`σ(γ)− 2ε, `σ(γ) + 2ε]

and has Lebesgue measure at most Leb(I). Hence

m̃(A×B × I)2

‖mΓ‖
≤ e4ε′e4εδ · eδG(a0,b0)µ̄(A)µ(B)Leb(I) · δe−δTLeb(I)#

(
ΘT+2ε

)
.
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So by assumption (3) and the definition of νT+2ε,

m̃(A×B × I)2

‖mΓ‖
≤ e4ε′e5εδm̃(A×B × I)δe−δT νT+2ε(A×B × I).

By applying the above estimate to the sequence {Tn − 2ε}, we see that, for all
sufficiently large n,

m̃(A×B × I)2 ≤ e4ε′e5εδm̃(A×B × I) · e2δε
(
‖mΓ‖ δe−δTnνTn(A×B × I)

)
.

Letting n→∞, we see that

m̃(A×B × I) ≤ e4ε′e7εδm̃′(Ā× B̄ × Ī) = e4ε′e7εδm̃′(A×B × I).

Notice that the last equality used the fact that A×B×I has m̃′-null boundary. �

Proof of Lemma 6.4. The proof is very similar to the proof of Lemma 6.3.
It suffices to fix ε′ > 0 and show that

m̃′(A×B × I) ≤ e2ε′e6εδm̃(A×B × I).

As in the proof of Lemma 6.3, we can assume that A × B × I is open and find a
compact subset A′ ×B′ × I ′ ⊂ A×B × I with m̃′-null boundary such that

(8) m̃′(A×B × I) ≤ eε
′
m̃′(A′ ×B′ × I ′).

For S < T , define

ΓTS := {γ ∈ Γlox : (γ−, γ+) ∈ A′ ×B′, S ≤ `σ(γ) ≤ T}.

Notice that if γ ∈ Γlox and (γ−, γ+) ∈ A′ ×B′, then

A′ ×B′ × I ′ ∩ ψ−`σ(γ)γ(A′ ×B′ × I ′) 6= ∅.

So by Lemma 6.7 there exists T1 such that if γ ∈ Γ∞T1
, then

(d) γ−1A× γB ⊂ A×B.

Moreover:

(e) |`σ(γ)− σ(γ, b)| ≤ ε for every b ∈ B.
(f) If A×B × I ∩ ψ−tγ(A×B × I) 6= ∅ for some t, then |t− `σ(γ)| ≤ 2ε.

Notice that (e) follows from the computation in (5) and (f) is an immediate conse-
quence of (e) and the fact that diam I ≤ ε.

By Observation 2.13 (mixing) we may choose T2 > T1 such that for any t ≥ T2

m̃(A×B × I)2

‖mΓ‖
≥ e−ε

′∑
γ∈Γ

m̃(A×B × I ∩ ψ−tγ(A×B × I)).

We now fix (a0, b0) ∈ A×B and T > T2. Using the fact that δe−δT
∫ T
T2
eδtdt < 1

and (f),

m̃(A×B × I)2

‖mΓ‖
≥ δe−δT

∫ T

t=T2

m̃(A×B × I)2

‖mΓ‖
eδt dt

≥ e−ε
′
δe−δT e−2δε

∫ T

t=T2

∑
γ∈ΓT−2ε

T2+2ε

m̃(A×B × I ∩ ψ−tγ(A×B × I))eδ`σ(γ) dt.
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By (d), in the integrand we have A∩ γA = A and B ∩ γB = γB, so by assumption
(3) we have

m̃(A×B×I∩ψ−tγ(A×B×I)) ≥ e−δεeδG(a0,b0)µ̄(A)

∫
γB

Leb(I∩(I−t+σ(γ, b)))dµ(b).

Also, since γ ∈ ΓT−2ε
T2+2ε, property (e) implies that∫ T

t=T2

Leb(I ∩ (I − t+ σ(γ, b)))dt =

∫
s∈I

Leb([T2, T ] ∩ (I − s+ σ(γ, b)))ds

=

∫
s∈I

Leb(I − s+ σ(γ, b))ds = Leb(I)2.

Combining the above estimates we have,

m̃(A×B × I)2

‖mΓ‖
≥ e−ε

′
δe−δT e−3δεeδG(a0,b0)µ̄(A)Leb(I)2

∑
γ∈ΓT−2ε

T2+2ε

eδ`σ(γ)µ(γB).

By (e), we have

µ(γB) =

∫
B

e−δσ(γ,b)dµ(b) ≥ e−δεe−δ`σ(γ)µ(B).

Hence

m̃(A×B × I)2

‖mΓ‖
≥ e−ε

′
e−3δεeδG(a0,b0)µ̄(A)µ(B)Leb(I) · δe−δT#

(
ΓT−2ε
T2+2ε

)
Leb(I).

By assumption (3),

eδG(a0,b0)µ̄(A)µ(B)Leb(I) ≥ e−δεm̃(A×B × I)

and by definition

δe−δT#
(
ΓT−2ε
T2+2ε

)
Leb(I) = δe−δT (νT−2ε − νT2+2ε) (A′ ×B′ × I).

So by applying the above estimates to the sequence {Tn + 2ε}, we see that, for all
sufficiently large n,

m̃(A×B×I)2 ≥ e−ε
′
e−4εδm̃(A×B×I)·e−2δε

(
‖mΓ‖ δe−δTn(νTn − νT2+2ε)(A

′ ×B′ × I)
)
.

Sending n→∞ and using Equation (8) and that A′×B′×I ′ has m̃′-null boundary,
we obtain

m̃(A×B × I) ≥ e−ε
′
e−6εδm̃′(A′ ×B′ × I ′) ≥ e−2ε′e−6εδm̃′(A×B × I),

which completes the proof. �

7. Dirichlet domains for flow spaces

For the rest of the section fix a GPS system (σ, σ̄, G) for a convergence group
Γ ⊂ Homeo(M). In this section we describe how the space M (2) × R can be
compactified using M and then construct an analogue of the classical Dirichlet
fundamental domain in hyperbolic geometry for the action of Γ on M (2) × R.

Proposition 7.1. The set M (2) × R :=
(
M (2) × R

)
tM has a topology with the

following properties:

(1) M (2) × R is a compact metrizable space.

(2) The inclusions M (2)×R ↪→M (2) × R and M ↪→M (2) × R are embeddings,
and M (2) × R is open.
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(3) The action of Γ on M (2) × R is by homeomorphisms.

(4) A sequence {(xn, yn, tn)} in M (2) × R converges to z ∈ M if and only if
either
(a) xn → z and tn → −∞,
(b) yn → z and tn → +∞, or
(c) xn → z and yn → z.

(5) For any v0 ∈M (2) × R, the map

x ∈ Γ tM 7→

{
x(v0) if x ∈ Γ

x if x ∈M
.

is continuous.

The proof is an exercise in point set topology (namely showing that the con-
vergence in (4) is compatible with a topology) and is sketched at the end of the
section.

Next we define an analogue of the Dirichlet domain for the action of Γ on M (2)×
R. Define a function

χ : M (2) × R→ [0,∞),

which plays the role of the distance to the basepoint in the traditional construction,
by setting

χ(x, y, t) := G(y, x) + |t|.
We then define our Dirichlet domain

D := {v ∈M (2) × R : χ(v) ≤ χ(γv) ∀γ ∈ Γ}.
We will prove that these domains have the following properties.

Proposition 7.2.

(1) Γ(D) = M (2) × R and each v ∈ M (2) × R is contained in finitely many
Γ-translates of D.

(2) The closure of D in M (2) × R does not contain any conical limit points.

Remark 7.3. Unlike the classical setting of hyperbolic geometry, it is likely not
always true that Γ-iterates of the interior of D are disjoint.

Both parts of the proposition follow from a quantitative lower bound on χ along

an orbit of Γ. Fix a distance d on M (2) × R which generates the topology in
Proposition 7.1.

Lemma 7.4. For any v0 ∈ M (2) × R and ε > 0 there exists C > 0 such that: if
γ ∈ Γ, v ∈M (2) × R and d(v, γ−1(v0)) > ε, then

χ(γ(v)) ≥ χ(v) + min
(
‖γ‖σ ,

∥∥γ−1
∥∥
σ

)
− C.

Delaying the proof of the lemma, we prove the proposition.

Proof of Proposition 7.2. (1): Lemma 7.4 implies that for fixed v ∈ M (2) × R, the
map

γ ∈ Γ 7→ χ(γ(v)) ∈ [0,∞)

is proper and hence has a minimum, which is realized only finitely many times.
Thus Γ(D) = M (2) × R and each v ∈ M (2) × R is contained in finitely many
Γ-translates of D.
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(2): Suppose x ∈ M is a conical limit point and {vn} ⊂ M (2) × R converges to
x. We will show that vn /∈ D when n is large.

Since x is a conical limit point, there exist {γm} in Γ and distinct a, b ∈M such
that γm(x)→ a and γm(y)→ b for any y ∈ M r {x}. Thus γm → b and γ−1

m → x
in the topology on Γ tM .

Let ε := 1
2 d(a, b) and fix v0 ∈ M (2) × R. Let C = C(v0, ε) > 0 be as in

Lemma 7.4. Then Proposition 7.1(5) implies that γm(v0) → b. Since γm(x) → a,
we can fix m ≥ 1 sufficiently large that

d(γm(x), γm(v0)) > ε.

Since σ is proper, by increasing m we can also assume that

min
(
‖γm‖σ ,

∥∥γ−1
m

∥∥
σ

)
> C + 1.

Now since vn → x, for n sufficiently large we have d(γm(vn), γm(v0)) > ε. Then,
for any such n, Lemma 7.4 implies that

χ(vn) = χ(γ−1
m γmvn) ≥ χ(γmvn) + min

(
‖γm‖σ ,

∥∥γ−1
m

∥∥
σ

)
− C > χ(γmvn) + 1.

Hence vn /∈ D when n is sufficiently large. �

7.1. Proof of Lemma 7.4. Fix v0 ∈ M (2) × R and ε > 0. Suppose for a con-
tradiction that no such C exists. Then for every n ≥ 1 there exist γn ∈ Γ and
vn ∈M (2) × R where d(vn, γ

−1
n (v0)) > ε and

χ(γn(vn)) ≤ χ(vn) + min
(
‖γn‖σ ,

∥∥γ−1
n

∥∥
σ

)
− n.(9)

If vn = (xn, yn, tn), then by Equation (1),

χ(γn(vn))− χ(vn) = G(γ(xn), γ(yn))−G(xn, yn) + |tn + σ(γn, yn)| − |tn|
= σ̄(γn, xn) + σ(γn, yn) + |tn + σ(γn, yn)| − |tn| .(10)

Passing to a subsequence we can suppose that tn → t ∈ [−∞,∞] and that
xn → x, yn → y and γ−1

n → b in Γ tM . Notice that (9) and (10) imply that

n ≤ χ(vn)− χ(γn(vn)) + min
(
‖γn‖σ ,

∥∥γ−1
n

∥∥
σ

)
≤ |σ̄(γn, xn)|+ 2 |σ(γn, yn)|+ min

(
‖γn‖σ ,

∥∥γ−1
n

∥∥
σ

)
.

