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SOURCE LOCALIZATION IN RANDOM ACOUSTIC WAVEGUIDES∗

LILIANA BORCEA† , LEILA ISSA† , AND CHRYSOULA TSOGKA‡

Abstract. Mode coupling due to scattering by weak random inhomogeneities in waveguides
leads to loss of coherence of wave fields at long distances of propagation. This in turn leads to
serious deterioration of coherent source localization methods, such as matched field. We study with
analysis and numerical simulations how such deterioration occurs and introduce a novel incoherent
approach for long range source localization in random waveguides. It is based on a special form
of transport theory for the incoherent fluctuations of the wave field. We study theoretically the
statistical stability of the method and illustrate its performance with numerical simulations. We also
show how it can be used to estimate the correlation function of the random fluctuations of the wave
speed.
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1. Introduction. The problem of source localization with a remote array of
sensors in a waveguide has been the topic of many studies in underwater acoustics.
The localization is often done with matched field and related coherent methods [1, 18],
which match the acoustic pressure p(t, �x) received at the array with its mathematical
model, for hypothetical source locations in a search domain. Matched field methods
deal well with additive noise, but they are sensitive to inaccuracies in the model of
p(t, �x), due, for example, to unknown perturbations in the waveguide geometry and
the sound speed. Although such perturbations are typically small [10], they can have
a significant cumulative effect on sound transmission at long ranges [10, 9, 14].

In this paper we study theoretically and numerically source localization in wave-
guides with random inhomogeneities. In the absence of such inhomogeneities, energy
propagates through guided wave modes that do not interact with each other. Scat-
tering by the random inhomogeneities induces mode coupling. When the coupling
effects are weak, they can be approximated via a first order perturbation analysis of
the eigenvalue problem for the modes [15]. Alternatively, the matched field algorithms
can be improved with some statistical signal processing that mitigates the effect of
the inhomogeneities on the array data [19, 13].

We study source localization at very long ranges, where the cumulative effect
of the random inhomogeneities is strong, and there is little coherence in the field
p(t, �x) received at the array. We show through analysis and numerical simulations
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how coherent imaging methods fail to give useful results in such scattering regimes
and introduce a novel incoherent source localization approach. The analysis is based
on the asymptotic theory of wave propagation in random waveguides developed in
[14, 9, 12, 11]. The asymptotics is in the amplitude scale ε � 1 of the random
fluctuations of the wave speed and for very long distances of propagation.

In general, the waveguide effect can be due to confining boundaries or to the
transverse sound speed profile. We consider waveguides with confining horizontal
planar boundaries, and assume for simplicity random fluctuations of the sound speed
in range and depth (cross-range), so that we can reduce the problem to two dimensions.
The general three dimensional problem does not introduce essential difficulties in the
analysis [14], but it is prohibitively expensive for the numerical simulations.

The wave propagation study in [14] is more comprehensive, because it incorporates
radiation in the ocean floor modeled as a half-space. It is complicated by the fact that
aside from the discrete (trapped) modes, there is the continuum (radiation) spectrum.
However, it turns out that, asymptotically, the statistical properties of the trapped
mode amplitudes can be described independently of the amplitudes of the radiation
modes [14, section 3]. Since the behavior of source localization methods depends on
the statistics of propagating trapped modes, we expect that our analysis and results
extend to the more general setup in [14].

The paper is organized as follows. We begin in section 2 with the formulation of
the source localization problem in waveguides, and we describe three coherent source
localization methods: synthetic back propagation of the time reversed array data in an
unperturbed (deterministic) waveguide; matched field; and coherent interferometry.
The numerical simulations in section 3 illustrate how these methods fail to localize
sources at long ranges in random waveguides. The remainder of the paper is concerned
with a theoretical explanation of the results in section 3 and with the formulation
and analysis of a novel incoherent source localization approach. The mathematical
model of the array data is in section 4. We use this model in section 5 to obtain a
detailed theoretical explanation of the failure of coherent source localization methods.
Section 6 introduces our incoherent source localization approach, based on a special
form of transport theory developed in [12, 11] for the incoherent wave fluctuations.
We study the statistical stability of our method with respect to the realizations of
the random medium and illustrate its performance with numerical simulations. We
also show how it can be used to estimate the correlation function of the random
fluctuations of the sound speed. We end in section 7 with a summary.

2. Formulation of the source localization problem. We consider a two
dimensional waveguide with range axis denoted by z ∈ R and transverse (cross-range)
coordinate x ∈ (0, X). The acoustic pressure field p(t, �x) satisfies the wave equation

(2.1) Δp(t, �x)− 1

c2(�x)

∂2p(t, �x)

∂t2
= ∇ · �F (t, �x)

for time t > 0 and �x = (x, z). Here c(�x) is the sound speed and

(2.2) �F (t, �x) = f(t)δ(�x− �x�)�ez

models a point-like source at �x�, emitting a pulse f(t) in the range direction �ez, toward
the array. Before the pulse emission, the medium is quiescent:

(2.3) p(t, �x) ≡ 0, t ≤ 0.
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Fig. 2.1. Schematic of the source localization problem setup.

We assume as in [12, 11] pressure release boundary conditions at the top and bottom
of the waveguide:

(2.4) p(t, �x) = 0, x ∈ {0, X}.
We could consider other conditions, such as ∂p/∂x = 0 at x = X , corresponding to a
rigid bottom, but there is no essential difference in the analysis.

Let us take the Fourier transform

(2.5) p̂(ω, �x) =

∫
eiωtp(t, �x) dt

and obtain from (2.1) the Helmholtz equation

(2.6) Δp̂(ω, �x) +
ω2

c2(�x)
p̂(ω, �x) = f̂(ω)

∂

∂z
δ(�x− �x�),

with derivatives in the sense of distributions. In ideal waveguides, the sound speed
varies only in the transverse direction and energy is transmitted by independent
guided modes, the orthogonal eigenfunctions of the symmetric differential operator
∂2
x + ω2/c2(x). We consider waveguides with random inhomogeneities, caused, for

example, by internal waves, where c(�x) has an (x, z)-dependent fluctuating part, with
weak amplitudes of the order 1%–3%, as is typical in underwater acoustics [10, 9, 14].
Wave scattering in such waveguides leads to mode coupling and loss of coherence of
the acoustic pressure field and impedes source localization at long ranges.

The schematic for the source localization problem is in Figure 2.1. We have
an array A at very long distance zA from the source, with receivers at transverse
coordinates r. The receivers record the acoustic pressure field p(t, r, zA) over some
time window, and the problem is to estimate the location �x� of the source from the
array data.

Note that we consistently use a coordinate system with range origin at the source,
so that �x� = (x�, 0). The unknowns in the source localization problem are therefore
x� and zA.

2.1. Coherent source localization. We define here three coherent source lo-
calization functions. Then, we illustrate in section 3 how they fail to give useful results
because of strong cumulative scattering in random waveguides at long ranges. The
detailed theoretical explanation is in section 5.

The first coherent source localization function is given by

(2.7) I(�xs) =

∫
dω

2π

∑
r∈A

p̂ (ω, r, zA)Ĝo(ω, r, zA; �xs),
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where the bar denotes complex conjugation, and Ĝo(ω, x, z; �x
s) is the Green’s function

of Helmholtz’s equation in the unperturbed waveguide. Expression (2.7) models the
time reversal of the pressure field p(t, r, zA) recorded at the receivers, and its re-
emission in the fictitious unperturbed waveguide, where we “observe” the wave field
at the search point �xs, the hypothetical source location. If the array records up to
time T , the Fourier coefficients of the time reversed p(T − t, r, zA) are p̂ (ω, r, zA)eiωT .
Functional (2.7) amounts to observing the time reversed field at time lag T after its
re-emission, when it is expected to refocus.

In the absence of the random fluctuations, I(�xs) = ITR
o (�xs), the time reversal

function, which focuses at �xs = �x�. In random waveguides, I(�xs) does not model the
time reversal process, because the back propagation is synthetic, via the unperturbed
Green’s function Ĝo. Time reversal is an experiment where the back propagation is
done in the actual random waveguide, and focusing can be observed around �x� with
improved resolution and in a statistically stable manner, as proved in [12] and demon-
strated experimentally in [16]. Time reversal cannot be used for source localization,
and back propagation in the fictitious unperturbed waveguide does not work well, as
we show in the next section.

Coherent interferometry (CINT) was introduced in [4, 5] for imaging in random,
open environments. It back propagates to �xs cross-correlations of the traces of the
acoustic pressure at the array, instead of the traces themselves as in I(�xs). The cross-
correlations are over suitable time and receiver offset windows, and they introduce a
statistical smoothing in the imaging process for achieving stability [6]. The optimal
smoothing is determined by two decoherence parameters intrinsic to the data: the
decoherence length Xd and frequency Ωd [5, 6]. The decoherence length is the receiver
offset |r− r′| over which p̂(ω, r, zA) and p̂(ω, r′, zA) become statistically uncorrelated.
Similarly, Ωd is the frequency lag |ω−ω′| over which p̂(ω, r, zA) and p̂(ω′, r, zA) become
uncorrelated. It follows from [14, 9, 11] (see also Lemmas 5.1 and 5.2) that in random
waveguides, at long source-array ranges, there is no decorrelation over the receiver
offset,

E
{
p̂(ω, r, zA)p̂ (ω, r′, zA)

}
�≈ E {p̂(ω, r, zA)}E

{
p̂ (ω, r′, zA)

}
for all r, r′ ∈ (0, X),

but there is rapid decorrelation over the frequency (Ωd is small). Thus, CINT reduces
to back propagating the cross-correlation of the received traces across the array over
long time windows χ

Ωd
(t) of support Ω−1

d :

ICINT (�xs) =

∫
dω

2π

∫
dω′

2π
χ̂

Ωd
(ω − ω′)

∑
r∈A

p̂(ω, r, zA)Ĝo(ω, r, zA; �xs)

×
∑
r′∈A

p̂ (ω′, r′, zA)Ĝo(ω
′, r′, zA; �xs).(2.8)

When we replace χ̂
Ωd
/(2π) with the Dirac δ distribution, we ignore frequency

correlations and get the conventional (Bartlett) matched field function

(2.9) IMF (�xs) =

∫
dω

2π

∣∣∣∣∣∑
r∈A

p̂ (ω, r, zA)Ĝo(ω, r, zA; �xs)

∣∣∣∣∣
2

.

There are better matched field methods for source localization that include some signal
processing to mitigate additive noise or mild clutter effects [1, 15]. Nevertheless, all
these methods rely on a coherent p(t, r, zA), and their behavior should be similar
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to (2.9) at long ranges from the source, where cumulative scattering by the random
inhomogeneities is strong.

3. Numerical simulations. We use numerical simulations to illustrate the per-
formance of source localization methods in random waveguides. We simulate the array
data p(t, r, zA) by solving the wave equation as a first order velocity-pressure system
with the finite element method given in [2] in two dimensions. The setup is illustrated
in Figure 3.1, with the source at (x�, 0) and the array A at range zA. We use two
perfectly matched layers (PMLs) to the left and right of the computational domain
to model the unbounded waveguide in z.

�x�

A

zA0

ϕ(t)

x

z

PML PML

Fig. 3.1. Setup for the numerical simulations.

We take fluctuations of the sound speed of the form

(3.1)
c2o

c2(�x)
= 1 + εν(�x),

with ν(�x) an isotropic, statistically homogeneous random process with mean zero and
Gaussian correlation

(3.2) E{ν(�x)ν(�x′)} =
1

2π�2
e−

|�x−�x′|2
2�2 .

We generate the process numerically using random Fourier series [8]. The correla-
tion length is � = 0.25m, and the perturbation parameter ε ranges between 1%–3%.
We choose a constant background speed co to simplify the back propagation in the
unperturbed waveguide by computing Ĝo(ω, r, zA; �xs) explicitly.

The range zA is long, of order ε−2, and the Fourier coefficients p̂(ω, r, zA) of the
array data decorrelate rapidly in frequency (Ωd = ε2Ω) as shown in [14, 9, 11]. To
explore the effect of the bandwidth and central frequency on source localization, we
let the source excitation be a short pulse ϕ(t) (a sinc function, with Fourier trans-
form given by the indicator function of the frequency bandwidth), with bandwidth
1.5–4.5kHz measured at 6dB. Then, we define f(t) as the signal with Fourier trans-
form

(3.3) f̂(ω) = f̂ ε(ω) = ϕ̂(ω)1[−B,B]

(
ω − ωo

εσ

)
,

where 1[−B,B] is the characteristic function of interval [−B,B]. That is, f̂ ε(ω) is the
windowed ϕ̂(ω) in the frequency interval |ω − ωo| ≤ εσB for various choices of ωo in
the band of ϕ̂, and σ ∈ [0, 2]. The scaled bandwidth B is some O(1) factor of ωo.
We refer to the case σ = 2 as narrow band, because the bandwidth ε2B is of the
same order as the decoherence frequency, and the support of the pulse fε(t) is a time
interval of length similar to that of the travel time. Broad band signals with σ < 2
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Fig. 3.2. The trace of the acoustic pressure computed at the receiver location (r = X/2, zA)
for (clockwise from top left) ε = 0, ε = 1%, ε = 2%, and ε = 3%.