So {γn} is an escaping sequence. Hence b ∈ M . Then Proposition 7.1(5) implies
that γ−1

n (v0)→ b.
Since d(vn, γ

−1
n (v0)) > ε, the sequence {vn = (xn, yn, tn)} does not converge to

b. Recall that xn → x, that yn → y and that tn → t. By Proposition 7.1(4) this
means that x and y cannot be both equal to b. If x = b then vn 6→ b forces t 6= −∞
(in addition to y 6= b), while if y = b then vn 6→ b forces t 6= +∞. Otherwise, we
have x 6= b and y 6= b. Thus we are in one of the following cases.

(y 6= b and t 6= −∞) or (x 6= b and t 6= +∞) or (x 6= b and y 6= b).

Case 1: Assume y 6= b and t 6= −∞. Since σ is expanding, there exists C1 > 0 such
that

σ(γn, yn) ≥ ‖γn‖σ − C1

for all n ≥ 1. Then for n sufficiently large

|tn + σ(γn, yn)| − |tn| = tn + σ(γn, yn)− |tn| ≥ ‖γn‖σ − C1 + (tn − |tn|).
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By the definition of ‖·‖σ̄ and Proposition 2.11(1) there exists C2 > 0 such that

σ̄(γn, xn) = −σ̄(γ−1
n , γnx) ≥ −

∥∥γ−1
n

∥∥
σ̄
≥ −‖γn‖σ − C2.

for all n ≥ 1. So by (10),

χ(γn(vn))− χ(vn) ≥ (−‖γn‖σ − C2) + (‖γn‖σ − C1) + (‖γn‖σ − C1 + (tn − |tn|))
= ‖γn‖σ + (tn − |tn|)− 2C1 − C2.

However, since tn → t > −∞, this estimate contradicts Equation (9).

Case 2: Assume x 6= b and t 6=∞. Since σ̄ is expanding, there exists C1 > 0 such
that

σ̄(γn, xn) ≥ ‖γn‖σ̄ − C1

for all n ≥ 1. Then by Proposition 2.11(1), there exists C2 > 0 such that

σ̄(γn, xn) ≥
∥∥γ−1

n

∥∥
σ
− C2

for all n ≥ 1. So by (10),

χ(γn(vn))− χ(vn) ≥
(∥∥γ−1

n

∥∥
σ
− C2

)
+ σ(γn, yn) + (|tn + σ(γn, yn)| − |tn|) .

Notice that

σ(γn, yn) + |tn + σ(γn, yn)| − |tn| =

{
−(tn + |tn|) if σ(γn, yn) ≤ −tn
2σ(γn, yn) + tn − |tn| if σ(γn, yn) ≥ −tn

is bounded below by −(tn + |tn|). So

χ(γn(vn))− χ(vn) ≥
∥∥γ−1

n

∥∥
σ
− C2 − (tn + |tn|).

However, since tn → t < +∞, this estimate contradicts Equation (9).

Case 3: Assume x 6= b and y 6= b. Since σ and σ̄ are expanding, there exists C1 > 0
such that

σ̄(γn, xn) ≥ ‖γn‖σ̄ − C1 and σ(γn, yn) ≥ ‖γn‖σ − C1

for all n ≥ 1. Then by Proposition 2.11(1), there exists C2 > 0 such that

σ̄(γn, xn) ≥
∥∥γ−1

n

∥∥
σ
− C2

for all n ≥ 1. Also,

σ(γn, yn) ≥ inf
γ∈Γ
‖γ‖σ − C1

and so

σ(γn, yn) ≥ |σ(γn, yn)| − 2 inf
γ∈Γ
‖γ‖σ − 2C1

for all n ≥ 1. So by (10),

χ(γn(vn))− χ(vn) ≥
(∥∥γ−1

n

∥∥
σ
− C2

)
+ σ(γn, yn) + (|tn| − |σ(γn, yn)| − |tn|)

≥
∥∥γ−1

n

∥∥
σ
− C2 − 2 inf

γ∈Γ
‖γ‖σ − 2C1,

which contradicts Equation (9).
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7.2. Proof of Proposition 7.1. For an open set U ⊂M , let

IU,n := {(x, y, t) : (x, t) ∈ U × (−∞,−n) or (y, t) ∈ U × (n,∞) or x, y ∈ U} .

Fix a countable basis B0 of the topology on M (2) × R and a countable basis B1 of
the topology on M . Let

B := B0 ∪{IU,n ∪ U : U ∈ B1, n ∈ N}

and endow M (2) × R with the topology generated by B, which is a countable basis.
One can check the topology is regular, so by Urysohn’s metrization theorem it is
metrizable. By the definition of the IU,n, this topology satisfies (4), which implies
it is compact. Properties (2) and (3) follow in a straightforward way from the
definition of B.

To prove (5) , it suffices to fix v0 ∈ M (2) × R and a sequence {γn} ⊂ Γ where
γn → a ∈M in the topology of Γ tM , then show that γn(v0)→ a in the topology

of M (2) × R. Since M (2) × R is compact, it suffices to consider the case where

γn(v0)→ a′ ∈ M (2) × R and then show that a′ = a. Passing to a subsequence, we
can suppose that γ−1

n → b ∈M in the topology of Γ tM .
Suppose v0 = (x, y, t). Then γn(v0) = (γnx, γny, t+ σ(γn, y)).

Case 1: Assume y 6= b. Then γny → a and by the expanding property t+σ(γn, y)→
+∞. So by (4), γnv0 → a.

Case 2: Assume y = b. Then x 6= b and so γnx→ a. If γny → a, then (4) implies
that γnv0 → a. If γny 6→ a, then the expanding property implies that

t+ σ(γn, y) = t− σ(γ−1
n , γny)

has a subsequence which converges to −∞. Hence (4) implies that γnv0 → a.

8. Horoballs and a decomposition of the flow space

In this section, we construct horoballs about bounded parabolic points. In the
geometrically finite case, we will show that Γ acts cocompactly on the complement
of an equivariant collection of horoballs about each point. This gives a useful
decomposition of our flow space, which allows us to prove Theorem 1.4 in the next
section.

For the rest of the section fix a GPS system (σ, σ̄, G) for a convergence group
Γ ⊂ Homeo(M).

Given p ∈M and S, T ∈ R the associated horoball Hp,S,T ⊂M (2) ×R is the set
of all v = (x, y, t) where either

• y = p and t > S,
• x = p and t < G(p, y)− T , or
• x 6= p, y 6= p and G(x, y)−G(x, p) + S < t < G(p, y)− T.

Remark 8.1. (1) If one uses the convention that G(z, z) = ∞ for any z ∈ M (this
would not necessarily be a continuous extension because we do not assume G is
“proper”), then Hp,S,T is the set of (x, y, t) such that x 6= y and

G(x, y)−G(x, p) + S < t < G(p, y)− T.

(2) If S′ ≥ S and T ′ ≥ T then Hp,S′,T ′ ⊂ Hp,S,T .



COUNTING, MIXING AND EQUIDISTRIBUTION 31

In what follows let F ⊂ M denote the set of bounded parabolic points and for
p ∈ F let Γp ⊂ Γ denote the stabilizer of p in Γ. The definition of our horoballs
leads to the following equivariance property.

Proposition 8.2. If γ ∈ Γ and p ∈M is a bounded parabolic point, then

γ(Hp,S,T ) = Hγp,S+σ(γ,p),T+σ̄(γ,p).

In particular, if γ ∈ Γp, then γ(Hp,S,T ) = Hp,S,T by Proposition 2.9(1).

In the geometrically finite case, we will prove the following structure theorem
for the quotient space Γ\ŨΓ.

Theorem 8.3. Suppose Γ acts geometrically finitely on M (i.e. every limit point
is either a bounded parabolic point or a conical limit point). Then:

(1) There exists an Γ-equivariant disjoint set of horoballs {Hp,Sp,Tp}p∈F , i.e.

γHp,Sp,Tp = Hγp,Sγp,Tγp

for all p ∈ F and γ ∈ Γ.
(2) If {Hp,Sp,Tp}p∈F is any Γ-equivariant disjoint set of horoballs, then the

quotient

Γ\

(
ŨΓ −

⋃
p

Hp

)
is compact (recall that ŨΓ = Λ(Γ)(2) × R).

As a corollary to the proof we observe the following discreteness results.

Corollary 8.4. Suppose Γ acts geometrically finitely on M . If T > 0, then

{[γ] ∈ [Γlox] : `σ(Γ) ≤ T}

is finite. In particular, the systole defined by

sys(Γ, σ) = min {`σ(γ) : γ ∈ Γlox} > 0

is well-defined and positive.

8.1. Proof of Proposition 8.2. By symmetry it suffices to show that

γHp,S,T ⊂ Hγp,S+σ(γ,p),T+σ̄(γ,p).

Fix v = (x, y, t) ∈ Hp,S,T . Then

γv = (γx, γy, t+ σ(γ, y))

Case 1: Assume y = p and t > S. Then clearly γv ∈ Hγp,S+σ(γ,p),T+σ̄(γ,p).

Case 2: Assume x = p and t < G(p, y)− T . Then Equation (1) implies

t+ σ(γ, y) < G(p, y) + σ(γ, y)− T = G(γy, γp)− σ̄(γ, p)− T.

So γv ∈ Hγp,S+σ(γ,p),T+σ̄(γ,p).

Case 3: Assume x 6= p, y 6= p and G(x, y) − G(x, p) + S < t < G(p, y) − T. Then
by Equation (1),

G(γx, γy)−G(γx, γp) + (S + σ(γ, p)) = G(x, y)−G(x, p) + σ(γ, y) + S

< t+ σ(γ, y)
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and

G(γp, γy)− (T + σ̄(γ, p)) = G(p, y) + σ(γ, y)− T > t+ σ(γ, y).

So γv ∈ Hγp,S+σ(γ,p),T+σ̄(γ,p). �

8.2. Constructing an equivariant set of horoballs. In this subsection we prove
part (1) of Theorem 8.3.

Fix a distance d on M (2) × R which generates the topology in Proposition 7.1

and for p ∈ M (2) × R and r > 0 let Br(p) denote the associated metric ball. We
first show that horoballs can be made arbitrary small, in a uniform way.

Lemma 8.5. For any ε > 0 there exists T > 0 such that Hp,T,T ⊂ Bε(p) for all
p ∈M .

Proof. Suppose not. Then for every n ≥ 1 there exist pn ∈M and vn = (xn, yn, tn) ∈
Hpn,n,n with d(vn, pn) > ε. Passing to a subsequence we can suppose that pn → p.
Passing to a further subsequence, it suffices to consider the following cases.

Case 1: Assume yn = pn and tn > n for all n. Then Proposition 7.1(4) implies
that vn → p. Thus d(vn, pn) < ε for large n, which is a contradiction.

Case 2: Assume xn = pn and tn < G(pn, yn)−n for all n. Passing to a subsequence,
we can suppose that yn → y. If y = p, then xn → p and yn → p. If y 6= p, then

lim inf
n→∞

tn ≤ G(p, y) + lim inf
n→∞

−n = −∞.

So in all cases, Proposition 7.1(4) implies that vn → p. Thus d(vn, pn) < ε for large
n, which is a contradiction.

Case 3: Assume xn 6= pn, yn 6= pn and

G(xn, yn)−G(xn, pn) + n < tn < G(pn, yn)− n

for all n. Passing to a subsequence we can suppose that xn → x and yn → y. Since

G(xn, pn) +G(pn, yn) > 2n+G(xn, yn) ≥ 2n

and G is locally bounded on M (2), at least one of x or y must equal p. If x = p
and y 6= p, then

lim inf
n→∞

tn ≤ lim inf
n→∞

G(pn, yn)− n = G(p, y) + lim inf
n→∞

−n = −∞.

If y = p and x 6= p, then

lim inf
n→∞

tn ≥ lim inf
n→∞

G(xn, yn)−G(xn, pn) +n = G(x, y)−G(x, p) + lim inf
n→∞

n = +∞.

So in all cases, Proposition 7.1(4) implies that vn → p. Thus d(vn, pn) < ε for large
n, which is a contradiction. �

Next we show that images under elements γ ∈ Γ of a fixed small horoball at a
bounded parabolic point can not become too big.

Lemma 8.6. If p ∈ M is a bounded parabolic point, then there exists C > 0 such
that σ(γ, p) ≥ −C and σ̄(γ, p) ≥ −C for all γ ∈ Γ.

In particular γHp,T,T ⊂ Hγp,T−C,T−C for all γ ∈ Γ and T .
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Proof. Suppose not. Then there exists {γn} ⊂ Γ such that σ(γn, p)→ −∞ (the case
σ̄(γn, p) → −∞ is similar). By Proposition 2.7, there exists {αn} ⊂ Γp such that
{αnγ−1

n } stays in a compact set of Γ tΛ(Γ) r {p}. Proposition 2.9(1) implies that
σ(α−1

n , p) = 0, so, since σ is a cocycle, σ(γnα
−1
n , p) = σ(γn, p) → −∞. Therefore,

since σ is expanding, αnγ
−1
n = (γnα

−1
n )−1 → p, which is a contradiction. �

The following lemma will allow us to choose the size of our horoballs.

Lemma 8.7. If p, q ∈ M are bounded parabolic points, then there exists T =
T (p, q) > 0 such that Hp,T,T ∩ γHq,T,T 6= ∅ if and only if γ(q) = p.

Proof. (⇐): Suppose γ(q) = p. Let us check that Hp,T,T ∩ γHq,T,T 6= ∅ for any T :

(x, p, t) ∈ Hp,T,T ∩ γHq,T,T = Hp,T,T ∩Hp,T+σ(γ,q),T+σ̄(γ,q)

if x ∈M − {p} and t > T + max{0, σ(γ, q)}.
(⇒): Fix a compact set K ⊂ Λ(Γ) r {p} such that ΓpK = Λ(Γ) and let

ε := d(p,K). By Lemma 8.6 there exists C > 0 such that σ(γ, q) ≥ −C and
σ̄(γ, q) ≥ −C for all γ ∈ Γ. Lemma 8.5 then implies that there exists T such that
Hx,T−C,T−C ⊂ Bε/2(x) for any x ∈M .

Fix γ ∈ Γ such that γ(q) 6= p. Then fix α ∈ Γp such that αγ(q) ∈ K. Since
αHp,T,T = Hp,T,T by Proposition 8.2, it suffices to prove that Hp,T,T and αγHq,T,T

are disjoint. On one hand,

αγHq,T,T = Hαγq,T+σ(αγ,q),T+σ̄(αγ,q) ⊂ Hαγq,T−C,T−C ⊂ Bε/2(αγq).

On the other hand, Hp,T,T ⊂ Hp,T−C,T−C ⊂ Bε/2(p), and these two balls of radius
ε/2 are disjoint since d(p, αγq) ≥ d(p,K) = ε, so Hp,T,T and Hq,T,T are disjoint. �

By Lemma 2.4 there are finitely many Γ-orbits of parabolic points. Let {p1, . . . , pk}
contain one representative of each orbit. Applying Lemma 8.7 to each pair in
{p1, . . . , pk} we can find T > 0 such that

γ1Hpi,T,T ∩ γ2Hpj ,T,T = γ1

(
Hpi,T,T ∩ γ−1

1 γ2Hpj ,T,T

)
= ∅

when γ1(pi) 6= γ2(pj). Then for p ∈ F , let Hp,Sp,Tp := γHpi,T,T where p = γpi.
This completes the proof of part (1) of Theorem 8.3. �

8.3. Cocompactness. In this subsection we prove part (2) of Theorem 8.3.

Notice that Proposition 7.1(4) implies that ŨΓ t Λ(Γ) is a closed subset of

M (2) × R.

Lemma 8.8. If p ∈ M is a bounded parabolic point, then Γp acts cocompactly on

(ŨΓ t Λ(Γ))− (Hp,S,T t {p}) for all S, T ∈ R.

Proof. Since p is bounded parabolic point, there exists a compact set K ⊂ Λ(Γ)−
{p} such that Γp(K) = Λ(Γ) r {p}. Define subsets

A1 := {(x, y, t) ∈ ŨΓ : x ∈ K and t ≤ G(x, y)−G(x, p) + S}

and

A2 := {(x, y, t) ∈ ŨΓ : y ∈ K and t ≥ G(p, y)− T}.
Notice that A1 and A2 are closed in ŨΓ. Further, since G : M (2) → R is continuous
and hence bounded on compact subsets, Proposition 7.1(4) implies that these sets
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only accumulate on K ⊂ Λ(Γ). Hence, A1∪A2∪K is a compact subset of ŨΓtΛ(Γ).
So to prove that Γp acts cocompactly, it suffices to fix

v = (x, y, t) ∈ ŨΓ −Hp,S,T

and then show that there exists γ ∈ Γp with

γ(v) = (γ(x), γ(y), t+ σ(γ, y)) ∈ A1 ∪A2.

Since v /∈ Hp,S,T , by the definition of horoballs we have three cases. If y = p,
then v /∈ Hp,S,T which forces t ≤ S. If x = p, then v /∈ Hp,S,T which forces
t ≥ G(p, y)−T . The last case where x 6= p and y 6= p splits into two subcases: then
v /∈ Hp,S,T forces either t ≤ G(x, y) − G(x, p) + S or t ≥ G(p, y) − T. Let us deal
with each of these four cases separately.

Case 1: Assume y = p. Then t ≤ S. Choose γ ∈ Γp so that γ(x) ∈ K. Then

γ(v) = γ(x, p, t) = (γ(x), p, t) ∈ A1,

since t ≤ S = G(γx, p)−G(γx, p) + S.

Case 2: Assume x = p. Then t ≥ G(p, y) − T . Choose γ ∈ Γp so that γ(y) ∈ K.
Then

G(p, γ(y))− T = G(p, y) + σ̄(γ, p) + σ(γ, y)− T ≤ t+ σ(γ, y)

since σ̄(γ, p) = 0. Hence

γ(v) = γ(p, y, t) = (p, γ(y), t+ σ(γ, y)) ∈ A2

Case 3: Assume x 6= p, y 6= p and t ≤ G(x, y)−G(x, p)+S. Then by Equation (1),

G(γ(x), γ(y))−G(x, y) = σ̄(γ, x) + σ(γ, y)

and

G(γ(x), p)−G(x, p) = σ̄(γ, x) + σ(γ, p) = σ̄(γ, x).

So

G(γ(x), γ(y))−G(γ(x), p) + S = G(x, y)−G(x, p) + σ(γ, y) + S ≥ t+ σ(γ, y).

Thus

γ(v) = (γ(x), γ(y), t+ σ(γ, y)) ∈ A1.

Case 4: Assume x 6= p, y 6= p and t ≥ G(p, y) − T. Arguing as in Case 2, there
exists γ ∈ Γp where γ(v) ∈ A2. �

Now let χ : M (2) × R→ [0,∞) with χ(x, y, t) = G(y, x) + |t| and

D = {v ∈M (2) × R : χ(v) ≤ χ(γv) for all γ ∈ Γ}

be as in Section 7. We show that if p is a bounded parabolic point and H is a
horoball based at p, then D ∩ ŨΓ rH does not accumulate at p.

Lemma 8.9. If p ∈ M is a bounded parabolic point and H is a horoball based at
p, then D ∩ ŨΓ rH does not accumulate on p.
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Proof. Suppose for a contradiction that there exists a sequence {vn} in D∩ ŨΓ rH
converging to p. Using Lemma 8.8 and passing to a subsequence we can find
{γn} ⊂ Γp, such that

γn(vn)→ v ∈ (ŨΓ t Λ(Γ))− (Hp,S,T t {p}).

Since γn(p) = p for all n, the sequence {γn} must be escaping (otherwise we would
have γn(vn) → p since vn → p). Since {γn} ⊂ Γp, we must have γ−1

n → p and
γn → p.

Then, since γn(vn)→ v 6= p, by Lemma 7.4 there exists C > 0 such that

χ(vn) = χ(γ−1
n γnvn) ≥ χ(γnvn) + min

(∥∥γ−1
n

∥∥
σ
, ‖γn‖σ

)
− C

for all n. Since
∥∥γ±1

n

∥∥
σ
→ +∞, we have χ(vn) > χ(γnvn) when n is sufficiently

large. Hence vn /∈ D when n is sufficiently large, which is a contradiction. �

Finally, we conclude that Γ acts cocompactly on the complement of the horoballs
about all the bounded parabolic points.

Lemma 8.10. If {Hp,Sp,Tp}p∈F is any Γ-equivariant disjoint set of horoballs, then
the quotient

Γ\

(
ŨΓ −

⋃
p

Hp

)
is compact.

Proof. Let

L := D ∩ ŨΓ −
⋃
p

Hp.

By Proposition 7.2,

Γ(L) = ŨΓ −
⋃
p

Hp.

So it suffices to check that L is compact. Since L is a closed subset of ŨΓ, it

suffices to check that L does not accumulate at any point of M in M (2) × R. By

Proposition 7.1(4) the closure of ŨΓ = Λ(Γ)(2) × R in M (2) × R is Λ(Γ). So it
suffices to show that L does not accumulate at any point of Λ(Γ).