Fig. 3.3. From left to right: I(�xs), IMF (�xs), and ICINT (�xs) for the source at x� = X/4. Row
one is for one realization of the medium and row two for another. The results are for ε = 2%, central
frequency 2.09kHz, and bandwidth 0.375kHz. The CINT images are computed with Ωd = 0.045kHz.
The abscissa of the images is range scaled by λc, and the ordinate is cross-range scaled by λc.

have a time support that is much smaller than the travel time, and we can observe at
the array the arrival of different waveguide modes.

All the lengths are scaled by the central wavelength λc = 0.5m of the pulse
ϕ(t), computed with co = 1.5km/s. The computational domain is the rectangle of
transverse side length X = 20λc and range length 500λc. The source is 4λc away from
the left PML at either x� = X/2 or x� = X/4. The array is at range zA = 494λc

from the source, and its aperture A consists of various intervals in [0, X ].

The numerically simulated array data is the computed pressure p(t, r, zA) at re-
ceiver transverse coordinates r distributed uniformly in A at distance 0.095λc apart.
We compute p(t, r, zA) in the time window t ∈ (130, 333)ms, which contains the di-
rect arrival at τ = zA/co = 164.7ms and the arrival of sufficiently many other guided
modes after that. The time sampling is at the rate of 15μs.

We show in Figure 3.2 the time trace of p(t, r = X/2, zA) for the source at
x� = X/2 and various perturbation parameters ε. The picture on the top left is
in the unperturbed waveguide (ε = 0). Since the source emits a short pulse ϕ(t),
we can clearly distinguish the arrival of the modes at the array. In the perturbed
waveguide, we note the significant effect on the traces of scattering by the random
inhomogeneities, especially in the cases ε = 2% and 3%. This is the regime we are
interested in, where the random fluctuations cause strong mode coupling and the
array data is almost incoherent.

3.1. Numerical results. We illustrate the performance of the three coherent
imaging functions I(�xs), IMF (�xs), and ICINT (�xs) in Figures 3.3–3.6. The source
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(i)

(ii)

(iii)

(iv)

Fig. 3.4. Left column: IMF (�xs) for two realizations of the random medium. Right column:
ICINT (�xs). The plots are for x� = X/4, ε = 2% in (i)–(iii), and ε = 3% in (iv). The central
frequency is 2.69kHz in (i), 2.99kHz in (ii), 3.13kHz in (iii), and 2.09kHz in (iv). The bandwidth is
0.375kHz. The CINT images are computed with Ωd = 0.045kHz. The abscissa is range in λc, and
the ordinate is cross-range in λc.

is at cross-range coordinate x� = X/4 = 5λc. All the methods work well for weak
fluctuations ε ≤ 1%, so we do not show the images here. The results in Figure 3.3
are for ε = 2%, central frequency ωo/(2π) = 2.09kHz, and bandwidth εB/(2π) =
0.375kHz, that is, B ≈ 9ωo. We show the images for two realizations of the random
medium. Both matched field and CINT locate the source correctly, and the images
do not change significantly from one realization to another. Function I(�xs) does not
behave as well, and we start to see its statistical instability.

Figure 3.4 illustrates how both matched field and CINT deteriorate as the data
loses its coherence. The progressive loss of coherence occurs as we increase the central
frequency ωo and the scaled range Z = ε2zA. In our case zA is fixed at 494λc, so
we increase Z by increasing ε. We note in Figure 3.4 that matched field and CINT
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(i)

(ii)

Fig. 3.5. Left column: IMF (�xs) for two realizations of the random medium. Right column:
ICINT (�xs). We take x� = X/4, ε = 2%, central frequency 2.69kHz, and bandwidth 0.375kHz. In
(i) the aperture is A = [0, 12λc] and in (ii) A = [0, 8λc]. The CINT images are computed with
Ωd = 0.045kHz. The abscissa and ordinate are range and cross-range in λc.

(i)

(ii)

Fig. 3.6. From left to right: I(�xs), IMF (�xs), and ICINT (�xs) for the source at x� = X/4,
full aperture, and the extra wide band signal ϕ(t), with bandwidth 1.5–4.5kHz. In (i) we show two
realizations at ε = 2%. In (ii) we show two realizations at ε = 3%. The CINT images are computed
with Ωd = 0.09kHz. The abscissa and ordinate are range and cross-range in λc.

locate the source correctly, in both realizations of the random medium, at ε = 2% and
ωo/(2π) = 2.69kHz (case (i)). However, as ωo increases, both methods deteriorate
(cases (ii)–(iii)). Matched field gives no range resolution, and there are many spurious
peaks. There are spurious peaks in the CINT images too, although they have some
range information. The results are even worse in case (iv), where we increase ε to 3%.

The images in Figures 3.3 and 3.4 are at full aperture A = [0, X ]. The results are
naturally worse for partial apertures, as seen in Figure 3.5 for the same bandwidth
as in case (i) in Figure 3.4 and partial apertures A = [0, 12λc] and A = [0, 8λc],
respectively.

Finally, we show in Figure 3.6 the images obtained with all three coherent source
localization functions for fluctuations ε = 2% and ε = 3%, full aperture, and the
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entire extra wide band of 1.5–4.5kHz. We note that the extra wide band does not
help much in the source localization, especially at ε = 3%.

3.2. Summary of the results. The numerical results in Figures 3.3–3.6 show
the progressive degradation of the performance of coherent source localization meth-
ods in random waveguides. When wave scattering is weak, the methods work well.
As we increase ε (i.e., the scaled range Z) and the central frequency ωo, the random
inhomogeneities have a stronger and stronger cumulative effect, and the wave field
at the array loses its coherence. Consequently, none of the coherent methods works,
although CINT appears slightly better because it gives some range information. Nev-
ertheless, the CINT range resolution is very poor, over an interval of order 50λc, which
is not centered at the correct range zA. We explain this behavior with analysis in
section 5, where we show that wave scattering causes a strong dispersive effect that
is not accounted for in the back propagation in CINT.

In order to localize the source at very long ranges, with almost incoherent array
data, we need to systematically exploit the dispersive effect induced by the random
inhomogeneities. This requires a mathematical model that allows us to cast the
source localization problem as one of parameter estimation for the source coordinates
and possibly the statistics of the random fluctuations. Such a model was derived in
[14, 9, 12, 11]. We use it in section 6 to formulate and analyze our incoherent source
localization method.

4. Mathematical model of the waveguide. In an ideal waveguide, the sound
speed varies only in the transverse direction and energy is transmitted by guided
modes, the orthogonal eigenfunctions of the symmetric differential operator ∂2

x+ω2/c2.
Then, p̂(ω, �x) is given by a mode expansion using separation of variables in (2.6).

We consider waveguides with weak random inhomogeneities and model the sound
speed as

(4.1)
c2o

c2(�x)
=

{
1 + εν(�x), z ∈ [0, L/ε2] ,
1, z ∈ (−∞, 0) ∪ (L/ε2,∞) .

Here ε � 1 is the perturbation parameter and ν(�x) is a bounded mean zero random
process, stationary and ergodic in z, with enough long range decorrelation,1 as stated
in technical terms in [17, section 4.6.2]. We write that the fluctuations are supported
in the rectangle [0, X ]× [0, L/ε2] because we consider very long (∼ ε−2) distances of
propagation to get strong scattering effects. If we observe p(t, �x) for time t ≤ τ/ε2,
we obtain by the causality of the wave equation that it is not influenced by the
medium beyond range L/ε2, with L ≈ coτ , so we may as well assume a uniform sound
speed for z > L/ε2. The bound z = 0 on the support of the fluctuations may be
motivated by the forward scattering approximation. It is shown in [14, 9, 12, 11] that
the statistical coupling between the forward and backward going modes is negligible
when the random fluctuations are not too rough, that is, if the autocorrelation of ν(�x)
is smooth enough in z. Then, we can neglect the waves scattered to the left of the
source, as if we had an unperturbed medium for z < 0.

4.1. The pressure field in unperturbed waveguides. Note that in (4.1) we
take a uniform background speed co to simplify the analysis and obtain frequency

1This technical assumption is needed later to apply averaging methods for stochastic differential
equations [11, Chapter 6].
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independent modes φj(x) in the unperturbed waveguide

−d2φj(x)

dx2
= μjφj(x), x ∈ (0, X),

φj(0) = φj(X) = 0, j = 1, 2, . . . .(4.2)

The theory can be carried out for variable backgrounds co = co(x) [14, 9] with some
slight complications induced by the frequency dependence of the eigenvalues and eigen-

functions of ∂2

∂x2 + ω2

c2o(x)
.

In the constant background case we have

(4.3) φj(x) =

√
2

X
sin

(
πjx

X

)
, μj =

(
πj

X

)2

, j = 1, 2 . . . ,

and the pressure field in the unperturbed waveguide is given by

(4.4) po(t, �x) =

∫
dω

2π
p̂o(ω, �x)e

−iωt,

with Fourier coefficients [11]

(4.5) p̂o(ω, �x) =
f̂(ω)

2

⎡⎣N(ω)∑
j=1

φj(x�)φj(x)e
iβj(ω)z +

∑
j>N(ω)

φj(x�)φj(x)e
−βj(ω)z

⎤⎦
and for z > 0. Here βj(ω) are the modal wavenumbers

(4.6) βj(ω) =

⎧⎪⎨⎪⎩
√(

2π
λ

)2 − μj , j = 1, 2, . . . , N(ω),√
μj −

(
2π
λ

)2
, j > N(ω),

λ = 2πco/ω is the wavelength, and N(ω) =
⌊
2X
λ

⌋
is the number of propagating

modes, defined as the largest integer satisfying μN(ω) ≤ (2π/λ)2. The modes indexed
by j > N(ω) are evanescent.

4.2. The pressure field in random waveguides. The Fourier coefficients
p̂(ω, �x) of the random pressure field can be written as an expansion in the unper-
turbed eigenfunctions, with random amplitudes aj and bj of the forward and backward
propagating modes and random amplitudes Ej of the evanescent modes [11, section
20.2.1]:

p̂(ω, �x) = f̂(ω)

⎧⎨⎩
N(ω)∑
j=1

[
aj(ω, z)√
βj(ω)

φj(x)e
iβj(ω)z +

bj(ω, z)√
βj(ω)

φj(x)e
−iβj(ω)z

]

+
∑

j>N(ω)

Ej(ω, z)φj(x)

⎫⎬⎭ .(4.7)

Here z > 0, and we now scale it as z � z/ε2 to get significant coupling of the modes
by cumulative scattering in the random medium over very long ranges.
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After some algebraic manipulations detailed in [11, section 20.2.4], involving the
projection of (2.6) on φj(x), and expressing the evanescent amplitudes in terms of
aj and bj , we obtain a system of differential equations

(4.8)
∂

∂z

[
aε(ω, z)
bε(ω, z)

]
≈
{
1

ε
P

(
ω,

z

ε2

)
+ E

(
ω,

z

ε2

)}[ aε(ω, z)
bε(ω, z)

]
for the vector valued random processes

aε(ω, z) =
(
a1(ω, z/ε

2), . . . , aN(ω)(ω, z/ε
2)
)T

,

bε(ω, z) =
(
b1(ω, z/ε

2), . . . , bN(ω)(ω, z/ε
2)
)T

,(4.9)

defined for z ≥ 0. The source at z = 0 gives

(4.10) aj(ω, 0) = ao,j(ω;x�) =

√
βj(ω)

2
φj(x�), j = 1, . . . , N(ω),

and the field is outgoing at the range limit L/ε2 of the fluctuations, bε(ω,L) = 0.
The forward and backward propagating mode amplitudes are coupled in (4.8) by

(4.11) P(ω, z) =

⎡⎣ P(a,a)(ω, z) −D(ω, z)P(a,a)(ω, z)

−D(ω, z)P(a,a)(ω, z) P(a,a)(ω, z)

⎤⎦
and

(4.12) E(ω, z) =

⎡⎣ E(a,a)(ω, z) −D(ω, z)E(a,a)(ω, z)

−D(ω, z)E(a,a)(ω, z) E(a,a)(ω, z)

⎤⎦ ,
where D(ω, z) = diag

(
e−2iβ1(ω)z, . . . , e−2iβN(ω)(ω)z

)
. The N(ω)×N(ω) matrix P(a,a)

in the leading coupling term is given by

(4.13) P
(a,a)
jl (ω, z) =

iω2

2c2o

Cjl(z)√
βj(ω)βl(ω)

ei[βl(ω)−βj(ω)]z

in terms of the random stationary processes

(4.14) Cjl(z) =

∫ X

0

ν(x, z)φj(x)φl(x)dx, j, l = 1, 2, . . . .

The second order coupling in (4.8) is via the evanescent modes through the matrix
(4.15)

E
(a,a)
jl (ω, z) =

iω4

4c4o

∑
l′>N(ω)

∫ ∞

−∞
ds

Cjl′ (z)Cll′(z + s)

βl′(ω)
√
βj(ω)βl(ω)

eiβl(ω)(z+s)−iβj(ω)z−βl′(ω)|s|.