Proposition 7.2 implies that D does not accumulate at any conical point in Λ(Γ),
while Lemma 8.9 implies that D −

⋃
pHp does not accumulates at any bounded

parabolic point in Λ(Γ). Since Γ acts geometrically finitely, every point of Λ(Γ)
is either a conical limit point or a bounded parabolic point, so this concludes the
proof. �

8.4. Proof of Corollary 8.4. Using the notation in the proof of Lemma 8.10, the
set L := D ∩ ŨΓ − ∪pHp is compact. By Proposition 2.9(4), there exists C > 0 so
that if the axis (γ−, γ+)× R of γ ∈ Γlox intersects L, then

`σ(γ) ≥ ‖γ‖σ − C.

Now suppose that γ ∈ Γlox, then its axis cannot be entirely contained in any Hp,
since otherwise γ(Hp) ∩Hp = Hγ(p) ∩Hp would intersect. Therefore, there exists
an element γ̂ which is conjugate to γ and intersects L. It follows that

`σ(γ) = `σ(γ̂) ≥ ‖γ̂‖σ − C.
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Since σ is proper, we conclude that the set of conjugacy classes of loxodromic
elements of length at most T must be finite. �

9. Finiteness criteria for BMS measures

We obtain a finiteness criterion for BMS measures in the geometrically finite case,
which is the natural analogue of the criterion of Dal’bo–Otal–Peigné [20]. In fact,
our development of the theory of horoballs was designed so that we can emulate
their proof. This criterion was generalized to geometrically infinite groups by Pit–
Schapira [37, Th. 1.4, 1.6, 1.8], in the context of negatively curved Riemannian
manifolds.

Theorem 9.1. Suppose (σ, σ̄, G) is a continuous GPS system for a geometrically
finite convergence group Γ ⊂ Homeo(M) where δ = δσ(Γ) < +∞. If δσ(P ) < δ for
any maximal parabolic subgroup P of Γ, then Qσ(δ) = +∞ and the BMS measure
is finite.

In [8, Th. 4.2] we showed that if the σ-Poincaré series diverges for a maximal
parabolic subgroup Γp of Γ, then δσ(Γp) < δσ(Γ). So Theorem 9.1 implies the
following criterion.

Corollary 9.2. Suppose (σ, σ̄, G) is a GPS system for a geometrically finite con-
vergence group Γ ⊂ Homeo(M) with δ := δσ(Γ) < +∞. If∑

γ∈Γp

e−δσ(Γp)‖γ‖σ = +∞

whenever p is a bounded parabolic point of Γ, then Qσ(δ) = +∞ and the BMS
measure is finite.

The rest of the section is devoted to the proof of Theorem 9.1. Fix a GPS
system (σ, σ̄, G) for a geometrically finite convergence group Γ ⊂ Homeo(M) with
δ := δσ(Γ) < +∞.

The theorem will follow from the next two propositions and Theorem 8.3 above.
The first provides a condition for the “cusps” to have finite measure and the second
verifies this condition when the hypotheses of Theorem 9.1 are satisfied.

Proposition 9.3. Suppose p is a bounded parabolic point of Γ, µ is a σ-Patterson–
Sullivan measure of dimension δ, and µ̄ is a σ̄-Patterson–Sullivan measure of di-
mension δ. Let mΓ denote the quotient measure on UΓ associated to the measure
m̃ = eδG(x,y)dµ̄(x)⊗ dµ(y)⊗ dt on ŨΓ.

If µ({p}) = µ̄({p}) = 0 and∑
γ∈Γp

||γ||σe−δ||γ||σ < +∞,

then for any horoball Hp = Hp,S,T based at p the measure mΓ is finite on the image

of Hp ∩ ŨΓ in UΓ = Γ\ŨΓ.

Proposition 9.4. If δσ(Γp) < δ whenever p is a bounded parabolic point of Γ, then
there exist a σ-Patterson–Sullivan-measure µ of dimension δ and a σ̄-Patterson–
Sullivan-measure µ̄ of dimension δ such that

µ({p}) = µ̄({p}) = 0

whenever p is a bounded parabolic point.
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Assuming the propositions we prove Theorem 9.1.

Proof of Theorem 9.1. Let F ⊂ Λ(Γ) denote the set of bounded parabolic points.
By Theorem 8.3 there exists an Γ-equivariant collection {Hp = Hp,Sp,Tp}p∈F of

disjoint horoballs so that the action of Γ on ŨΓ −
⋃
Hp is cocompact. Proposition

9.4 implies that there exist Patterson–Sullivan measures µ and µ̄ of dimension δ with
the property that µ({p}) = µ̄({p}) = 0 for any p ∈ F . Since Γ is geometrically
finite, there are countably many bounded parabolic points by Lemma 2.4, and
the rest are conical, so the conical limit set has full measure for both µ and µ̄.
Theorem 2.12 then implies that Qσ(δ) = Qσ̄(δ) = +∞.

Let mΓ denote the BMS measure constructed in Section 2.3. By definition this
measure is locally finite and so the mΓ-measure of the quotient of ŨΓ −

⋃
Hp is

finite. Since δσ(Γp) < δ whenever p is a bounded parabolic point of Γ, we see that∑
γ∈Γp

‖γ‖σ e
−δ‖γ‖σ < +∞.

Hence Proposition 9.3 then implies that mΓ is finite on the image of Hp ∩ ŨΓ in UΓ

for all p ∈ F . Since there are only finitely many orbits of bounded parabolic points
by Lemma 2.4, we conclude that mΓ is finite on UΓ. �

9.1. Proof of Proposition 9.3. Our proof closely follows a classical argument
(see [21, Th. IV.2] in the case of negatively curved Riemannian manifolds). Fix a
bounded parabolic point p ∈ Λ(Γ) and Patterson–Sullivan measures µ, µ̄ as in the
statement of the proposition.

Since p is a bounded parabolic point, there exists a compact subset K ⊂ Λ(Γ)r
{p} such that Γp(K) = Λ(Γ)r {p}. Since Γp only accumulates on p, the expanding
property implies that there exists a constant D > 0 such that

(11) ‖γ‖σ −D ≤ σ(γ, z) ≤ ‖γ‖σ
for all γ ∈ Γp and z ∈ K.

Given x, y ∈M r {p} distinct, let Ix,y ⊂ R be the interval satisfying

Hp ∩
(
(x, y)× R

)
= (x, y)× Ix,y.

If Ix,y 6= ∅, then by definition

Ix,y :=
(
G(x, y)−G(x, p) + S,G(p, y)− T

)
.

We record the following estimate on the Lebesgue measure of Ix,y as a lemma
since it will also be used later (in the proof of Proposition 10.3).

Lemma 9.5. There exists C > 0 (independent of S, T ) such that: if γ ∈ Γp, x ∈ K,
y ∈ γ(K) and Ix,y 6= ∅, then

G(x, y) ≤ C + max(0,−S − T ),

and
‖γ‖σ −max(0, S + T )− C ≤ Leb(Ix,y) ≤ ‖γ‖σ − (S + T ) + C.

Proof. Let
R := max

z∈K
max (G(z, p), G(p, z)) .

Fix an open neighborhood O of p in M such that

sup
z1∈O,z2∈K

max (G(z1, z2), G(z2, z1)) ≤ R+ 1.
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Since Γp only accumulates on p, there exists N > 0 such that γ(K) ⊂ O whenever
γ ∈ Γp and ‖γ‖σ ≥ N . Let

R′ := max
γ∈Γp,‖γ‖σ<N,z∈γK

max (G(z, p), G(p, z)) .

Now suppose γ ∈ Γp, x ∈ K, y ∈ γ(K), Ix,y 6= ∅.
If ‖γ‖σ ≥ N , then G(x, y) ≤ R + 1 since x ∈ K and y ∈ O. If ‖γ‖σ < N , then

Ix,y 6= ∅ implies that

G(x, y) ≤ G(x, p) +G(p, y)− T − S ≤ 2R′ − T − S.

Hence the first inequality of the lemma is true for any C ≥ max(R+ 1, 2R′).
By Equation (1) and Proposition 2.9(1),

G(p, y) = G(p, γ−1y) + σ̄(γ, p) + σ(γ, γ−1y) = G(p, γ−1y) + σ(γ, γ−1y).

Combining the above equation, the definition of Ix,y, the non-negativity of G, and
Equation (11) we obtain

Leb(Ix,y)− (‖γ‖σ − S − T ) = G(p, y)−G(x, y) +G(x, p)− ‖γ‖σ
= G(p, γ−1y) + σ(γ, γ−1y)−G(x, y) +G(x, p)− ‖γ‖σ
≤ G(p, γ−1y) + σ(γ, γ−1y) +G(x, p)− ‖γ‖σ
≤ R+R,

and

Leb(Ix,y)− (‖γ‖σ − S − T ) = G(p, γ−1y) + σ(γ, γ−1y)−G(x, y) +G(x, p)− ‖γ‖σ
≥ G(p, γ−1y) + σ(γ, γ−1y)−G(x, y)− ‖γ‖σ ≥ −G(x, y)−D
≥ −max(R+ 1, 2R′ − S − T )−D. �

As in the statement of Proposition 9.3, let

dm̃ := eδG(x,y)dµ̄(x)⊗ dµ(y)⊗ dt

and let mΓ be the quotient measure on UΓ. Also let π : ŨΓ → UΓ be the projection
map. It follows from Equation (2) that

mΓ(π(A)) ≤ m̃(A)

for all measurable subsets A ⊂ ŨΓ (since P (1A) ≥ 1π(A)). (Observe that π(A) is

measurable since π−1(π(A)) = Γ ·A is a countable union of measurable sets.)
Let

Hγ :=
⋃

x∈K,y∈γK
(x, y)× Ix,y.

By Lemma 9.5 there is C > 0 dependent on S, T such that if γ ∈ Γp, x ∈ K,
y ∈ γ(K) and Ix,y 6= ∅, then

G(x, y) ≤ C and Leb(Ix,y) ≤ ‖γ‖σ + C.
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Then by Equation (11) we have

m̃(Hγ) =

∫
x∈K
y∈γK

Leb(Ix,y)eδG(x,y)dµ̄(x)dµ(y) ≤ (C + ||γ||σ) eδC µ̄(K)µ(γK)

= (C + ||γ||σ) eδC µ̄(K)

∫
K

e−δσ(γ,y)dµ(y)

≤ (C + ||γ||σ)eδC µ̄(K)eδDe−δ||γ||σµ(K).

Let Ĥp denote the image of Hp ∩ ŨΓ in UΓ. Notice that Ĥp is contained in the
image of(

{p} × (Λ(Γ) r {p})× R
)
∪
(

(Λ(Γ) r {p})× {p} × R
)
∪
⋃
γ∈Γp

Hγ .

Since µ and µ̄ do not have atoms at p, the measure of the set of geodesic segments
in Hp with one endpoint at p has m̃-measure zero. Therefore,

mΓ(Ĥp) ≤
∑
γ∈Γp

m̃(Hγ) ≤ eδ(D+C)
∑
γ∈Γp

µ̄(K)µ(K)e−δ||γ||σ (C + ||γ||σ) .

This implies that mµ,µ̄(Ĥp) is finite, since σ is proper and we assumed that∑
γ∈Γp

||γ||σe−δ||γ||σ < +∞.