4.2.1. The forward scattering approximation. It follows from the diffusion
approximation theorem [11, section 6.5] applied to (4.8) that (aε(ω, z),bε(ω, z)) can
be identified in the limit ε → 0 with a diffusion process in C2N(ω), solving a system
of linear stochastic differential equations [11, section 20.3]. Assuming a smooth cor-
relation function of the random stationary processes (4.14) (i.e., z-autocorrelation of
ν(�x)), the coupling between the forward and backward propagating modes becomes
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negligible as ε → 0, and we can make the forward scattering approximation [11,
section 20.2.6]

∂

∂z
aε(ω, z) =

[
1

ε
P(a,a)

(
ω,

z

ε2

)
+ E(a,a)

(
ω,

z

ε2

)]
aε(ω, z), z > 0,

aε(ω, 0) = ao(ω;x�) =
(
ao,1(ω;x�), . . . , ao,N(ω)(ω;x�)

)T
.(4.16)

Since the stochastic differential equations (4.16) are linear, we write

(4.17) aε(ω, z) = T ε(ω, z)ao(ω;x�),

using the random N(ω)×N(ω) transfer matrix T ε(ω, z), the fundamental solution of
(4.16). It satisfies the stochastic system of differential equations

(4.18)
∂

∂z
T ε(ω, z) =

[
1

ε
P(a,a)

(
ω,

z

ε2

)
+ E(a,a)

(
ω,

z

ε2

)]
T ε(ω, z), z > 0,

and the initial condition

(4.19) T ε(ω, 0) = I,

with I the identity matrix.

4.2.2. Mathematical model of the array data. Let (r, zA = Z/ε2) be the
receiver coordinates, with r taking values in the array aperture A ⊆ [0, X ]. The
mathematical model of the array data is

(4.20) pε(t, r, Z) =

∫
dωf̂ ε(ω)

4π

N(ω)∑
j,l=1

√
βl(ω)

βj(ω)
T ε
jl(ω,Z)φj(r)φl(x�)e

−iωt+iβj(ω)Z/ε2 ,

where pε(t, r, Z) = p(t, r, Z/ε2) and we renamed as f̂ ε(ω) the Fourier coefficients of
the pulse. To study the role of the bandwidth on the focusing and statistical stability
of source localization, we scale the bandwidth relative to ε at central frequency ωo

and define

(4.21) f̂ ε(ω) =
1

εσ
f̂B

(
ω − ωo

εσ

)
for σ ≤ 2. The Fourier transform f̂B of the base band pulse fB is supported in
[−B,B], and the time support of the source signal

(4.22) f ε(t) =

∫
dω

2π
f̂ ε(ω)e−iωt = e−iωotfB(ε

σt)

is ∼ ε−σ/B. As we mentioned in section 3, in the narrow band case (σ = 2) f ε(t) is
spread out over a long time, comparable to the travel time ε−2Z/co. The support of
fε(t) is much smaller than the travel time in broad band cases (σ < 2), so that we can
distinguish at the array a train of pulses corresponding to arrivals of different modes.

We restrict our study to σ ∈ (1, 2]. This choice is convenient in the analysis
because we can freeze the number of propagating modes in (4.20) to N(ωo) and
obtain the simpler model
(4.23)

pε(t, r, Z) ≈ 1

4π

N(ωo)∑
j,l=1

√
βl(ωo)

βj(ωo)
φj(r)φl(x�)

∫
dω f̂ ε(ω)T ε

jl(ω,Z) e−iωt+iβj(ω)Z/ε2 ,
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with phase given by

(4.24) βj(ωo + εσh)
Z

ε2
≈ βj(ωo)

Z

ε2
+ hβ′

j(ωo)
Z

ε2−σ
.

In the case σ = 1, the phase has the extra dispersive term h2/2β′′
j (ωo)Z. The ultrawide

bandwidth case σ < 1 is a bit more tedious to analyze, and it does not improve the
images, as seen in Figure 3.6.

Although the array has finitely many receivers, we assume from now on that
their spacing hr is small, so that the sums

∑
r∈A appearing in the expression of the

imaging functions approximate the scaled integrals h−1
r

∫
A dr. Since the integrands

involve the eigenfunctions φj(r), the continuum aperture approximation made in this
paper is valid for receiver spacings hr that are small enough to capture the oscillations
of the highest frequency modes used in the imaging functions. A complete analysis
of the role played by the density of the array sensors in the imaging process involves
signal-to-noise ratio (SNR) issues. It is expected that denser arrays give better results
in the presence of additive, ambient noise. In this paper we do not consider such SNR
analysis, and we concentrate solely on the random medium effects on the imaging
process.

5. Coherent source localization methods. We give here a detailed analysis
of the deterioration of the coherent source localization methods illustrated with nu-
merical simulations in section 3.1. The analysis uses data model (4.23) to estimate the
mean and variance of the source localization functions in the asymptotic limit ε → 0.
The mean shows how the images are expected to focus. The variance determines the
statistical stability of the methods with respect to the realizations of the fluctuations
of the wave speed.

5.1. Back propagation in homogeneous waveguides. The Green’s function
of Helmholtz’s equation in the unperturbed waveguide, for a hypothetical source at
�xs = (xs, zs), is given by

(5.1) Ĝo(ω, x, z; �x
s) ≈ 1

2

N(ω)∑
j=1

φj(x
s)φj(x)e

iβj(ω)(z−zs)

at large z− zs, where the evanescent modes can be neglected. The source localization
function follows from (2.7), in the continuum aperture approximation, after scaling
with the distance between the receivers:

I(�xs) =

∫
dω

2π

∫
A
dr p̂ (ω, r, zA)Ĝo(ω, r, zA; �xs)

≈ 1

2

N(ω0)∑
j=1

φj(x
s)

∫
dω

2π
eiβj(ω)(zA−zs)

∫
A
dr φj(r)p̂ (ω, r, zA).(5.2)

5.1.1. Unperturbed waveguides. When the waveguide is indeed homoge-
neous, p̂ is the same as p̂o given by (4.5), and I(�xs) becomes the time reversal function

(5.3) ITR
o (�xs) ≈ 1

4

N(ωo)∑
j,l=1

Mjl φj(x�)φl(x
s)

∫
dω

2π
f̂ ε(ω)eiβl(ω)Zs/ε2−iβj(ω)Z/ε2 .
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Here we recalled the long range scaling zA = Z/ε2 and let zA − zs = Zs/ε2, with
Zs of order one. We also introduced matrix

(5.4) Mjl =

∫
A
φj(r)φl(r)dr,

depending on the aperture A. In the ideal full aperture case, M is the identity by
the orthonormality of the eigenfunctions φj(x). For partial apertures, with A proper
subsets of [0, X ], M couples the modes in (5.3).

Naturally, the best source localization is for a full aperture:

ITR
o (�xs) ≈ 1

4

N(ωo)∑
j=1

φj(x�)φj(x
s)

∫
dω

2πεσ
f̂B

(
ω − ωo

εσ

)
eiβj(ω)(Zs−Z)/ε2

≈ 1

4

N(ωo)∑
j=1

φj(x�)φj(x
s)eiβj(ωo)(Z

s−Z)/ε2fB

(
β′
j(ωo)

Zs − Z

ε2−σ

)
.(5.5)

We show in Appendix A that ITR
o (�xs) focuses at �x� = (x�, 0). Because of the O(1)

support of the carrier pulse fB, each term in (5.5) peaks at search ranges zs satisfying
|zs| = |Z −Zs|/ε2 ≤ O(ε−σλo). However, ITR

o has much better range resolution, due
to the rapid phase in (5.5) and the summation over the modes. Explicitly, we show
in Appendix A that for a large enough number N(ωo) of modes

ITR
o (xs = x�, z

s) ≈ 1

4

N(ωo)∑
j=1

φ2
j (x�)e

iβj(ωo)(Z
s−Z)/ε2fB

(
β′
j(ωo)

Zs − Z

ε2−σ

)

focuses with range resolution O(λo). Furthermore,

(5.6) ITR
o (xs, zs = 0) ≈ fB(0)

2λo
sinc

[
2π(xs − x�)

λo

]
has cross-range resolution (distance from the peak to the first zero) equal to the
diffraction limit λo/2.

5.1.2. Random waveguides. As noted in section 2.1, (5.2) is not the same as
time reversal in random waveguides, because the back propagation is synthetic, via
the unperturbed Green’s function Ĝo. Time reversal works well in random waveguides
[12, 16], but it cannot be used for source localization. Moreover, the back propagation
in the fictitious unperturbed waveguide does not work well, as illustrated in section 3.1
and as follows from the analysis below.

Let us present for simplicity only the full aperture case. The results are worse for
partial apertures, as seen in Figure 3.5. Using model (4.23) in (5.2), we get
(5.7)

I(�xs) ≈ 1

4

N(ωo)∑
j,l=1

√
βl(ωo)

βj(ωo)
φj(x

s)φl(x�)

∫
dh

2π
f̂B(h)T ε

jl(ωo+εσh, Z)eiβj(ωo+εσh) (Zs−Z)

ε2 .

This is a randomly fluctuating function, with modes coupled by the transfer matrix
T ε
jl, and we estimate its expectation and variance for ε � 1 and σ ∈ (1, 2). The

statistical stability is worse in the narrow band case σ = 2.
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5.1.3. The statistical mean. To estimate E {I(�xs)}, we recall the relevant
results from [11, section 20.3], summarized in the following lemma.

Lemma 5.1. In the asymptotic limit ε → 0, the expectation of the transfer matrix
is given by

(5.8) lim
ε→0

E
{
T ε
jl(ω,Z)

}
= δjl e

−Dj(ω)Z+iOj(ω)Z ,

where δjl is the Kronecker delta symbol and Dj(ω), Oj(ω) are parameters dependent
on the frequency and correlation function of the fluctuations. Explicitly,

(5.9) Dj(ω) =
[
Γ
(1)
jj (ω)− Γ

(c)
jj (ω)

]
/2, Oj(ω) = Γ

(s)
jj (ω)/2 + κj(ω),

where

Γ
(c)
jl (ω) =

ω4

4c4oβj(ω)βl(ω)

∫ ∞

−∞
cos [(βj(ω)− βl(ω)) z]E {Cjl(0)Cjl(z)} dz, j �= l,

Γ
(c)
jj (ω) = −

N(ω)∑
l′ �=j, l′=1

Γ
(c)
jl′ (ω),(5.10)

Γ
(s)
jl (ω) =

ω4

4c4oβj(ω)βl(ω)
2

∫ ∞

0

sin [(βj(ω)− βl(ω)) z]E {Cjl(0)Cjl(z)} dz, j �= l,

Γ
(s)
jj (ω) = −

N(ω)∑
l′ �=j, l′=1

Γ
(s)
jl′ (ω),(5.11)

Γ
(1)
jl (ω) =

ω4

4c4oβj(ω)βl(ω)

∫ ∞

−∞
E {Cjj(0)Cll(z)} dz for all j, l,(5.12)

κj(ω) =
∑

l′>N(ω)

ω4

4c4oβj(ω)βl′(ω)

∫ ∞

−∞
E {Cjl′ (0)Cjl′ (z)} cos (βj(ω)z) e

−βl′(ω)|z|dz,(5.13)

and j, l = 1, . . . , N(ω).

Note that coefficients Γ
(c)
jl (ω) are nonnegative for j �= l by Bochner’s theorem be-

cause they are proportional to the power spectral densities of the stationary random

process Cjl(z) given by (4.14). Therefore, Γ
(c)
jj (ω) < 0. Similarly, Γ

(1)
jj (ω) are nonneg-

ative since they are proportional to the power spectral densities of Cjj(z) evaluated
at a zero dual argument to z. Thus, Dj(ω) > 0 and the expectation in (5.9) decays
exponentially with Z and ω. This decay means that the wave field loses its coherence
rapidly, and the energy is transferred to the random (incoherent) fluctuations. Coef-
ficients Oj(ω) account for the dispersive effect of the random medium on the mean

field. Dispersion is induced by coupling of the propagating modes (Γ
(s)
jl (ω)) and by

coupling with the evanescent modes (κj(ω)).
The expectation of (5.7) becomes

E {I(�xs)} ≈ 1

4

N(ωo)∑
j=1

φj(x
s)φj(x�)e

−[Dj(ωo)−iOj(ωo)]Z+iβj(ωo)
(Zs−Z)

ε2

× fB
(
β′
j(ωo)(Z

s − Z)/ε2−σ
)
.(5.14)

It is similar to (5.5), except for the exponential damping and the oscillations caused
by the random medium. This does not affect the range focus, which is almost the
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Fig. 5.1. E {I(xs, 0)} for the source at x� = X/2 = 10λc and various ε.

same as in section 5.1. We plot2 in Figure 5.1 E {I(xs, 0)}, and note that it peaks
at x�, but the peak value decreases rapidly (exponentially) as we increase ε, that is,
as we increase Z. The exponential decay of E {I(�x�)} is also captured by the upper
bound

(5.15) |E {I(�x�)}| ≤ |fB(0)|
4

e−Dmin(ωo)Z

N(ωo)∑
j=1

φ2
j (x�) ≈ C|fB(0)|

λo
e−Dmin(ωo)Z ,

where C is an O(1) constant, and Dmin(ωo) = minj=1,...,N(ωo) Dj(ωo).

5.1.4. The variance. Now, let us compute the variance

V (�x�) = E
{
|I(�x�)|2

}
− |E {I(�x�)}|2

at the peak �xs = �x� of E{I(�xs)}. It is given by

V (�x�) ≈ 1

16

N(ωo)∑
j,l,j′,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj′ (ωo)
φj(x�)φl(x�)φj′ (x�)φl′(x�)

∫
dh

2π

∫
dh′

2π
f̂B(h)f̂B(h

′)

×
[
E
{
T ε
jl(ωo + εσh, Z)T ε

j′l′(ωo + εσh′, Z)
}

− E
{
T ε
jl(ωo + εσh, Z)

}
E
{
T ε
j′l′(ωo + εσh′, Z)

}]
,(5.16)

so we need two frequency second moments of the transfer matrix in the limit ε → 0.
They are given in [11, Proposition 20.7], and we repeat them in the next lemma.

Lemma 5.2. The transfer matrix decorrelates rapidly in frequency:
(5.17)

E
{
T ε
jl(ω,Z)T ε

j′l′(ω
′, Z)

}
≈ E

{
T ε
jl(ω,Z)

}
E
{
T ε
j′l′(ω

′, Z)
}

for |ω−ω′|/ωo > O(ε2).

At two nearby frequencies,

lim
ε→0

E
{
T ε
jl(ω,Z)T ε

j′l′(ω − ε2h, Z)
}
= δjj′δll′

∫
W(l)

j (ω, τ, Z)eih[τ−β′
j(ω)Z]dτ

+ (1− δjj′ ) δjlδj′l′e
−
[
Dj(ω)+Dj′ (ω)−Γ

(1)

jj′ (ω)
]
Z+i[Oj(ω)−Oj′ (ω)]Z ,(5.18)

2The plots are for the setup described in section 3, with the source at x� = X/2. The central
frequency is at 2.09kHz, and the unscaled bandwidth is 0.375kHz. Note that zA is fixed at 494λc,
and therefore a larger ε amounts to a larger scaled Z.
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where the Wigner transform
{W(l)

j (ω, τ, z)
}
j=1,...,N(ω)

solves the system of transport

equations

(5.19)

[
∂

∂z
+ β′

j(ω)
∂

∂τ

]
W(l)

j (ω, τ, z) =
∑
n�=j

Γ
(c)
jn (ω)

[
W(l)

n (ω, τ, z)−W(l)
j (ω, τ, z)

]
for z > 0, with initial condition W(l)

j (ω, τ, 0) = δ(τ)δjl. These solutions are measures,

(5.20) W(l)
j (ω, τ, Z) = δjl e

Γ
(c)
ll (ω)Zδ (τ − β′

l(ω)Z) +W
(l)
j (ω, τ, Z),

with a Dirac mass at j = l and continuous density W
(l)
j (ω, τ, Z).

Because of the O(ε2) decoherence frequency, we can restrict the support of the
integrals in (5.16) to |h− h′| ≤ ε2−σΩ � B and obtain, after changing variables,

h+ h′

2
� h, h− h′ � ε2−σh̃,

that

V (�x�) ≈ ε2−σ

4

N(ωo)∑
j,l,j′,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj(ωo)
φj(x�)φl(x�)φj′ (x�)φl′ (x�)

∫ B

−B

dh

2π

∣∣∣f̂B(h)∣∣∣2
×
∫ Ω

−Ω

dh̃

2π

[
E
{
T ε
jl

(
ωo + εσh+ ε2h̃/2, Z

)
T ε
j′l′

(
ωo + εσh− ε2h̃/2, Z

)}
− E

{
T ε
jl

(
ωo + εσh+ ε2h̃/2, Z

)}
E
{
T ε
j′l′

(
ωo + εσh− ε2h̃/2, Z

)}]
.

Here we assumed a smooth pulse to make the approximation f̂B(h±ε2−σh̃/2) ≈ f̂B(h).
The variance follows from Lemmas 5.1 and 5.2, and the continuity in frequency of
coefficients (5.9)–(5.13)

V (�x�) ≈ ε2−σ‖fB‖2
4

N(ωo)∑
j,l=1

βl(ωo)

βj(ωo)
φ2
j (x�)φ

2
l (x�)W

(l)
j (ωo, β

′
j(ωo)Z,Z)

+
ε2−σΩ‖fB‖2

4π

N(ωo)∑
j,j′=1

φ2
j (x�)φ

2
j′ (x�)

{[
(1 − δjj′ )e

Γ
(1)

jj′ (ωo)Z − 1
]

× e−[Dj(ωo)+Dj′ (ωo)−iOj(ωo)+iOj′ (ωo)]Z + δjj′e
Γ
(c)
jj (ωo)Z

}
,(5.21)

where

‖fB‖2 =

∫
dh

2π

∣∣∣f̂B(h)∣∣∣2 =

∫
dt |fB(t)|2 .

Note that the second sum in (5.21) is exponentially decaying and negligible at large Z,
so we can write

(5.22) V (�x�) ≈ ε2−σ‖fB‖2F(ωo, Z, x�),

where

(5.23) F(ωo, Z, x�) =
1

4

N(ωo)∑
j,l=1

βl(ωo)

βj(ωo)
φ2
j(x�)φ

2
l (x�)W

(l)
j (ωo, β

′
j(ωo)Z,Z).
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5.1.5. Statistical stability. Let us use (5.15) to bound the relative standard
deviation

(5.24)

√
V (�x�)

|E {I(�x�)}| ≥ C(ωo)ε
1− σ

2 eDmin(ωo)ZF1/2(ωo, Z, x�),

where C(ωo) is an O(1) coefficient that does not depend on Z. We show below that,
for long enough ranges, F = O [1/(ZN(ωo))], so the bound in (5.24) becomes

(5.25)

√
V (�x�)

|E {I(�x�)}| � O

[
ε1−

σ
2 eDmin(ωo)Z√
N(ωo)Z

]
.

This illustrates how the bandwidth εσB, the number N(ωo) of propagating modes,
the central frequency ωo, and the scaled range Z affect the stability of the imaging
function. For a fixed central frequency and range, the stability improves in deeper
waveguides that support more propagating modes, as well as for broad band pulses.
However, the improvement is marginal since the relative standard deviation is likely
to remain large due to the exponential factor eDmin(ωo)Z . As we increase Z and ωo

(i.e., Dmin(ωo)), the method becomes statistically unstable, as illustrated in Figures
3.3 and 3.6.

Long range estimation of FFF . Let us recall from [11, section 20.6.2] that the

matrix Γ(c)(ωo) =
(
Γ
(c)
jl (ωo)

)
in the right-hand side of (5.19) is negative semidefinite,

with null space in the span of (1, 1, . . . , 1)T . Its largest eigenvalue, which is less than
zero, is denoted by −1/Le, where Le is called the equipartition distance, because it
quantifies the range scale over which the entries in the matrix exponential
(5.26)

Ujl(ωo, Z) =
{
eΓ

(c)(ωo)Z
}
jl
= lim

ε→0
E
{
T ε
jl(ωo, Z)T ε

jl(ωo, Z)
}
=

∫
dτ W(l)

j (ω, τ, Z)

tend to the limit uniform3 distribution

(5.27) sup
j,l

∣∣∣∣Ujl(ωo, Z)− 1

N(ωo)

∣∣∣∣ ≤ O
(
e−Z/Le

)
.

We are interested in the limit ofW(l)
j (ωo, τ, Z), whose Fourier transform Ŵ(l)

j (ωo, h, Z)
satisfies

(5.28) Ŵ(l)
j (ωo, h, Z) =

{
exp
[(

ihB′(ωo) + Γ(c)(ωo)
)
Z
]}

jl

for B′(ωo) = diag
(
β′
1(ωo), . . . , β

′
N(ωo)

(ωo)
)
. It is estimated in [11, section 20.6.2], and

the convergence is at the same rate as in (5.27). The continuum density tends to a
Gaussian profile

(5.29) W
(l)
j (ωo, τ, Z) ≈ 1

N(ωo)

1√
2πσ2

e(ωo)Z
e
− (τ−β′(ωo)Z)2

2σ2
e(ωo)Z , Z � Le,

3The long range limit of vector (U1,l, . . . , UN,l)
T in (5.26) is in span{(1, 1, . . . , 1)T }, the null

space of Γ(c), and the normalization constant 1/N comes from the fact that T ε(ωo, Z) is a unitary
matrix, so the energy is conserved [11, section 20.2.6].
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traveling at mean group velocity

(5.30) β′(ωo) =
1

N(ωo)

N(ωo)∑
j=1

β′
j(ωo)

and of variance σ2
e(ωo)Z, estimated in [11, section 20.6.2] to be of the order

(5.31) σ2
e(ωo) ≈ 2Le

N(ωo)

N(ωo)∑
j=1

[
β′
j(ωo)− β′(ωo)

]2
.

Thus,

F(ωo, Z, x�) ≈
[
2πσ2

e(ωo)
]−1/2

4N(ωo)Z1/2

N(ωo)∑
j,l=1

βl(ωo)

βj(ωo)
φ2
j (x�)φ

2
l (x�)e

− (β′
j
(ωo)−β′(ωo))2

2σ2
e(ωo)

Z
,

with decoupled sums over j and l. Assuming a large N = N(ωo), we get

N∑
l=1

βl(ωo)φ
2
l (x�) ≈ 8π

λ2
oN

N∑
l=1

√
1− l2

N2
sin2

(
l

N

2πx�

λo

)

≈ 8π

λ2
o

∫ 1

0

dξ
√
1− ξ2 sin2

(
ξ
2πx�

λo

)
,

which is O(1). The sum over j is
(5.32)

N∑
l=1

φ2
j (x�)

βj(ωo)
e
− (β′

j
(ωo)−β′(ωo))2

2σ2
e(ωo)

Z ≈ 2

π

∫ 1

0

dξ
sin2

(
ξ 2πx	

λo

)
√
1− ξ2

e
− Z

2σ2
e(ωo)

[
1
co

/
√

1−ξ2−β′(ωo)
]2
,

and since Z/σ2
e(ωo) ∼ Z/Le � 1, we have a Laplace-type integral [3, section 6.4] that

can be estimated in the vicinity of ξ satisfying

1

co
/
√
1− ξ2 = β′(ωo) =

1

N

N∑
j=1

1

co
/

√
1− j2

N2
≈ π

2co
.

We get that (5.32) is O(Z−1/2), and thus F = O [1/(ZN(ωo))].

5.2. Matched field and CINT. The CINT function follows from (2.8):

ICINT (�xs) =

∫
dω

2π

∫
dω′

2π
χ̂

Ω

(
ω − ω′

ε2

)∫
A
dr p̂(ω, r, zA)Ĝo(ω, r, zA; �xs)

×
∫
A
dr′ p̂ (ω′, r′, zA)Ĝo(ω

′, r′, zA; �xs).(5.33)

Since the decoherence frequency is Ωd = ε2Ω, it back propagates cross-correlations of
the received traces over long time windows χΩ(ε

2t) of support (ε2Ω)−1. The conven-
tional (Bartlett) matched field function is

(5.34) IMF (�xs) =

∫
dω

2π

∣∣∣∣∫A dr p̂ (ω, r, zA)Ĝo(ω, r, zA; �xs)

∣∣∣∣2 .
Now, let us compute the statistical mean of (5.33) and (5.34), in order to understand
how CINT and matched field are expected to focus.
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5.2.1. The statistical mean. Substituting (4.23) and (5.1) into (5.33)–(5.34),
and setting zA = Z/ε2 and zA − zs = Zs/ε2, we get

E
{ICINT (�xs)

}
=

1

4

N(ωo)∑
j,l,j′,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj′ (ωo)
φl(x�)φl′(x�)φj(x

s)φj′ (x
s)

×
∫

dh

2π

∫
dh′

2π
f̂B(h) f̂B(h

′)χ̂
Ω

(
h− h′

ε2−σ

)
E
{
T ε
jl(ωo + εσh, Z)T ε

j′l′(ωo + εσh′, Z)
}

× ei[βj(ωo+εσh)−βj′ (ωo+εσh′)] (Z−Zs)

ε2(5.35)

for the CINT function and

E
{IMF (�xs)

}
=

1

4

N(ωo)∑
j,l,j′,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj′(ωo)
φl(x�)φl′ (x�)φj(x

s)φj′ (x
s)

×
∫

dh

2π

∣∣∣f̂B(h)∣∣∣2 E {T ε
jl(ωo + εσh, Z)T ε

j′l′(ωo + εσh, Z)
}

× ei[βj(ωo+εσh)−βj′ (ωo+εσh)] (Z−Zs)

ε2(5.36)

for matched field. This is in the best possible case of full aperture and for σ ∈ (1, 2).
The results are worse for partial apertures, as illustrated in Figure 3.5.

To estimate (5.35), let us change variables:

h+ h′

2
� h, h− h′ � ε2−σh̃.