9.2. Proof of Proposition 9.4. By symmetry, it suffices to construct a σ-Patterson–
Sullivan measure µ of dimension δ such that

µ({p}) = 0

whenever p is a bounded parabolic point.
We will use the standard construction for Patterson–Sullivan measures. Endow

M t Γ with the topology described in Proposition 2.6.
Fix a non-decreasing function h : R≥0 → R≥1 such that

(a) For every ε > 0 there exists R > 0 such that h(r + t) ≤ eεth(r) for any
r ≥ R and t ≥ 0,

(b)
∑
γ∈Γ h(‖γ‖σ)e−δ‖γ‖σ = +∞.

(When
∑
γ∈Γ e

−δ‖γ‖σ = +∞, we can take h ≡ 1).
For s > δ, consider the probability measure

µs :=
1

Q(s)

∑
γ∈Γ

h(‖γ‖σ)e−s‖γ‖σDγ ,

where Q(s) denotes the modified Poincaré series Q(s) :=
∑
γ∈Γ h(‖γ‖σ)e−s‖γ‖σ and

Dγ denotes the Dirac measure centered on γ ∈ Γ tM .
Fix sm ↘ δ such that µsm → µ in the weak-∗ topology. Then one can show that

µ is a σ-Patterson–Sullivan measure of dimension δ, see the proof of [8, Th. 4.1] for
details.

By Proposition 2.7, there exists a compact subset K of (ΓtM)r {p} such that
Γp(K) = (Γ tM) r {p}. Then let Γ0 := K ∩ Γ and notice that Γp(Γ0) = Γ.

Next enumerate Γp = {αn}. Then consider the decreasing sequence of open
neighborhoods of p given by

Vn := (Γ tM) r (α1(K) ∪ · · · ∪ αn(K)) .
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We will show that µ(Vn)→ 0 as n→∞.
Since α−1

k → p as k → ∞, Proposition 2.9(3) implies that there exists D > 0
such that

‖αk‖σ + ‖γ‖σ −D ≤ ‖αkγ‖σ
for all k ≥ 1 and γ ∈ Γ0. Further, by definition,

‖αkγ‖σ = max
x∈M

σ(αkγ, x) = max
x∈M

σ(αk, γx) + σ(γ, x) ≤ ‖αk‖σ + ‖γ‖σ

for all k ≥ 1 and γ ∈ Γ0.
Set ε := (δσ(Γ) − δσ(P ))/2. By property (a) of the function h and its mono-

tonicity,

h(‖αkγ‖σ) ≤ h(‖αk‖σ + ‖γ‖σ) ≤ eε‖αk‖σh(‖γ‖σ)

for k sufficiently large and for all γ ∈ Γ0.
Then for n sufficiently large we obtain for any s > δ

µs(Vn) ≤ 1

Q(s)

∑
k>n

∑
γ∈Γ0

h(‖αkγ‖σ)e−s‖αkγ‖σ

≤ esD

Q(s)

∑
k>n

∑
γ∈Γ0

eε‖αk‖σh(‖γ‖σ)e−s(‖αk‖σ+‖γ‖σ)

≤ esD

Q(s)

∑
k>n

e−(s−ε)‖αk‖σ
∑
γ∈Γ0

h(‖γ‖σ)e−s‖γ‖σ

≤ esD
∑
k>n

e−(δ−ε)‖αk‖σ .

Since Vn is open, we can take the limit sm ↘ δ to get

µ({p}) ≤ lim
n→∞

µ(Vn) ≤ lim
n→∞

lim inf
m→∞

µsm(Vn)

≤ lim
n→∞

eδD
∑
k>n

e−(δ−ε)||αk||σ = 0,

where in the last equality we use the fact that
∑∞
k=1 e

−(δ−ε)||αk||σ < +∞.

10. Equidistribution for geometrically finite actions

In this section we establish Theorem 1.6 and Theorem 1.1, which we restate
below. For the rest of the section suppose that:

• (σ, σ̄, G) is a GPS system for a geometrically finite convergence group Γ ⊂
Homeo(M) with δ := δσ(Γ) < +∞,

• δσ(Γp) < δ whenever p is a bounded parabolic point of Γ. Hence by The-
orem 9.1 the Poincaré series of Γ diverges at its critical exponent and the
BMS measure mΓ is finite.

• The flow ψt : (UΓ,mΓ)→ (UΓ,mΓ) is mixing.

The method we will use to obtain counting result naturally provides counting
for closed ψt-orbits. In general (when one allows torsion), these orbits do not
correspond to conjugacy classes, instead they correspond to slightly bigger classes
called weak conjugacy classes, that we introduce now.

We say two loxodromic elements γ1, γ2 ∈ Γ are weakly conjugate if they have
the same length and there exists g ∈ Γ such that γ1 and gγ2g

−1 have the same
attracting fixed point and the same repelling fixed point. We denote by [Γlox]w the
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set of weak conjugacy classes. Notice that if Γ is torsion-free, then the set of weak
conjugacy classes is simply the set of conjugacy classes. Moreover, the number of
conjugacy classes in a given weak conjugacy class [γ]w is bounded above by the size
of the stabilizer of the axis of γ (see [9, Eq. (7.1)]).

For every R > 0, let mR be the sum of Lebesgue measures on closed ψt-orbits
of length at most R in UΓ (counted with multiplicity), more precisely mR is the

quotient measure associated to the measure m̃R on ŨΓ defined by

m̃R =
∑
γ∈Γlox

`σ(γ)≤R

Dγ− ⊗Dγ+ ⊗ dt.

Notice that mR is a finite measure by Corollary 8.4. Further, mR does indeed
“count multiplicity”: if γ ∈ Γ is loxodromic and cγ is the image of (γ−, γ+)×R in
UΓ, then by Equation (2) we have

mR

(
cγ
)

=
∑

α∈Γlox,
α±=γ±,
`σ(α)≤R

`σ(α).

Theorem 10.1. For any bounded continuous function f on Γ\(M (2)×R) we have

lim
R→∞

δe−δR
∫
f dmR =

∫
f
dmΓ

‖mΓ‖
.

As a corollary, we will obtain Theorem 1.1 from the introduction.

Corollary 10.2.

# {[γ] ∈ [Γlox]w : 0 < `σ(γ) ≤ R} ∼ eδR

δR
,

i.e. the ratio of the two sides goes to 1 as R→ +∞.

10.1. Proof of Theorem 10.1. The main idea in the proof is to obtain an estimate
for the decay of the measure mR on “cusps” based at a bounded parabolic point.
More precisely, given a bounded parabolic fix point p ∈ M and a horoball Hp,S,T

based at p, let Ĥp,S,T denote the image of Hp,S,T ∩ ŨΓ in UΓ. Then we will prove
the following estimate.

Proposition 10.3. If p ∈ M is a bounded parabolic point, then there exist C > 0
and T0 ∈ R such that for all R > 0 and T > T0, we have

mR(Ĥp,T,T ) ≤ CeδR
∑
α∈Γp

||α||σ≥2T−C

||α||σe−δ||α||σ .

Delaying the proof of the proposition, we prove Theorem 10.1.

Proof of Theorem 10.1. Fix representatives p1, . . . , pn of the Γ-orbits of bounded
parabolic points (recall there are finitely many such orbits by Lemma 2.4). Given
T > 0, let

CT := Ĥp1,T,T ∪ · · · ∪ Ĥpn,T,T .

Notice that CT2 ⊂ CT1 when T2 ≥ T1.
Fix ε > 0. Proposition 10.3 implies there exists T > 0 such that for any R > 0

δe−δRmR(CT ) ≤ ε
2 .
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Theorem 9.1 implies that mΓ is finite, hence there is a compact set K ⊂ ŨΓ such

that its projection K̂ to UΓ satisfies

mΓ(UΓ r K̂) ≤ ε
2 ‖mΓ‖ .

Lemma 10.4. After possibly increasing T > 0, we can assume that CT is disjoint

from K̂.

Proof. It suffices to find T > 0 such that K ∩ γHpi,T,T = ∅ for all i and γ ∈ Γ.
Recall that γHpi,T,T = Hγp,T+σ(γ,pi),T+σ̄(γ,pi). By Lemma 8.6 there exists C > 0
such that γHpi,T,T ⊂ Hγpi,T−C,T−C for any T and all i and γ ∈ Γ.

Fix a metric d compatible with the topology on M (2) × R from Proposition 7.1.
Then fix ε > 0 so that d(v, x) ≥ ε for all v ∈ K and x ∈ M . By Lemma 8.5
there exists T such that Hx,T−C,T−C ⊂ Bε(x) for any x ∈ M . Then γHpi,T,T ⊂
Hγpi,T−C,T−C ⊂ Bε(γpi) which is disjoint from K for all i and γ. �

The above lemma implies that

mΓ(CT ) ≤ mΓ(UΓ r K̂) ≤ ε
2 ‖mΓ‖ .

Recall UΓ rCT is compact by Theorem 8.3, so we can find a compactly supported
continuous function χ : UΓ → [0, 1] which is equal to 1 on UΓrCT . By Theorem 1.5,

lim
R→∞

∣∣∣∣δe−δR ∫ χf dmR −
∫
χf

dmΓ

‖mΓ‖

∣∣∣∣ = 0.

So,

lim sup
R→∞

∣∣∣∣δe−δR ∫ f dmR −
∫
f
dmΓ

‖mΓ‖

∣∣∣∣
≤ lim sup

R→∞

∣∣∣∣∫ (1− χ)f
dmΓ

‖mΓ‖

∣∣∣∣+

∣∣∣∣δe−δR ∫ (1− χ)f dmR

∣∣∣∣
≤ ‖f‖∞

mΓ(CT )

‖mΓ‖
+ ‖f‖∞ δe−δRmR(CT )

≤ ‖f‖∞ ε.

Since ε > 0 was arbitrary,

lim
R→∞

δe−δR
∫
f dmR =

∫
f
dmΓ

‖mΓ‖
. �

10.2. Proof of Proposition 10.3. To prove the proposition we use the shadows
studied in our earlier work [8], for which we proved a Shadow Lemma. The proof
follows a classical strategy (see [41, Th. 5.2]) but in our generality becomes long
and technical. We first explain briefly sketch the proof, omitting certain technical
details.

We fix a fundamental domain K ⊂ Λ(Γ) r {p} for the action of Γp. We need
to estimate for every γ ∈ Γp the number of loxodromics g ∈ Γ with axis from K
to γK and the time spent by this axis in the horoball about p. First we prove all
ψt-orbits from K to γK intersect the horoball at p in an interval of length roughly
‖γ‖σ. Then we prove all loxodromics g ∈ Γ of length roughly R with g− ∈ K
and g+ ∈ γK have pairwise disjoint shadows Sε(g) that are all contained in the
shadow Sε(γ) of γ. The Shadow Lemma gives an estimate for the measure of Sε(g),
independent of g, and that of Sε(γ), and the number of these loxodromics is roughly
the ratio of these measures.
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Fix a distance d on ΓtM which generates the topology in Proposition 2.6. Then
given γ ∈ Γ and ε > 0, the associated shadow is

Sε(γ) := γ
(
M −Bε(γ−1)

)
.