We obtain from Lemma 5.2 that

E
{ICINT (�xs)

} ≈ ε2−σ‖fB‖2
4

N(ωo)∑
j,l=1

βl(ωo)

βj(ωo)
φ2
l (x�)φ

2
j (x

s)

×
∫

dτW
(l)
j (ωo, τ, Z)χ

Ω

(
β′
j(ωo)Z

s − τ
)
,(5.37)

where we neglect the terms that decay exponentially in Z, and we let f̂B(h±ε2−σh̃/2)

≈ f̂B(h). Now, recall that χ̂Ω
(h) is supported in the frequency interval [−Ω,Ω], which

means that χ
Ω
(t) has time support ∼ 1/Ω. Assuming Ω � 1, so that ε2−σΩ � B, we

get
(5.38)

E
{ICINT (�xs)

} ≈ ε2−σ‖fB‖2
4

N(ωo)∑
j,l=1

βl(ωo)

βj(ωo)
φ2
l (x�)φ

2
j (x

s)W
(l)
j (ωo, β

′
j(ωo)Z

s, Z).

Similarly, we estimate the expectation of the matched field function (5.36):

(5.39) E
{IMF (�xs)

} ≈ ‖fB‖2
4

N(ωo)∑
j,l=1

βl(ωo)

βj(ωo)
φ2
l (x�)φ

2
j (x

s)U
(l)
j (ωo, Z),

with U
(l)
j (ωo, Z) given by (5.26).
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5.3. Conclusions. Although the mean CINT and matched field functions do
not decay exponentially in Z and/or ωo, as was the case with E{I(�xs)}, they are not
useful in localizing the source because they do not focus at �x�. The matched field
function (5.39) does not have any range information, and it does not focus in the
transverse direction. Indeed, recalling (5.27), we get that as Z/Le grows,

(5.40) E
{IMF (�xs)

}→ ‖fB‖2
4N(ωo)

N(ωo)∑
l=1

βl(ωo)φ
2
l (x�)

N(ωo)∑
j=1

φ2
j(x

s)

βl(ωo)
,

and there is no focusing in xs. That is, the function does not exhibit a peak at
xs ≈ x�. Returning to the results in Figure 3.4, we note that while IMF (�xs) localizes
the source in case (i), where Z ≈ Le, it gives no range or cross-range information in
case (iv), where Z ≈ 2.2Le. This is what our analysis predicts.

The CINT function does not focus any better in the transverse direction, but it

has some range information through the evaluation of W
(l)
j (ωo, τ, Z) at τ = β′

j(ωo)Z
s.

However, due to the dispersion induced by the random medium, W
(l)
j (ωo, τ, Z) peaks

far away from τ = β′
j(ωo)Z. This means that each term in (5.38) peaks at a different

Zs, and the range support of E
{ICINT (�xs)

}
is spread out, as in case (iv) in Figure

3.4. Explicitly, as Z/Le grows, the peak of W
(l)
j (ωo, τ, Z) approaches τ = β′(ωo)Z,

and the j term in (5.38) gives a large contribution at range

Zs(j) =
β′(ωo)

β′
j(ωo)

Z.

The range support of (5.38) is then between Zs(1) and Zs(N(ωo)), which is a large
interval.

To calculate the variance of ICINT and IMF , we need the fourth order multifre-
quency moments of T ε

jl(ω,Z), which are given in the next section and in Appendix C.
However, since we have already shown that the mean CINT and matched field func-
tions do not focus at the source, there is no point in analyzing their statistical stability.

6. Incoherent source localization. We introduce in this section an incoherent
source localization method. As we have learned from the analysis in section 5, the
mean field E {p̂(ω, r, zA)} decays exponentially in Z = ε2zA, signaling the rapid loss
of coherence of the pressure field recorded at the array. We have also seen that
expectations of cross-correlations of the traces persist at long ranges, and this is why
we use them to obtain a statistically stable source localization. Matched field and
CINT work with cross-correlations as well, but they do not focus because the cross-
correlations back propagated with the Green’s function Ĝo do not add coherently. We
estimate instead the source location by minimizing a certain misfit function.

If we took frequency correlations into account, like in CINT, we would work with

F(ωo, t, r, r
′) =

∫
|ω−ωo|≤εσB

dω

2π
ε2
∫

dh

2π
p̂(ω, r, zA)p̂ (ω − ε2h, r′, zA)e−iht

≈
∫
|ω−ωo|≤εσB

dω

2π
ε2
∫

dh

2π
e−iht E

{
p̂(ω, r, zA)p̂ (ω − ε2h, r′, zA)

}
(6.1)

for receiver transverse coordinates r, r′ ∈ A and for broad band pulses with σ < 2.
Otherwise, we would work with the cross-correlations
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ε−2

∫
dtF(ωo, t, r, r

′) =
∫
|ω−ωo|≤εσB

dω

2π
p̂(ω, r, zA)p̂ (ω, r′, zA)

≈
∫
|ω−ωo|≤εσB

dω

2π
E
{
p̂(ω, r, zA)p̂ (ω, r′, zA)

}
,(6.2)

like in matched field. The integrands in (6.1) and (6.2) decorrelate over ω offsets that
exceed O(ε2) [11, section 20.6], and this is why we can approximate the integrals over
the broad band by their statistical expectation. We give more details in section 6.1.2,
where we also show that the self-averaging does not hold for narrow band pulses with
bandwidth ε2B.

Now, let us use Lemma 5.2 to compute the expectations in (6.1) and (6.2). We
obtain after calculations that are similar to those in section 5.2.1 that

(6.3) F(ωo, t, r, r
′) ≈ ε2−σ‖fB‖2

4

N(ωo)∑
j,l=1

βl(ωo)

βj(ωo)
φ2
l (x�)φj(r)φj(r

′)W(l)
j (ωo, t, Z)

and
(6.4)∫

dtF(ωo, t, r, r
′) ≈ ε2−σ‖fB‖2

4

N(ωo)∑
j,l=1

βl(ωo)

βj(ωo)
φ2
l (x�)φj(r)φj(r

′)
∫

dtW(l)
j (ωo, t, Z).

The approximation assumes a long enough range to neglect the exponentially decaying
terms in the second moments in Lemma 5.2 and a bandwidth εσB with σ ∈ (1, 2).

Equations (6.3) and (6.4) show how the cross-correlations of the data traces carry
information about the source location. The cross-range x� appears the same way in
(6.3) and (6.4) in the argument of φ2

l . The scaled range Z is in the Wigner transform.
Because the time integral of the Wigner transform approaches 1/N(ωo) as the range
grows, as shown in (5.27), the cross-correlations (6.2) are not useful for determining

the source range. The range Z determines the time peak location of W(l)
j (ωo, t, Z),

and this is why we can estimate it from the cross-correlations (6.1).
The source localization described below is in two steps: First, we show in section

6.1 how to determine the range Z and the correlation function of the random fluctua-
tions of the wave speed using the cross-correlations (6.3). Then, we show in section 6.2
how to estimate the source cross-range x�. Because the use of frequency correlations
does not give additional information about x�, we estimate the cross-range with the
simpler function (6.4). We study with theory and numerical simulations the estima-
tion functions and show that the cross-range localization requires that Z be at most
∼ Le. The range estimation can be carried out for much larger distances of propaga-
tion. We also study the statistical stability of the estimation, which requires fourth
order multifrequency moments of the transfer matrix, computed in Appendix C in
the limit ε → 0.

6.1. Range estimation. The information about the scaled range Z is encoded
in the cross-correlations F(ωo, t, r, r

′) in a complicated way via the Wigner trans-

form W(l)
j (ωo, t, Z). To untangle it, we use the receiver coordinates and project

F(ωo, t, r, r
′) onto the waveguide modes∫

A
dr φj(r)

∫
A
dr′ φj(r

′)F(ωo, t, r, r
′)

=

∫
|ω−ωo|≤εσB

dω

2π
ε2
∫

dh

2π
P̂j(ω, zA)P̂j(ω − ε2h, zA)e−iht,(6.5)
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where

(6.6) P̂j(ω, zA) =
∫
A
dr p̂(ω, r, zA)φj(r).

Recalling the theoretical model (6.3), and assuming for a moment the ideal case
of a full aperture A = [0, X ], we obtain by the orthogonality of the eigenfunctions
that
(6.7)∫
A
dr φj(r)

∫
A
dr′ φj(r

′)F(ωo, t, r, r
′) ≈ ε2−σ‖fB‖2

4

N(ωo)∑
l=1

βl(ωo)

βj(ωo)
φ2
l (x�)W(l)

j (ωo, t, Z).

The range Z could be determined from (6.7) if we knew the transport speed. In weak
random media, the transport speed is close to β′

j(ωo), and Z can be estimated from
the maxima over the search ranges Zs of the migrated projected cross-correlations
(6.7) with travel times β′

j(ωo)Z
s. We are interested in strong random media, where

the transport speed is different from β′
j(ωo) and must be estimated as we search for

range Z.
Our estimation is based on the “dispersion function”

(6.8) R(ζ, j) =

∫
A
dr φj(r)

∫
A
dr′ φj(r

′)F(ωo, t = β′
j(ωo)ζ, r, r

′),

where ζ is the scaled range at which we migrate approximately the cross-correlations
with the incorrect speed β′

j(ωo). Therefore, R(ζ, j) peaks at ζ = ζj , which in general
is not equal to Z. The algorithm described below estimates Z by comparing the
dispersion function R(ζ, j) with its theoretical model RM (ζ, j;Zs) for a hypothetical
source at search range Zs. More specifically, it approximates Z by the minimizer
over all Zs of an objective function that measures the misfit between R(ζ, j) and
RM (ζ, j;Zs). The transport speed is computed using the transport equations stated
in Lemma 5.2, assuming a known correlation function C of the fluctuations of the
wave speed. In fact, we solve these equations to compute the Wigner transform that
enters the theoretical model RM (ζ, j;Zs). If the correlation function C is not known,
it can be estimated from the misfit between R(ζ, j) and RM (ζ, j;Zs) as well.

To state the algorithm, we need the following proposition proved in Appendix B.
It applies to broad and narrow band pulses, and to partial apertures, where there is
additional mode coupling due to the integrals

Mjq =

∫
A
dr φj(r)φq(r).

Proposition 6.1. The theoretical expected model of (6.8) is given by

(6.9) E {R(ζ, j)} ≈ ε2−σ‖fB‖2
4

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x�)W(l)

q (ωo, β
′
j(ωo)ζ, Z)

in the broad band case σ ∈ (1, 2). In narrow band σ = 2, we have at long ranges

E {R(ζ, j)} ≈ 1

4

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x�)

∫
dτW(l)

q (ωo, β
′
j(ωo)ζ − τ, Z)

×
∫

dt̃
B

π
sinc

(
Bt̃
)
fB

(
τ +

t̃

2

)
fB

(
τ − t̃

2

)
.(6.10)
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6.1.1. The estimation algorithm. We now introduce an algorithm that esti-
mates the scaled range source Z based on the dispersive effect induced by the random
medium.

Algorithm 6.2. This algorithm assumes a known correlation function of the
random fluctuations, so that we can compute the matrix Γ(c)(ωo). It also assumes a
fixed bandwidth ω ∈ [ωo − εσB,ωo + εσB] of the pulse f ε(t). The estimation involves
three steps.

Step 1. Given the array data, compute R(ζ, j) using (6.8) for modes j = 1, 2, . . . ,
N(ωo) and ζ in a search interval that includes its peaks ζj.

Step 2. Determine the set S of modes for which

(6.11) |R(ζj , j)| = max
ζ

|R(ζ, j)| > δ,

with δ a user-defined tolerance.
Step 3. Estimate Z by Z�, the minimizer of the objective function

(6.12) O(Zs) =
∑
j∈S

∫
dζ

∣∣∣∣∣ R(ζ, j)

R(ζj , j)
− RM (ζ, j;Zs)

RM (ζMj , j;Zs)

∣∣∣∣∣
2

,

where RM (ζ, j;Zs) is the model of the expectation of (6.8) for a hypothetical source
at range zs = zA − Zs/ε2 from the array, and ζMj is its peak. The integral in (6.12)
extends over the search domain.

Proposition 6.1 shows that in theory all the range information is in W(l)
q , which

we approximate by taking the inverse Fourier transform of the matrix exponential
(5.28). Since we do not know the source cross-range, we cannot define RM by (6.9)
or (6.10). Instead, we replace in these formulas φ2

l (x�) by the constant 2/X and get

(6.13) RM (ζ, j;Zs) =
ε2−σ‖fB‖2

2X

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
W(l)

q (ωo, β
′
j(ωo)ζ, Z

s)

in broad band and

RM (ζ, j;Zs) =
1

2X

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)

∫
dτW(l)

q (ωo, β
′
j(ωo)ζ − τ, Zs)

×
∫

dt̃
B

π
sinc

(
Bt̃
)
fB

(
τ +

t̃

2

)
fB

(
τ − t̃

2

)
(6.14)

in narrow band. This should have minimal effect on the range estimation, which is
based on the variation of R(ζ, j) in ζ. The cross-range x� affects the actual peak
value R(ζj , j), which is why we normalize R in the objective function. We also filter
out the modes for which |R(ζj , j)| is below the threshold δ.

Algorithm 6.2 assumes that we know the correlation function

C(x, x′, z − z′) = E {ν(x, z)ν(x′, z′)}
of the fluctuations. When we do not know C, but have a priori information about how
to model it, we can estimate it together with the source range.

Algorithm 6.3. This algorithm is based on the a priori model

(6.15) CM (x− x′, z − z′;αs, �s) = αsΘ [(x− x′, z − z′)/�s]
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of C, where Θ is a given function of O(1) support. It is parametrized by the search
amplitude αs and the search correlation length �s.

Steps 1 and 2 are identical to those in Algorithm 6.2.

Step 3. Estimate Z = Z� and the correlation function C ≈ CM (x − x′, z − z′;
α�, ��), where (Z�, α�, ��) is the minimizer of

(6.16) O(Zs, αs, �s) =
∑
j∈S

∫
dζ

∣∣∣∣∣ R(ζ, j)

R(ζj , j)
− RM (ζ, j;Zs, αs, �s)

RM (ζMj , j;Zs, αs, �s)

∣∣∣∣∣
2

.

Here RM (ζ, j;Zs, αs, �s) is the model of the expectation of (6.8) for a hypothetical
source at range zs = zA−Zs/ε2 and for fluctuations with correlation function (6.15).

The essential assumption in this algorithm is the model of the correlation function
of the fluctuations ν(�x), which are supposed in (6.15) isotropic and stationary in
range and cross-range. In principle, the algorithm could handle fluctuations that are
anisotropic and not stationary in cross-range, so that CM depends on more than two
parameters. We do not have such results. In any case, it is expected that the more
parameters there are in the model, the more difficult the estimation.

An essential question that arises is how sensitive the estimation is to the accuracy
of the model (6.15). Our numerical experiments suggest that the range estimation is
not too sensitive to the model CM . For example, in a simulation with ε = 3%, central
frequency 2.39kHz, and bandwidth 0.375kHz, Algorithm 6.3 returned essentially the
same source range Z� ≈ Z for three models of CM . The first is Gaussian,

(6.17) CM (x− x′, z − z′;αs, �s) = αse
− |�x−�x′|2

2(�s)2 ,

like the one used in the simulations of the array data. The second model is exponential,

(6.18) CM (x− x′, z − z′;αs, �s) = αse−
|�x−�x′|

�s ,

and the third is

(6.19) CM (x − x′, z − z′;αs, �s) = αs

(
1 +

|�x− �x′|
�s

)
e−

|�x−�x′|
�s .

We note that, at high spatial frequencies, the Fourier transform (power spectral den-
sity) of (6.19) has power law behavior typical of multiscale random media.

With the Gaussian model we obtained

α� ≈ (2π�2)−1 = 2.55m−2 and �� ≈ � = 0.25m,

as expected from (3.2). Naturally, the algorithm returned different parameters α� and
�� with the second and third models, but they all satisfied the normalization relation∫

d�x CM (�x) ≈
∫

d�x C(�x) = 1.

This is not surprising, as it is not the correlation function per se that appears in the
transport equations, but integrals of it multiplied by the waveguide modes and slowly
oscillating cosine functions, as seen from Lemmas 5.1 and 5.2.
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6.1.2. Statistical stability. To estimate the variance of the range estimation
function (6.8), we need the fourth order moments of T ε(ω,Z) at nearby frequencies.
The transfer matrix decorrelates at frequency offsets that exceedO(ε2) [11], so we need
to consider only O(ε2) frequency shifts. We derive all these moments in Appendix C,
but we use only those for a subset of indexes relevant to the variance calculation at
full aperture. The variance at partial aperture follows similarly, and we do not include
it here to simplify the exposition.

The model of the estimation function (6.8) at full aperture is

R(ζ, j) ≈ ε2−σ

4

∫ B

−B

dh

2π

∫ Ω

−Ω

dω̃

2π
f̂B

(
h+

ε2−σω̃

2

)
f̂B

(
h− ε2−σω̃

2

)

×
N(ωo)∑
l,l′=1

√
βl(ωo)βl′(ωo)

βj(ωo)βj′(ωo)
φl(x�)φl′ (x�)T

ε
jl

(
ω + εσh+

ε2

2
ω̃, Z

)

× T ε
jl′

(
ωo + εσh− ε2

2
ω̃, Z

)
eiω̃(Z−ζ)β′

j(ωo),(6.20)

and its variance

V (ζ, j) = E
{
|R(ζ, j)|2

}
− |E {R(ζ, j)}|2

is estimated in the following proposition, proved in Appendix D.
Proposition 6.4. The variance V (ζ, j) of the estimation function at full aperture

satisfies

(6.21)
V (ζ, j)

|E {R(ζj , j)} | ∼
ε2Ω

εσB
,

where ζj is the peak of |E {R(ζ, j)} |. Since ε2Ω is the decoherence frequency of

T ε(ω,Z) and εσB is the bandwidth of the pulse f̂ ε, this implies that the estimation
function is statistically stable in the vicinity of its peak in broad band, where εσB �
ε2Ω. The function is not stable in narrow band regimes.

The proposition says that even though it may appear from the mean field model
computed in Proposition 6.1 that we can estimate the range in narrow band, the
estimation will not be reliable because the range estimation function R(ζ, j) changes
unpredictably with the realization of the random medium. We need a broad band
regime in order to obtain statistically stable results. This conclusion is validated by
extensive numerical simulations.

6.1.3. Numerical results. We present here numerical range estimation results
in the setup described in section 3. The unknown source is at location �x� = (5λc, 0)
at unscaled range zA = 494λc from the array.

We begin in Figure 6.1 with results at full aperture, ε = 3%, central frequency
2.09kHz, and bandwidth 0.375kHz. This is the case considered in plot (iv) of Fig-
ure 3.4, where matched field and CINT do not work. We show in the top left plot
in Figure 6.1 how the amplitude of R(ζj , j) varies with j and indicate the threshold
value δ = 0.2 used in our estimation. The set S contains the mode indexes j with
peak amplitudes above this threshold. The middle picture in the top row is a plot
of R(ζ, j)/R(ζj , j) for j ∈ S. This is computed from the array data and enters the
objective function at Step 3 of Algorithm 6.2. The abscissa in the plot is ζ/ε2 in units
of λc. The ordinate is the mode index in S. Note how the dispersion effects induced
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Fig. 6.1. Range estimation results for ε = 3%, central frequency 2.09kHz, and bandwidth
0.375kHz. Top row: Left: R(ζj , j) and the threshold δ = 0.2 for determining the set S of in-
dexes. Middle: R(ζ, j). Right: RM (ζ, j;Z�, α�, 
�). Bottom row: RM (ζ, j;Zs, αs, 
s) for opti-
mal Zs, αs, 
s, unless specified otherwise. Left: Zs = Z� − 20ε2λc. Middle: 
s = 
s/2. Right:
αs = 1.34α�.

by the random medium cause R(ζ, j) to peak at ranges different from the true one,
indicated by the vertical black line.

RM (ζ, j;Z�, α�, ��)/RM (ζMj , j;Z�, α�, ��) for j ∈ S and the optimal parameters
returned by the algorithm is shown in the right picture in the top row of Figure 6.1.
The optimization is done with the MATLAB function fmincon. Compare this picture
with the ones in the bottom row, where we fix two parameters at the optimal values
but vary the third one. In the left picture, we set Zs − Z� = 20ε2λc and note the
resulting range shift. In the middle picture, we set �s = ��/2 and see a different
dispersive behavior (the peaks have a different distribution around the true range
value). The right picture is for αs = 1.34α� and again shows a different dispersive
behavior.

In Figure 6.2 we show cross-sections of the objective function O(Zs, αs, �s) for two
realizations of the random medium and at full aperture. The top row is for ε = 2%,
at central frequency 2.69kHz and bandwidth 0.375kHz, which is the case in plot (i)
of Figure 3.4, where both matched field and CINT work. The bottom row is for
ε = 3%, at central frequency 2.09kHz and bandwidth 0.375kHz, which is the same
as in plot (iv) of Figure 3.4, where matched field and CINT do not work. Figure 6.2
illustrates that the objective function has a clear minimum around the true value of the
parameter indicated by a circle. The figure also shows that the results are essentially
the same in the two realizations of the medium, as stated in Proposition 6.4.

Figure 6.3 shows cross-sections of the objective function O(Zs, αs, �s) at partial
aperture. Here ε = 2%, the central frequency is 2.69kHz, and the bandwidth is
0.45kHz. The top row is for 40% aperture A = [0, 8λc], and the bottom row is for
20% aperture A = [0, 4λc]. The analogous plots for the medium with ε = 3% and
central frequency 2.09kHz are in Figure 6.4. The results are almost the same as in
Figure 6.2, except for the bottom left picture, where the estimated αs is slightly off.

6.2. Cross-range estimation. Since the cross-range information appears the
same way in the cross-correlations of the array data traces, whether we exploit fre-
quency correlation or not, we base the estimation on the simpler model (6.4). Specif-
ically, we work with

∫
dtF(ωo, t, r, r

′) and use the receiver coordinates to define the
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Fig. 6.2. Cross-sections of the range estimation objective function O(Zs, αs, 
s). In each plot
we fix two parameters at the optimal values and display the variation in the third parameter. The
true value of the parameters is indicated by a circle. The results are at full aperture. Top row:
two realizations at ε = 2%, central frequency 2.69kHz, and bandwidth 0.375kHz. Bottom row: two
realizations at ε = 3%, central frequency 2.09kHz, and bandwidth 0.375kHz.

Fig. 6.3. Cross-sections of the range estimation objective function O(Zs, αs, 
s). The results
are at partial aperture at ε = 2%, central frequency 2.69kHz, and bandwidth 0.45kHz. Top row: two
realizations at A = [0, 8λc]. Bottom row: two realizations at A = [0, 4λc].

cross-range estimation function

X (j) =

∫
dt

∫
A
dr φj(r)

∫
A
dr′ φj(r

′)F(ωo, t, r, r
′)

= ε2
∫
|ω−ωo|≤εσB

dω

2π
P̂j(ω, zA)P̂j(ω, zA),(6.22)
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Fig. 6.4. Cross-sections of the range estimation objective function O(Zs, αs, 
s). The results
are at partial aperture at ε = 3%, central frequency 2.69kHz, and bandwidth 0.45kHz. Top row: two
realizations at A = [0, 8λc]. Bottom row: two realizations at A = [0, 4λc].

with P̂j defined by (6.6). The estimate of x� is the minimizer over xs of an objective
function that measures the misfit between X (j) and its model XM (j;xs) for a hypo-
thetical source at �xs = (xs, Z�). Here Z� is the range estimate obtained as explained
in the previous section.

The model is

XM (j;xs) =
ε2−σ

4

N(ωo)∑
q,l,q′,l′=1

MjqMjq′

√
βl(ωo)β′

l(ωo)

βq(ωo)βq′ (ωo)
φl(x

s)φl′ (x
s)

∫ B

−B

dh

2π
|f̂B(h)|2

× ei
Z	

ε2
[βq(ωo+εσh)−βq′ (ωo+εσh)]E

{
T ε
ql(ωo + εσh, Z�)T ε

q′l′(ωo + εσh, Z�)
}
,(6.23)

where, by Lemma 5.2,

E
{
T ε
ql(ω,Z

�)T ε
q′l′(ω,Z

�)
}
≈ (1− δqq′)δqlδq′l′e

−
[
Dq(ω)+Dq′ (ω)−Γ

(1)

qq′ (ω)
]
Z	+i[Oq(ω)−Oq′ (ω)]Z	

+ δqq′δll′Uql(ω,Z
�),

with Uql(ω,Z
�) =

∫
dtW(l)

q (ω, t, Z�) given by (5.26). Equation (6.23) becomes

XM (j;xs) ≈ ε2−σ

4

∫ B

−B

dh

2π
|f̂B(h)|2

×
⎧⎨⎩

N(ωo)∑
q,q′=1

(1− δqq′ )MjqMjq′φq(x
s)φq′ (x

s)ei
Z	

ε2
[βq(ωo+εσh)−βq′ (ωo+εσh)]

× e
−
[
Dq(ωo)+Dq′ (ωo)−Γ

(1)

qq′ (ωo)
]
Z	+i[Oq(ωo)−Oq′ (ωo)]Z	

+

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x

s)Uql(ωo, Z
�)

⎫⎬⎭ ,(6.24)
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and it simplifies to

(6.25) XM (j;xs) ≈ ε2−σ‖fB‖2
4

N(ωo)∑
l=1

βl(ωo)

βj(ωo)
φ2
l (x

s)Ujl(ωo, Z
�)

in the case of full aperture and for broad band pulses. Although it may appear that
the broad band does not play a role in (6.25), we need it to get statistical stability.
The variance calculation for X (j) is essentially the same as that for R(Zs, j), and we
do not repeat it here.