We will use the following properties of shadows.

Proposition 10.5 ([8, Prop. 5.1]). For any ε > 0, there exist C1 = C1(ε) > 0 and
ε′ = ε′(ε) ∈ (0, ε) such that: if α, β ∈ Γ, ‖α‖σ ≤ ‖β‖σ, and Sε(α)∩Sε(β) 6= ∅, then

‖β‖σ ≥ ‖α‖σ +
∥∥α−1β

∥∥
σ
− C1

and

Sε(β) ⊂ Sε′(α).

In [8], we also established a version of the Shadow Lemma. Let µ be the σ-
Patterson–Sullivan measure of dimension δ (which is unique by Theorem 2.10).

Proposition 10.6 ([8, Th. 6.1]). For any ε > 0 sufficiently small, there exists
C2 = C2(ε) > 1 such that:

1

C2
e−δ‖γ‖σ ≤ µ (Sε(γ)) ≤ C2e

−δ‖γ‖σ

for all γ ∈ Γ.

Fix a compact set K ⊂ Λ(Γ) r {p} such that Γp(K) = Λ(Γ) r {p}.
Given α ∈ Γp, let

Aα := {γ ∈ Γlox : γ− ∈ K, γ+ ∈ αK}.

As in Section 9.1, given x, y ∈ M r {p} distinct, for any T let ITx,y ⊂ R be the
interval satisfying

Hp,T,T ∩
(
(x, y)× R

)
= (x, y)× ITx,y.

The measure m̃R|Hp,T,T is concentrated on the union of intervals (γ−, γ+)× ITγ−,γ+

with γ ∈ Γlox (and γ± 6= p since p is a bounded parabolic point), which is contained
in the Γp-orbit of the union of intervals (γ−, γ+) × ITγ−,γ+ with γ ∈ Aα for some

α ∈ Γp. This implies

(12) mR

(
Ĥp,T,T

)
≤
∑
α∈Γp

∑
γ∈Aα
`σ(γ)≤R

Leb
(
ITγ−,γ+

)
.

So we need to control Leb
(
ITγ−,γ+

)
and the number of loxodromics in Aα with

length at most R.
First we use Lemma 8.7 to fix T0 > 0 such that

(13) Hp,T0,T0
∩ γ(Hp,T0,T0

) 6= ∅ if and only if γ ∈ Γp,

This choice has the following consequence: if γ is loxodromic, then γ(γ−, γ+, t) =
(γ−, γ+, t+ `σ(γ)) for any t and so

(14) ‖γ‖σ ≥ `σ(γ) ≥ Leb
(
IT0

γ−,γ+

)
.

Using this and Lemma 9.5 we deduce the following estimates.
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Lemma 10.7. There exists C3 > 0 such that: if α ∈ Γp, γ ∈ Aα, T ≥ T0 and
ITγ−,γ+ 6= ∅, then

(15) ‖α‖σ − 2T − C3 ≤ Leb
(
ITγ−,γ+

)
≤ ‖α‖σ − 2T + C3

and

2T − C3 ≤ ‖α‖σ ≤ ‖γ‖σ + 2T0 + C3.

Proof. Lemma 9.5 implies Equation (15) for some C3 > 0. Then 2T − C3 ≤ ‖α‖σ
comes from the fact that Leb

(
ITγ−,γ+

)
≥ 0.

Notice that ITγ−,γ+ 6= ∅ implies that IT0

γ−,γ+ 6= ∅. By (14) we have

‖γ‖σ ≥ `σ(γ) ≥ Leb
(
IT0

γ−,γ+

)
≥ ‖α‖σ − 2T0 − C3. �

Before we can use the previous lemma to produce estimates for mR(Ĥp,T,T ) we
need to settle a few technical details.

First fix ε > 0 small enough so that B3ε(p) ∩K = ∅ and Proposition 10.6 (the
Shadow Lemma) holds for any ε′ ≤ ε, that is

1

C2(ε′)
e−δ‖γ‖σ ≤ µ (Sε′(γ)) ≤ C2(ε′)e−δ‖γ‖σ

for all γ ∈ Γ.
Since Γp only accumulates on p, one can find D0 > 0 large enough so that for

any α ∈ Γp, if ‖α‖σ ≥ D0 then

(1) αK ⊂ Bε(p), so that d(x, y) ≥ 2ε for all x ∈ K and y ∈ αK, and
(2) α−1 ∈ Bε(p), so that K ⊂M−Bε(α−1), i.e. αK is contained in the shadow
Sε(α) = α(M −Bε(α−1)).

Now let T1 := max(T0, D0 + C3). Then by Lemma 10.7: if α ∈ Γp, γ ∈ Aα, and

IT1

γ−,γ+ 6= ∅, then

‖α‖σ ≥ 2T1 − C3 ≥ D0.

Finally, by Proposition 2.9(4) there exists C4 > 0 such that: if γ ∈ Γlox and
d(γ−, γ+) ≥ ε, then

`σ(γ) ≥ ‖γ‖σ − C4.

Then combining Lemma 10.7 with Equation (12), we obtain:

(16) mR

(
Ĥp,T,T

)
≤

∑
α∈Γp

‖α‖σ≥2T−C3

∑
γ∈Aα

‖α‖σ−2T0−C3≤‖γ‖σ≤R+C4

(‖α‖σ + C3)

when T ≥ T1.
Let

A0
α := {γ ∈ Aα : ‖α‖σ − 2T0 − C3 ≤ ‖γ‖σ ≤ ‖α‖σ}

and for n ≥ 1 let

Anα := {γ ∈ Aα : ‖α‖σ + (n− 1) ≤ ‖γ‖σ ≤ ‖α‖σ + n}.
Then by Equation (16),

(17) mR

(
Ĥp,T,T

)
≤

∑
α∈Γp

‖α‖σ≥2T−C3

(‖α‖σ + C3)

R+C4+1−‖α‖σ∑
n=0

#Anα
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when T ≥ T1.
We will estimate the size of each Anα by studying shadows.

Lemma 10.8. Given ε > 0, there exists D1 > 0 such that: if γ ∈ Γlox, d(γ−, γ+) ≥
2ε and ‖γ‖σ ≥ D1, then γ+ ∈ Sε(γ).

Proof. Suppose not. Then for every n ≥ 1 there exists γn ∈ Γlox where d(γ−n , γ
+
n ) ≥

2ε, ‖γn‖σ ≥ n and γ+
n 6∈ Sε(γn). Passing to a subsequence we can suppose that

γn → a ∈M and γ−1
n → b ∈M . Arguing as in the proof of Proposition 2.9(4) we see

that (γ−n , γ
+
n )→ (b, a). Hence d(b, a) ≥ 2ε. So for n large we have d(γ+

n , γ
−1
n ) > ε,

thus

γ+
n = γnγ

+
n ∈ γn

(
M −Bε(γ−1

n )
)

= Sε(γn).

So we have a contradiction. �

For r ≥ 0, let

τ(r) := #{γ ∈ Γ : ‖γ‖σ ≤ r}.

Lemma 10.9. If x ∈M and R, r > 0, then

#{γ ∈ Γ : R− r ≤ ‖γ‖σ ≤ R and x ∈ Sε(γ)} ≤ τ(r + C1)

where C1 is the constant from Proposition 10.5.

Proof. Fix an element γmax ∈ A := {γ ∈ Γ : R − r ≤ ‖γ‖σ ≤ R and x ∈ Sε(γ)}
with maximal magnitude ‖γmax‖σ. Then if γ ∈ A, Proposition 10.5 implies that

‖γ‖σ +
∥∥γ−1γmax

∥∥
σ
− C1 ≤ ‖γmax‖σ ,

which implies that ∥∥γ−1γmax

∥∥
σ
≤ r + C1.

So #A ≤ τ(r + C1). �

Lemma 10.10. There exists C5 > 0 such that: if α ∈ Γp and ‖α‖p ≥ D1+2T1+C3,
then

#Anα ≤ C5e
δn.

Proof. Suppose γ ∈ Anα. By property (2) (from the choice of D0) and Lemma 10.8,

γ+ ∈ Sε(α) ∩ Sε(γ).

If n = 0, then Proposition 10.5 implies that

‖γ‖σ +
∥∥γ−1α

∥∥
σ
− C1 ≤ ‖α‖σ ,

which implies that ∥∥γ−1α
∥∥
σ
≤ C1 + 2T1 + C3.

Hence

#A0
α ≤ τ(C1 + 2T1 + C3).

If n ≥ 1, then Proposition 10.5 implies that there exists ε′ ∈ (0, ε) (which only
depends on ε) such that ⋃

γ∈Anα

Sε(γ) ⊂ Sε′(α).
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Then, using Proposition 10.6 (the Shadow Lemma) twice, and Lemma 10.9,

#Anα ≤
∑
γ∈Anα

C2(ε)eδ‖γ‖σµ(Sε(γ))

≤ C2(ε)τ(1 + C1)eδ‖α‖σeδnµ

 ⋃
γ∈Anα

Sε(γ)


≤ C2(ε)C2(ε′)τ(1 + C1)eδn.

So C5 := max{τ(C1 + 2T1 + C3), C2(ε)C2(ε′)τ(1 + C1)} suffices. �

Combining Equation (17) with the previous lemma gives a constant C6 > 0 such
that

mR

(
Ĥp,T,T

)
≤ C6e

δR
∑
α∈Γp

‖α‖σ≥2T−C3

‖α‖σ e
−δ‖α‖σ

for all T ≥ T1 + C3 + D1

2 .

10.3. Proof of Corollary 10.2. In our proof of our counting corollary, it will be
convenient to use a slightly modified equidistribution statement which concerns a
measure m′R which is closely related to mR.

For every R > 0, let m′R be the sum of normalized Lebesgue measures on closed
orbits of length at most R in UΓ (counted with multiplicity), more precisely m′R is
the quotient measure associated to the measure

m̃′R =
∑
γ∈Γlox

`σ(γ)≤R

1

`σ(γ)
Dγ− ⊗Dγ+ ⊗ dt

on ŨΓ. Notice that if γ ∈ Γ is loxodromic and cγ is the image of (γ−, γ+) × R in
UΓ, then

m′R
(
cγ
)

= #
{
α ∈ Γlox : α± = γ±, and `σ(α) ≤ R

}
.

This follows from Equation (2).
One expects that mR is close to Rm′R since we expect most geodesics of length

at most R have length close to R. The next result makes this intuition precise.

Proposition 10.11. If f : Γ\(M (2) × R) → R is a bounded continuous function,
then

lim
R→∞

δRe−δR
∫
fdm′R =

∫
f
dmΓ

‖mΓ‖
.