6.2.1. The estimation algorithm.
Algorithm 6.5. The cross-range estimation is based on the minimization of the

objective function

(6.26) O(xs) =
∑
j∈S

∣∣∣∣ X (j)

〈X (·)〉 −
XM (j;xs)

〈XM (·;xs)〉
∣∣∣∣2 ,

where

(6.27) 〈X (·)〉 = 1

|S|
∑
j∈S

X (j), 〈XM (·;xs)〉 = 1

|S|
∑
j∈S

XM (j;xs)

are averages over the index set S, with cardinality |S|. The set S of indexes included
in the optimization is decided on the behavior of the model XM (j;xs) for different
source locations. We show below, with numerical simulations, that the higher modes
may not distinguish between different source cross-ranges, as they are most affected
by the random medium. If XM (j;xs) does not show sensitivity to xs, we exclude j
from the set S.

It is easy to infer from (6.25) that at long ranges, where Z � Le, we cannot
estimate the cross-range of the source. This is because Ujl ≈ 1/N(ωo) and XM

becomes essentially independent of xs, as confirmed by the numerical experiments
given below. However, the range estimation works at such long distances, as shown
in the previous section.

Since it is only φ2
l (x

s) that appears in the full aperture model (6.25), we cannot
determine xs uniquely, but find instead two possible cross-ranges, symmetric with
respect to the axis of the waveguide. The general model (6.24) may suggest that
we can resolve this ambiguity with partial apertures because of the coherent terms
(the sum over q �= q′ in (6.24)). However, these terms decay exponentially with the
source range, and they are not expected to improve the estimation much. In fact, the
numerical results show that partial apertures make the cross-range estimation quite
difficult.

6.2.2. Numerical results. We present here cross-range estimation results in
the same setup as in section 6.1.3. The unknown source is at �x� = (5λc, 0) at unscaled
range zA = 494λc from the array.

We begin in Figure 6.5 with an illustration of the model function XM (j;xs),
for a medium with ε = 2% fluctuations, at central frequency 2.69kHz, bandwidth
0.375kHz, and full aperture. This is the case considered in plot (i) of Figure 3.4,
where both matched field and CINT give good results at full aperture but not at
partial aperture (Figure 3.5). We plot XM (j;xs) for various source cross-ranges.
Note the different oscillatory patterns for various xs, and at the lower index of the
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Fig. 6.5. XM (j;xs) for ε = 2%, central frequency 2.69kHz, bandwidth 0.375kHz, and full
aperture. In the left plot we compare XM (j; xs) for xs = 5λc and 10λc. On the right we take more
values of xs, equal to 0.5λc, λc, 2λc, and 5λc, respectively.

Fig. 6.6. XM (j;xs) for xs = 5λc and 10λc for ε = 2%, central frequency 2.69kHz, bandwidth
0.375kHz, and partial aperture. Left: A = [0, 12λc]. Right: A = [0, 4λc].

Fig. 6.7. XM (j;xs) for xs = 5λc and full aperture. The left plot is at ε = 2% for central
frequencies 2.09kHz, 2.69kHz, and 3.13kHz, respectively. The right plot is for central frequency
2.69kHz and ε = 2% and 3%. The bandwidth is 0.375kHz.

modes, which are included in the set S used in the optimization. It is because of these
different oscillatory patterns that we can estimate the source cross-range, independent
of where it is in the interval (0, X).

The plots of XM (j;xs) for partial apertures are in Figure 6.6, where xs = 5λc and
10λc. They show that as we reduce the aperture, the cross-range estimation becomes
ambiguous because the oscillations of XM corresponding to different source locations
are similar.

In Figure 6.7, we show the effect of the random medium on the model function
XM (j;xs). Here we fix xs = x� = 5λc and plot in the left picture how XM (j;xs)
changes as we increase the central frequency from 2.09kHz to 3.13kHz. In the right
plot we fix the central frequency at 2.69kHz but increase ε from 2% to 3%. We note
that as we increase the frequency and/or ε, the oscillatory pattern of XM (j;xs) is
damped due to the stronger effect of the random medium. In fact, XM (j;xs) becomes
less and less sensitive to xs and the cross-range estimation becomes more and more
ambiguous.

Figures 6.8–6.9 give the cross-range estimation results. We note that aside from
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Fig. 6.8. Cross-range estimation results at ε = 2%, central frequency 2.69kHz, and bandwidth
0.375kHz. We plot the objective function O versus xs and 
s. Top left: full aperture A = [0, 20λc].
Top right: A = [0, 12λc]. Bottom left: A = [0, 8λc]. Bottom right: A = [0, 4λc].

Fig. 6.9. Full aperture cross-range estimation results at ε = 2% and bandwidth 0.375kHz. The
central frequency is 2.69kHz in the left plot, 2.99kHz in the middle plot, and 3.13kHz in the right
plot.

x�, we can also estimate the correlation function, although this is better done in
conjunction with the range estimation. Here we use the true Gaussian model of the
correlation function and we illustrate the estimation of the correlation length �s. The
estimation of the amplitude parameter αs appears to be ambiguous.

Figure 6.8 is at ε = 2%, central frequency 2.69kHz, and bandwidth 0.375kHz,
where matched field and CINT work at full aperture (case (i) in Figure 3.4) but not
at partial aperture (Figure 3.5). The top left picture in Figure 6.8 shows the estimation
at full aperture. The true values of the estimation parameters are indicated by a circle.
The estimation returns the correct correlation length and source cross-range, except
for the ghost that is symmetric with respect to the wave guide axis, as expected from
the theory. The ghost is removed at partial apertures because there is still enough
coherence in the data (recall the discussion at the end of section 6.2.1). However, we
note that the estimation becomes more difficult as we reduce the aperture, and it is
ambiguous at A = [0, 4λc] (bottom right plot). This is expected from the behavior of
XM (j;xs) illustrated in Figure 6.5.

Figure 6.9 shows cross-range estimation results at full aperture for bandwidth
0.375kHz and central frequencies 2.69kHz, 2.99kHz, and 3.13kHz. These are cases (i),
(ii), and (iii) in Figure 3.4. The cross-range estimation works well, but we note that
the ratio of the peak and minimum of the objective function O(�xs) approaches one
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as we increase the frequency, indicating that the estimation becomes more difficult.
This is expected from the behavior of the model XM illustrated in Figure 6.7.

7. Summary. In this paper we study with analysis and numerical simulations
the problem of source localization in random waveguides, given measurements of the
acoustic pressure at a remote arrayA of receivers. We describe in detail the deteriora-
tion of coherent source localization methods, due to cumulative strong wave scattering
by the random inhomogeneities in the waveguide, and introduce a novel incoherent
source localization approach.

We consider three coherent methods: synthetic back propagation of the time
reversed array data in deterministic (unperturbed) waveguides; matched field; and
CINT. The first method is the same as time reversal, when the source localization
occurs in unperturbed waveguides. Time reversal works well in random waveguides,
but it cannot be used for source localization, because we cannot implement the back
propagation in the true medium, which is unknown. We find that synthetic back
propagation in the unperturbed waveguide is not useful because it lacks statistical
stability with respect to the realization of the medium. Explicitly, we show that the
mean of the estimation function focuses at the correct location, but its amplitude
decays exponentially with range and central frequency. This is because the wave
field loses its coherence rapidly (exponentially), and the energy is transferred to the
fluctuations, the incoherent field. Consequently, the relative standard deviation of the
estimation function is very large and the method is unstable.

The matched field and coherent interferometric source localization functions are
not useful for localizing sources at long ranges either. Both methods use cross-
correlations of the array data, which have a nontrivial long range mean. However,
since they do not account for the strong dispersive effect induced by scattering in the
waveguide, they do not focus at the source location.

To localize the source from almost incoherent array data, we need to system-
atically exploit the dispersive effect induced by the random medium. This requires
a mathematical model, which allows us to restate the problem as one of parameter
estimation for the source coordinates and possibly the correlation function of the ran-
dom fluctuations of the wave speed. We use here the asymptotic model derived in
[14, 9, 12, 11]. The asymptotics is in the amplitude scale of the fluctuations, which is
typically 1%–3% in underwater acoustics [10], and for long distances of propagation.
We show how to use the model to formulate a statistically stable incoherent source
localization approach. We analyze the method in detail and assess its performance
with extensive numerical simulations.

Appendix A. Time reversal refocusing in unperturbed waveguides. We
begin with expression (5.5) of the time reversal function. Based on the O(1/B)
support of fB(t), we can change variables,

Zs − Z = −ε2−σηs, i.e., zs = zA − Zs/ε2 = ε−σηs,

and obtain

(A.1) ITR
o (xs, ε−σηs) ≈ 1

4

N(ωo)∑
j=1

φj(x�)φj(x
s)e−iβj(ωo)η

s/εσ fB
(−β′

j(ωo)η
s
)
.

This is a sum of highly oscillatory terms, and we expect that when N(ωo) is large
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enough, there will be a lot of cancellations unless βj(ωo)η
s ∼ ηs/λo ≤ O(εσ). Indeed,

ITR
o (xs, εσηs) ≈ 1

λoN

N∑
j=1

sin

(
j

N

2πxs

λo

)
sin

(
j

N

2πx�

λo

)

× e−iε−σηs 2π
λo

√
1− j2

N2 fB

⎛⎝ −ηs

co

√
1− j2

N2

⎞⎠
≈ 1

2λo

∫ 1

0

dξ

[
cos

(
ξ
2π(xs − x�)

λo

)
− cos

(
ξ
2π(xs + x�)

λo

)]
× e−i 2πε−σηs

λo

√
1−ξ2fB

(
−ηs

co
√
1− ξ2

)
when N = N(ωo) = �2X/λo� � ε−σ � 1, and we can interpret the sum over ξj = j/N
as a Riemann sum for the integral over ξ ∈ (0, 1). Then, it follows from the method
of stationary phase [3, Chapter 6] that ITR

o is large for ηs/λo ∼ εσ so that zs ∼ λo.
At the true source range (zs = 0), we have

ITR
o (xs, 0) ≈ fB(0)

4

N(ωo)∑
j=1

φj(x�)φj(x
s)

≈ fB(0)

2λo

∫ 1

0

dξ

[
cos

(
ξ
2π(xs − x�)

λo

)
− cos

(
ξ
2π(xs + x�)

λo

)]
≈ fB(0)

2λo
sinc

[
2π(xs − x�)

λo

]
(A.2)

in the limit N(ωo) � 1.

Appendix B. Proof of Proposition 6.1. Recall model (4.20) of the array
data, and set zA = Z/ε2, to obtain from (6.6)

(B.1) P̂j(ω, zA) ≈ f̂ ε(ω)

2

N(ωo)∑
q,l=1

Mjq

√
βl(ωo)

βq(ωo)
φl(x�)T

ε
ql(ω,Z)eiβq(ω)Z/ε2 .

Then,

(B.2) R(ζ, j) =

∫
|ω−ωo|≤εσB

dω

2π
R̂(ω, ζ, j),

where

(B.3) R̂(ω, ζ, j) =

∫
|ω−ω′|≤ε2Ω

dω′

2π
P̂j(ω, zA)P̂j(ω

′, zA)

is given by

R̂(ω, ζ, j) ≈ ε2

4

N(ωo)∑
q,l,q′,l′=1

MjqMjq′

√
βl(ωo)βl′ (ωo)

βq(ωo)βq′ (ωo)
φl(x�)φl′(x�)e

i[βq(ω)−βq′ (ω)]Z/ε2

×
∫ Ω

−Ω

dh̃

2π
f̂ ε
(
ω + ε2h̃/2

)
f̂ ε
(
ω − ε2h̃/2

)
T ε
ql

(
ω + ε2h̃/2, Z

)
× T ε

q′l′

(
ω − ε2h̃/2, Z

)
eih̃Z[β

′
q(ω)+β′

q′ (ω)]/2−ih̃ζβ′
j(ω)(B.4)
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after the change of variables (ω + ω′)/2� ω and ω − ω′ � ε2h̃. Taking expectations
and using Lemma 5.2,
(B.5)

E
{
R̂(ω, ζ, j)

}
≈ ε2

4

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x�)

∫
dτ W(l)

q (ω, τ, Z)Ψ(ω, β′
j(ω)ζ − τ),

where

(B.6) Ψ(ω, t) =

∫ Ω

−Ω

dh̃

2π
f̂ ε

(
ω +

ε2h̃

2

)
f̂ ε

(
ω − ε2h̃

2

)
e−ih̃t,

and we neglect the exponentially decaying terms in Z.

Now, let us evaluate (B.6) using the definition (4.21) of f̂ ε and for σ ∈ (1, 2]. For
broad band pulses, we can approximate

f̂ ε

(
ω ± ε2h̃

2

)
=

1

εσ
f̂B

(
ω − ωo

εσ
± ε2−σh̃

2

)
≈ 1

εσ
f̂B

(
ω − ωo

εσ

)

and obtain

(B.7) Ψ(ω, t) ≈ Ωε−2σ

π

∣∣∣∣f̂B (ω − ωo

εσ

)∣∣∣∣2 sinc(Ωt), σ ∈ (1, 2).