Proof. For any real number R > 0, let GR = {[γ] ∈ [Γlox]w : `σ(γ) ≤ R} and for
c ∈ [Γlox]w let Lebc be the quotient measure associated to

∑
γ∈cDγ− ⊗ Dγ+ ⊗ dt.

Note that

Rm′R −mR =
∑
c∈GR

(
R

`σ(c)
− 1

)
Lebc ≥ 0.

In particular,

lim inf
R→∞

δRe−δR
∫
fdm′R ≥

∫
f
mΓ

‖mΓ‖
.

Let

s := sys(Γ, σ) = min{`σ(γ) : γ ∈ Γlox}
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be the systole of (Γ, σ), which is positive by Corollary 8.4. For any r > 0 and
R ≥ 2er, we have

e−δR
∫
f dmR ≥ e−δR

∑
γ∈GR−Ge−rR

e−rR

`σ(γ)

∫
f dLebγ

= e−δRe−r
∫
fR dm′R − e−rRe−δR

∑
γ∈Ge−rR

1

`σ(γ)

∫
f dLebγ

≥ e−δRe−r
∫
fR dm′R − e−rRe−δR

∑
γ∈Ge−rR

1

s

∫
f dLebγ

= e−δRe−r
∫
fR dm′R − e−r−δR

R

s

∫
f dme−rR.

So

e−δR
∫
fR dm′R ≤ ere−δR

∫
f dmR + e−δR

R

s

∫
f dme−rR.

Theorem 10.1 implies that e−δe
−rR

∫
f dme−rR remains bounded as R → ∞, so

e−δR Rs
∫
f dme−rR → 0 as R→∞. Hence,

lim sup
R→∞

δRe−δR
∫
f dm′R ≤ er

∫
f
dmΓ

‖mΓ‖

for any r > 0. We may then conclude by taking r → 0. �

By integrating the bounded constant 1 function against both sides of the equation
in Proposition 10.11, we obtain the desired counting statement (Corollary 10.2). �

11. Transverse and relatively Anosov subgroups of semisimple Lie
groups

In this section we will apply our results to the particular case of relatively Anosov
subgroups of semisimple Lie groups. To state these results in full generality requires
a number of definitions, for a more detailed discussion using the same notation
see [13].

Let G be a connected semisimple Lie group without compact factors and with
finite center. Fix a Cartan decomposition g = k + p of the Lie algebra of G, a
Cartan subspace a ⊂ p and a Weyl chamber a+ ⊂ a. Let K ⊂ G denote the
maximal compact subgroup with Lie algebra k. Then let κ : G → a+ denote the
Cartan projection, that is κ(g) ∈ a+ is the unique element where

g = k1e
κ(g)k2

for some k1, k2 ∈ K. Let ι : a→ a be the opposite involution, which has the defining
property that

(18) ι(κ(g)) = κ(g−1).

for all g ∈ G.
Let ∆ ⊂ a∗ denote the system of simple restricted roots corresponding to the

choice of a+. Given a subset θ ⊂ ∆, we let Pθ ⊂ G denote the associated parabolic
subgroup and let Fθ := G/Pθ denote the associated flag manifold.
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A discrete subgroup Γ ⊂ G is Pθ-divergent if whenever {γn} is a sequence of
distinct elements of Γ and α ∈ θ, then

lim
n→∞

α(κ(γn)) = +∞.

Next we describe the limit set of a Pθ-divergent group. For every g ∈ G, fix a
Cartan decomposition

g = mge
κ(g)`g

Then following the notation in [23], define a map

Uθ : G→ Fθ

by letting Uθ(g) := mgPθ. One can show that if α(κ(g)) > 0 for all α ∈ θ, then
Uθ(g) is independent of the choice of Cartan decomposition, see [25, Chap. IX,
Th. 1.1]. In particular, if Γ is Pθ-divergent, then Uθ(γ) is well-defined for all but
finitely many γ ∈ Γ. The limit set of a Pθ-divergent group Γ ⊂ G is given by

Λθ(Γ) := {F ∈ Fθ : ∃{γn} ⊂ Γ distinct such that Uθ(γn)→ F}.

One motivation for this definition comes from the dynamical behavior described in
Proposition 11.4 below.

For the rest of the section, we assume that θ is symmetric (i.e. ι∗(θ) = θ
where ι : a → a is the involution associated to a+). In this case there is a natural
notion of transversality for pairs in Fθ and a Pθ-divergent subgroup Γ is called
Pθ-transverse if any two flags in Λθ(Γ) are transverse. We say Γ is non-elementary
if #Λθ(Γ) ≥ 3. Every non-elementary Pθ-transverse group acts on its limit set as
a convergence group action, see [28, Section 15] or Observation 11.5 below. For a
more in-depth discussion of transverse groups and their dynamical properties see
[13, 30, 31].

Associated to a subset θ ⊂ ∆ is a natural subspace of a defined by

aθ := {a ∈ a : β(a) = 0 for all β ∈ ∆− θ}.

One can show that a∗θ is generated by {ωα|aθ : α ∈ θ} where ωα is the fundamental
weight associated to α. Hence we can identify a∗θ as a subspace of a∗. Then given
φ ∈ a∗θ and a Pθ-divergent subgroup Γ, we define a Poincaré series

QφΓ(s) =
∑
γ∈Γ

e−sφ(κ(γ)),

which has a critical exponent δφ(Γ) := inf{s > 0 : QφΓ(s) < +∞} ∈ [0,∞]. More-
over, there exists a well-defined θ-Cartan projection

κθ : G→ aθ

so that κθ = pθ ◦ κ where pθ : a → aθ is the unique projection map so that
ωα|aθ = ωα ◦ pθ for all α ∈ θ. Hence

φ ◦ κ = φ ◦ κθ

for all φ ∈ aθ.
The action of G on Fθ preserves a smooth vector-valued cocycle

Bθ : G×Fθ → aθ,
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so that Bθ(g, Uθ(g)) = κθ(g) for all g, see Quint [39] or Benoist–Quint [5, §6.7.5].

Let F (2)
θ ⊂ Fθ × Fθ denote the subset of transverse flags. There is also a smooth

map Gθ : F (2)
θ → aθ which satisfies

(19) Gθ(gF, gF
′)−Gθ(F, F ′) = ι ◦Bθ(g, F ) +Bθ(g, F

′),

for any g ∈ G, see [43, Lem. 4.12] or [31, pg. 11].
We will verify the following.

Proposition 11.1. Suppose Γ is non-elementary Pθ-transverse, φ ∈ a∗θ and δφ(Γ) <
+∞. Define cocycles σφ, σ̄φ : Γ× Λθ(Γ)→ R by

σφ(γ, F ) = φ(Bθ(γ, F )) and σ̄φ(γ, F ) = ι∗(φ)(Bθ(γ, F )).

Then (σφ, σ̄φ, φ ◦ G) is a continuous GPS system for the action of Γ on Λθ(Γ).
Moreover:

(1) If λ : G→ a+ is the Jordan projection, then

φ(λ(γ)) = `σφ(γ)

for all γ ∈ Γ.
(2) There exists C > 0 such that∣∣∣φ(κ(γ))− ‖γ‖σφ

∣∣∣ < C

for all γ ∈ Γ. In particular, δφ(Γ) = δσφ(Γ).

We will also show that the length spectrum is always non-arithmetic.

Proposition 11.2. If Γ is non-elementary Pθ-transverse, φ ∈ a∗θ and δφ(Γ) < +∞,
then

{φ(λ(γ)) + ι∗(φ)(λ(γ)) : γ ∈ Γ}

generates a dense subgroup of R.

Next we define relatively Anosov subgroups. There are several equivalent defi-
nitions, see the discussion in [51, Section 4], and the one we use comes from [27].

If Γ ⊂ G is relatively hyperbolic (as an abstract group) with respect to a finite
collection P of finitely generated subgroups of Γ, then Γ is Pθ-relatively Anosov
if it is Pθ-transverse and there exists a Γ-equivariant homeomorphism from the
Bowditch boundary ∂(Γ, P ) to the limit set Λθ(Γ).

Corollary 11.3. Suppose Γ ⊂ G is Pθ-relatively Anosov with respect to P. If
φ ∈ a∗θ and δ := δφ(Γ) < +∞, then

#{[γ]w ∈ [Γlox]w : 0 < φ(λ(γ)) ≤ R} ∼ eδR

δR
.

Proof. In [14, Cor. 7.2] it was shown that δφ(H) < δφ(Γ) for any maximal parabolic
subgroup of Γ. Combining this with Proposition 11.2 and Proposition 11.1 shows
that the hypothesis of Theorem 1.1 is satisfied. �
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11.1. Proof of Proposition 11.1. We first explain why Γ acts as a convergence
group on Λθ(Γ). This observation appears in [28, Section 15], but since the proof
is short and [28] use different terminology we include it here.

For F ∈ Fθ, let

ZF := {F ′ ∈ Fθ : F is not transverse to F ′}.
We use the following description of the action of G on Fθ (see for instance [13,
Prop. 2.6]).

Proposition 11.4. Suppose θ ⊂ ∆ is symmetric, F± ∈ Fθ and {gn} is a sequence
in G. The following are equivalent:

(1) Uθ(gn)→ F+, Uθ(g
−1
n )→ F− and limn→∞ α(κ(gn)) =∞ for every α ∈ θ,

(2) gn(F ) → F+ for all F ∈ Fθ rZF− , and this convergence is uniform on
compact subsets of Fθ rZF− .

(3) g−1
n (F ) → F− for all F ∈ Fθ rZF+ , and this convergence is uniform on

compact subsets of Fθ rZF+ .

Proposition 11.4 immediately implies that a transverse group is a convergence
group.

Observation 11.5. (see also [28, Section 15]) If Γ ⊂ G is Pθ-transverse, then Γ
acts on Λθ(Γ) as a convergence group.

Proof. Suppose {γn} ⊂ Γ is a sequence of distinct elements. Since Γ is Pθ-divergent,
limn→∞ α(κ(gn)) = ∞ for every α ∈ θ. Since Fθ is compact, we can pass to a
subsequence so that Uθ(gn) → F+ and Uθ(g

−1
n ) → F−. Then Proposition 11.4

implies that gn(F ) → F+ for all F ∈ Fθ rZF− . Since Λθ(Γ) is transverse, this
implies that gn(F )→ F+ for all F ∈ Λθ(Γ) r {F−}. �

We also use the following estimate from [39]. Let ‖·‖ denote some fixed norm on
a.

Lemma 11.6 (Quint [39, Lem. 6.5]). For any ε > 0 and distance dFθ on Fθ induced
by a Riemannian metric there exists C = C(ε,dFθ ) > 0 such that: if g ∈ G, F ∈ Fθ
and dFθ

(
F,ZUθ(g−1)

)
> ε, then

‖Bθ(g, F )− κθ(g)‖ < C.

We now start the proof of Proposition 11.1. So fix a non-elementary Pθ-transverse
subgroup Γ and φ ∈ a∗θ with δφ(Γ) < +∞. Define cocycles σφ, σ̄φ : Γ× Λθ(Γ)→ R
by

σφ(γ, F ) = φ(Bθ(γ, F )) and σ̄φ(γ, F ) = ι∗(φ)(Bθ(γ, F )).

Lemma 11.7. There exists C1 > 0 such that:

‖γ‖σφ ≥ φ(κθ(γ))− C1

for all γ ∈ Γ. In particular, σφ is a proper cocycle.

Proof. Suppose not. Then for every n ≥ 1 there exist γn ∈ Γ such that

‖γn‖σφ ≤ φ(κθ(γn))− n.

Passing to a subsequence we can suppose that Uθ(γ
−1
n )→ F− ∈ Λθ(Γ). Since Γ is

non-elementary, there exists F ∈ Λθ(Γ)r {F−}. Then by Lemma 11.6 there exists
C > 0 such that

‖Bθ(γn, F )− κθ(γn)‖ < C
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for all sufficiently large n. Then

‖γn‖σφ ≥ σφ(γn, F ) = φ(Bθ(γn, F )) ≥ φ(κθ(γn))− C ‖φ‖

for all n. So we have a contradiction. Thus the first assertion is true. For the
second, notice that since δφ(Γ) < +∞, we have

lim
n→∞

φ(κθ(γn)) = +∞

for any sequence {γn} ⊂ Γ of distinct elements. Hence the same is true ‖·‖σφ and

so σφ is a proper cocycle. �

Equation (18) implies that δφ̄(Γ) = δφ(Γ) < +∞, so the proof of Lemma 11.7
can be used to show that σ̄φ is also a proper cocycle. Thus, by Equation (19), the
triple (σφ, σ̄φ, φ ◦Gθ) is a GPS-system.

Item (1) in the “moreover” part of Proposition 11.1 follows immediately from
the fact that if γ is loxodromic, then φ(λ(γ)) = Bθ(γ, γ

+) (see the discussion at the
start of Section 9.2 in [5]). Item (2) follows from Lemma 11.7 and the next result.

Lemma 11.8. There exists C2 > 0 such that:

‖γ‖σφ ≤ φ(κθ(γ)) + C2

for all γ ∈ Γ.

Remark 11.9. In the case when φ has positive coefficients relative to the basis
{ωα}α∈θ of a∗θ one can use [5, Lem. 6.33] to show that ‖γ‖σφ ≤ φ(κθ(γ)).

Proof. Suppose not. Then for every n ≥ 1 there exist γn ∈ Γ such that

‖γn‖σφ ≥ φ(κθ(γn)) + n.

Passing to a subsequence we can suppose that Uθ(γ
−1
n ) → F− ∈ Λθ(Γ). Then by

Proposition 11.4, we have also γ−1
n → F− in the topology on Γ t Λθ(Γ) defined in

Proposition 2.6.
Since Γ is non-elementary, there exists F ∈ Λθ(Γ)r{F−}. Since σφ is expanding

(see Proposition 2.11) there exists C > 0 such that

σφ(γn, F ) ≥ ‖γn‖σ − C
for al sufficiently large n. Also, by applying Lemma 11.6, and possibly increasing
C > 0, we can assume that

‖Bθ(γn, F )− κθ(γn)‖ < C

for all n. Then

‖γn‖σφ ≤ σφ(γn, F ) + C = φ(Bθ(γn, F )) + C ≤ φ(κθ(γn)) + C ‖φ‖+ C

for all n. So we have a contradiction. �

11.2. Proof of Proposition 11.2. We will deduce the proposition from the fol-
lowing general result.

Proposition 11.10. Suppose Γ ⊂ G is a subgroup which is not virtually solvable.
If φ ∈ a∗ is positive on the cone⋃

γ∈Γ

R>0 ·λ(γ) r {0},

then the subgroup of R generated by `φ(Γ) is dense in R.
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Remark 11.11. Previously, Benoist [3] proved that if Γ is a Zariski-dense semigroup
of G, then the additive subgroup of a generated by λ(Γ) is dense. In particular, the
subgroup of R generated by `φ(Γ) = (φ ◦ λ)(Γ) is dense in R. As we will explain in
Example 11.12 below, Proposition 11.10 is not true when Γ is only assumed to be
a semigroup.

Proof. By replacing G with Ad(G) we can assume that G is an algebraic subgroup
of SL(d,R) and thus speak of Zariski closures of subgroups of G.

Let ρ : Γ ↪→ G be the inclusion representation. Let G′ ⊂ G be the Zariski closure
of ρ(Γ), and G′ = H n Ru(G′) be a Levi decomposition of G′, where Ru(G′) is the
unipotent radical and H is a Levi factor, which is a reductive group.

Following [23, §2.5.4], let ρss be the semisimplification of ρ, obtained by compos-
ing ρ with the projection on the Levi factor H, so that the Zariski closure of ρss(Γ)
is exactly H. Moreover, ρss has the same length function `φ ◦ ρss = `φ ◦ ρ as ρ by
[23, Lem. 2.40].

The Lie algebra h ⊂ g of H ⊂ G splits as h = h′ + z where h′ is semisimple and
z is the center of h. Note that the semisimple part h′ cannot be trivial, otherwise
the Lie algebra of G′ would be solvable, so the identity component of G′ would be
solvable, and hence the intersection of this component with Γ = ρ(Γ) would be a
solvable finite-index subgroup of Γ, which contradicts the assumption that Γ is not
virtually solvable.

Let a′H be a Cartan subspace of h′. Then aH := a′H + z is a Cartan subspace of h.
Up to conjugating by an element of G, we may assume that aH ⊂ a.

Let λH : H → a′H + z denote the Jordan projection of H. Despite the inclusion
aH ⊂ a, we note that λH may not equal λ|H. However, we have the following: If
h ∈ H, then

(20) λ(h) = λ
(
eλH(h)

)
.

To see this, let h = hehuhss denote the Jordan decomposition of h. Then hss is
conjugate to eλH(h) and so

λ(h) = λ(hss) = λ
(
eλH(h)

)
.

Define f : aH → R by

f(X) = `φ(eX) = φ
(
λ
(
eX
))
.

Then f is piecewise linear, more precisely aH =
⋃
jWj is a finite union of closed

convex cones each with non-empty interior where f |Wj is linear (each Wj has the
form aH ∩ wja+ where wj is the Weyl group of a).

By [5, Prop. 9.7], the intersection of

C :=
⋃

γ∈ρss(Γ)

R>0 ·λH(γ)

and a′H contains some non-zero X0 (there is a typo in the reference, the intersection
part of the result does not hold for semigroups, but it does hold for groups). Since

φ is positive on
⋃
γ∈Γ R>0 ·λ(γ) r {0}, Equation (20) implies that f(X0) > 0.
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Fix Wj such that C ∩Wj has non-empty interior in C and X0 ∈Wj . Then by [2,
§5.1] there exists a Zariski-dense semigroup S ⊂ ρss(Γ) where

CS :=
⋃
γ∈S

R>0 ·λH(γ) ⊂ C ∩Wj .

Let f ′ : aH → R be the linear map with f ′|Wj
= f |Wj

. By [5, Prop. 9.8] the closure
of the additive group generated by λH(S) in aH contains a′H. Thus the closure of
the additive subgroup of R generated by

`φ(S) = f ◦ λH(S) = f ′ ◦ λH(S)

is the image under f ′ (which is linear) of the closure of the additive group generated
by λH(S), which contains a′H and hence the line spanned by X0. Therefore the
closure of the additive subgroup of R generated by `φ(Γ) contains f ′(RX0) =
R f ′(X0) = R as f ′(X0) = f(X0) > 0, which is what we wanted to prove. �

It seems unlikely that in the context of transverse groups, finite critical exponent
implies the positivity on the limit cone hypothesis needed to use Proposition 11.10.
However, this implication is known to be true for Anosov (or more generally rel-
atively Anosov) groups, and such groups can always be found as subgroups of
transverse groups.

Proof of Proposition 11.2. Suppose Γ is a Pθ-transverse group, φ ∈ a∗θ and δφ(Γ) <
+∞.

Let ψ := φ+ ι∗(φ). Notice that

QψΓ(s) =
∑
γ∈Γ

e−s(φ+ι∗(φ))(κ(γ)) ≤
√
QφΓ(2s) ·Qι

∗(φ)
Γ (2s)

by Hölder’s inequality. Further, Equation (18) implies that δι
∗(φ)(Γ) = δφ(Γ) < +∞

and so

δψ(Γ) ≤ 1

2
δφ(Γ) < +∞.

Using ping-pong we can fix a free subgroup Γ′ ⊂ Γ such that there is Γ′-
equivariant homeomorphism ∂∞Γ′ → Λθ(Γ

′) ⊂ Λθ(Γ) of the Gromov boundary
and the limit set. Then Γ′ is Pθ-Anosov and

δψ(Γ′) ≤ δψ(Γ) < +∞.
By a result of Sambarino [44, Lem. 3.4.2], see [14, Th. 10.1(4)] for the relatively

Anosov case, ψ is positive on ⋃
γ∈Γ′

R>0 ·λ(γ) r {0},

Then Proposition 11.10 implies that

{φ(λ(γ)) + ι∗(φ)(λ(γ)) : γ ∈ Γ} ⊃ {ψ(λ(γ)) : γ ∈ Γ′}
generates a dense subgroup of R. �

Example 11.12. Here we provide an example showing that Proposition 11.10 fails
when Γ is only assumed to be a semigroup.

Let Γ be a convex cocompact free subgroup of SL2(R) with two generators a, b ∈
Γ. Let S ⊂ Γ be the semigroup generated by a and b. There exists C ≥ 1 large
enough so that for all nonnegative n1,m1, . . . , nk,mk, if s = an1bm1 · · · ankbmk ∈ S
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then log ‖s‖ ≤ C
2 |s| where |s| = (n1 + m1 + · · · + nk + mk) is word-length with

respect to the generating set {a, b}. Now set

ρ(g) =

g 0 0
0 eC|s| 0
0 0 e−C|s|

 ∈ G = SL4(R).

If φ(diag(x, y, z, w)) = x for any diag(x, y, z, w) ∈ a, then `φ(s) ∈ C Z≥1 for any
s ∈ ρ(S). Thus the length spectrum is arithmetic, even though φ is positive on the
limit cone of ρ(S).

References

[1] M. Babillot, “On the mixing property for hyperbolic systems,” Israel J. Math. 129(2002), 61–76.
[2] Y. Benoist, “Propriétés asymptotiques des groupes linéaires,” Geom. Funct. Anal. 7(1997), 1–47.
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Israel J. Math. 118(2000), 109–124.
[21] F. Dal’bo and M. Peigné, “Some negatively curved manifolds with cusps, mixing and counting,”

J. Reine Angew. Math. 497(1998), 141–169.
[22] S. Edwards, M. Lee, and H. Oh, “Anosov groups: local mixing, counting and equidistribution,”

Geom. Top., 27(2)(2023), 513–573.
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