In the narrow band case σ = 2,

f̂ ε

(
ω ± ε2h̃

2

)
=

1

ε2
f̂B

(
ω − ωo

ε2
± h̃

2

)

and

Ψ(ω, t) ≈ 1

ε4

∫
dt1

∫
dt2fB(t1)fB(t2)e

i(ω−ωo)(t1−t2)/ε
2

∫ Ω

−Ω

dh̃

2π
eih̃[(t1+t2)/2−t]

=
Ωε−4

π

∫
dt1

∫
dt2fB(t1)fB(t2)e

i(ω−ωo)(t1−t2)/ε
2

sinc

[
Ω

(
t1 + t2

2
− t

)]
.(B.8)

Thus, the theoretical expected model of (6.8) is given by

E {R(ζ, j)} ≈ ε2−2σ

4

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x�)

×
∫

dω

2π

∫
dτW(l)

q (ω, τ, Z)

∣∣∣∣f̂B (ω − ωo

εσ

)∣∣∣∣2 Ω

π
sinc

[
Ω
(
β′
j(ω)ζ − τ

)]
≈ ε2−σ‖fB‖2

4

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x�)W(l)

q (ωo, β
′
j(ωo)ζ, Z)(B.9)
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in broad band and by

E {R(ζ, j)} ≈ ε−2

4

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x�)

∫
dω

2π

∫
dτ W(l)

q (ω, τ, Z)

×
∫

dt1

∫
dt2 fB(t1) fB (t2)e

i(ω−ωo)(t1−t2)/ε
2

× Ω

π
sinc

[
Ω

(
t1 + t2

2
+ τ − β′

j(ω)ζ

)]

≈ 1

4

N(ωo)∑
q,l=1

M2
jq

βl(ωo)

βq(ωo)
φ2
l (x�)

∫
dτ W(l)

q (ωo, β
′
j(ωo)ζ − τ, Z)

×
∫

dt̃
B

π
sinc

(
Bt̃
)
fB

(
τ +

t̃

2

)
fB

(
τ − t̃

2

)
(B.10)

in narrow band.

Appendix C. The fourth order multifrequency moments of the transfer
matrix. We wish to calculate the fourth order multifrequency moments

E
{
T ε
jm(ω + ε2h, Z)T ε

ln(ω − ε2ω̃, Z)T ε
JM(ω − ε2ω̃′, Z)T ε

LN (ω + ε2h′, Z)
}

for frequency offsets h, h′, ω̃, and ω̃′ of order one. For this, we use that T ε satisfies
stochastic equations (4.18) and write that

eihzβ
′
j
∂

∂z
T ε
jm =

∂

∂z
Tε
jm − ihβ′

jT
ε
jm =

iω2

2c2oε

N∑
p=1

Tε
pm

Cjp(z/ε
2)√

βpβj

ei(βp−βj)z/ε
2

+
iω4

4c4o

N∑
p=1

Tε
pm

∑
l′>N

∫ ∞

−∞
ds

Cjl′ (z/ε
2)Cpl′ (z/ε

2 + s)

βl′
√
βpβj

e−βl′ |s|+iβps+i(βp−βj)z/ε
2

(C.1)

for z > 0, where

(C.2) Tε
jm(ω + ε2h, z) = eihzβ

′
j(ω)T ε

jm(ω + ε2h, z).

At z = 0 we have the initial conditions

(C.3) Tε
jm(ω + ε2h, 0) = T ε

jm(ω + ε2h, 0) = δjm.

Then, we can write

E
{
T ε
jm(ω + ε2h, z)T ε

ln(ω − ε2ω̃, z)T ε
JM(ω − ε2ω̃′, z)T ε

LN (ω + ε2h′, z)
}

= e−i(hβ′
j+ω̃β′

l+ω̃′β′
J+h′β′

L)zE
{
Vε

jlJL(ω, h, h
′, ω̃, ω̃′)

}
,(C.4)

where we let
(C.5)
Vε

jlJL(ω, h, h
′, ω̃, ω̃′) = Tε

jm(ω+ε2h, Z)Tε
ln(ω−ε2ω̃, z)Tε

JM(ω−ε2ω̃′, Z)Tε
LN (ω+ε2h′, z)

and suppress the indexes m, n, M, and N in the notation. These indexes are pa-
rameters in the differential equations (C.1), but they influence the initial conditions
(C.3).
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The stochastic system of differential equations for Vε
jlJL follows from (C.1), and

we write it in compact form as

∂

∂z
Vε

jlJL =
1

ε
FjlJL +GjlJL, z > 0,

Vε
jlJL

∣∣
z=0

= δjmδlnδJMδLN ,(C.6)

where

FjlJL =
iω2

2c2o

N∑
p=1

[
Cjp(z/ε

2)√
βpβj

ei(βp−βj)z/ε
2

Vε
plJL − Clp(z/ε

2)√
βpβl

e−i(βp−βl)z/ε
2

Vε
jpJL

− CJp(z/ε
2)√

βpβJ

e−i(βp−βJ )z/ε
2

Vε
jlpL +

CLp(z/ε
2)√

βpβL

ei(βp−βL)z/ε2Vε
jlJp

]
(C.7)

and

GjlJL = i
[
hβ′

j + ω̃β′
l + ω̃′β′

J + h′β′
L

]
Vε

jlJL

+
iω4

4c4o

N∑
p=1

∑
l′>N

∫ ∞

−∞
ds e−βl′ |s|Cpl′(z/ε

2 + s)

βl′

×
[
Cjl′ (z/ε

2)√
βpβj

eiβps+i(βp−βj)z/ε
2

Vε
plJL − Cll′ (z/ε

2)√
βpβj

e−iβps−i(βp−βl)z/ε
2

Vε
jpJL

− CJl′(z/ε
2)√

βpβJ

e−iβps−i(βp−βJ )z/ε
2

Vε
jlpL +

CLl′(z/ε
2)√

βpβL

eiβps+i(βp−βL)z/ε2Vε
jlJp

]
.(C.8)

We are almost ready to apply the diffusion approximation theorem [11, Theorem 6.5],
in order to obtain E

{
Vε

jlJL

}
in the limit ε → 0. We need to do one more step,

and write (C.6) as a system of differential equations for vector Vε ∈ R2N4

, with
components

V ε
(L−1)N3+(J−1)N2+(l−1)N+j = ReVε

jlJL,

V ε
N4+(L−1)N3+(J−1)N2+(l−1)N+j = ImVε

jlJL.(C.9)

Equations (C.6) become

(C.10)
∂

∂z
Vε =

1

ε
F
[
ν
(
·, z

ε2

)
,
z

ε2

]
Vε + G

[
ν
(
·, z

ε2

)
,
z

ε2

]
Vε,

with matrices F ,G ∈ R2N4×2N4

following obviously from (C.7) and (C.8).
We obtain from [11, Theorem 6.5] that as ε → 0, Vε converges in distribution to

the diffusion Markov process V with generator Q given by

Qϕ(v) = lim
Z̄→∞

1

Z̄

∫ Z̄

0

ds

∫ ∞

0

dzE{F(ν(·, 0), s)v · ∇v[F(ν(·, z), s+ z)v · ∇vϕ(v)]}

+ lim
Z̄→∞

1

Z̄

∫ Z̄

0

dsE{G(ν(·, 0), s)v · ∇vϕ(v)}(C.11)

for an arbitrary smooth function ϕ. To get the limit of E
{
Vε

jlJL

}
as ε → 0, it

suffices to compute the action of Q on ϕ(v) = vq and ϕ(v) = vq+N4 , where q =
(L − 1)N3 + (J − 1)N2 + (l − 1)N + j. Then, the result follows from Kolmogorov’s
backward equation [7].
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We obtain after tedious but straightforward calculations that

(C.12) lim
ε→0

E
{
Vε

jlJL

}
= VjlJL(ω, h, h

′, ω̃, ω̃′, z),

where

∂

∂z
VjlJL =

[
i
(
hβ′

j + ω̃β′
l + ω̃′β′

J + h′β′
L

)
+QjlJL

]VjlJL − (1− δjL)Γ
(c)
jLVLlJj

− (1− δjL)Γ
(c)
Jl VjJlL + δlj

N∑
p�=j, p=1

Γ
(c)
pj VppJL + δJj

N∑
p�=j, p=1

Γ
(c)
pj VplpL

+ δlL

N∑
p�=l, p=1

Γ
(c)
pl VjpJp + δJL

N∑
p�=J, p=1

Γ
(c)
pJ Vjlpp(C.13)

for z > 0, and

QjlJL =
1

2

(
Γ
(c)
jj + Γ

(c)
ll + Γ

(c)
JJ + Γ

(c)
LL

)
− 1

2

(
Γ
(1)
jj + Γ

(1)
ll + Γ

(1)
JJ + Γ

(1)
LL

)
+ Γ

(1)
jl + Γ

(1)
jJ + Γ

(1)
lL + Γ

(1)
JL − Γ

(1)
lJ − Γ

(1)
jL

+
i

2

(
Γ
(s)
jj + Γ

(s)
LL − Γ

(s)
ll − Γ

(s)
JJ

)
+ i (κj + κL − κl − κJ) .(C.14)

The initial conditions at z = 0 are

(C.15) VjlJL(ω, h, h
′, ω̃, ω̃′, z = 0) = δjmδlnδJMδLN .

Proposition D.1 now follows easily from (C.13)–(C.15).

Appendix D. Proof of Proposition 6.4. We need the following result.
Proposition D.1. Consider arbitrary indexes j, l, l′, n, n′ = 1, . . . , N(ω). As

ε → 0, we have

E

{
T ε
jl

(
ω +

ε2(ω̃ + h̃)

2
, Z

)
T ε
jl′

(
ω − ε2(ω̃ − h̃)

2
, Z

)

× T ε
jn

(
ω − ε2(ω̃′ + h̃)

2
, Z

)
T ε
jn′

(
ω +

ε2(ω̃′ − h̃)

2
, Z

)}
→ e−i(ω̃+ω̃′)β′

jZVjjjj (ω, ω̃, ω̃
′, h̃, Z),(D.1)

where {Vjjqq}j,q=1,...,N(ω) and {Vjqjq}j �=q=1,...,N(ω) satisfy the closed system of equa-
tions

∂

∂z
Vjjqq = i

[(
ω̃ + ω̃′

2

)
(β′

j + β′
q) +

(
ω̃ − ω̃′

2

)
(β′

j − β′
q)

]
Vjjqq − Γ

(c)
jq [Vjqjq + Vqjqj ]

+

N∑
p�=j, p=1

Γ
(c)
pj (Vppqq − Vjjqq) +

N∑
p�=q, p=1

Γ(c)
pq (Vjjpp − Vjjqq)

+ δjq

⎡⎣ N∑
p�=j, p=1

Γ
(c)
pj (Vpjpj − Vjjjj) +

N∑
p�=j, p=1

Γ
(c)
pj (Vjpjp − Vjjjj)

⎤⎦ ,
j, q = 1, . . . , N(ωo),
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∂

∂z
Vjqjq = i

[(
ω̃ + ω̃′

2

)
(β′

j + β′
q) + h̃(β′

j − β′
q)

]
Vjqjq − Γ

(c)
jq [Vjjqq + Vqqjj ]

+

N∑
p�=j, p=1

Γ
(c)
pj (Vpqpq − Vjqjq) +

N∑
p�=q, p=1

Γ(c)
pq (Vjpjp − Vjqjq) , j �= q,

for z > 0 and initial conditions

Vjjqq(ω, ω̃, ω̃
′, h̃, z = 0) = δjlδjl′δqnδqn′ ,

Vjqjq(ω, h̃, ω̃, ω̃
′, h̃, z = 0) = δjlδql′δjnδqn′ .(D.2)

The proof is in Appendix C. Note that the initial conditions (D.2) are identically
zero unless l, l′, n, n′ satisfy one of the following conditions:

l = l′ and n = n′,(D.3)

l = n �= l′ = n′.(D.4)

This means that of all moments (D.1), only those with these indexes are not zero. Note
also that in Proposition D.1 and in Appendix C we suppressed the initial condition
notation in Vjjjj . We restore it now by writing

Vjjjj � V ll′nn′
jjjj .

We obtain from (6.20), Lemma 5.2, and Proposition D.1 that

V (ζ, j) ≈ ε3(2−σ)

42

∫ B

−B

dh

2π

∫ Ω

−Ω

dh̃

2π

∫ Ω

−Ω

dω̃

2π

∫ Ω

−Ω

dω̃′

2π
ei(ω̃+ω̃′)(Z−ζ)β′

j(ωo)

× f̂B

(
h+

ε2−σ

2
(ω̃ + h̃)

)
f̂B

(
h− ε2−σ

2
(ω̃ − h̃)

)
× f̂B

(
h− ε2−σ

2
(ω̃′ + h̃)

)
f̂B

(
h+

ε2−σ

2
(ω̃′ − h̃)

)

×
N(ωo)∑

l,l′,n,n′=1

√
βlβl′βnβ′

n

β2
j

φl(x�)φl′(x�)φn(x�)φn′(x�)Fll′nn′(ωo + εσh, ω̃, ω̃′, h̃),

where

Fll′nn′(ω, ω̃, ω̃′, h̃) = e−i(ω̃+ω̃′)Zβ′
j(ω) [δll′δnn′ + (1− δll′)δlnδl′n′ ]V ll′nn′

jjjj

(
ω, ω̃, ω̃′, h̃, Z

)
− e−i(ω̃+ω̃′)Zβ′

j(ω)δll′δnn′Ŵ
(l)
j (ω, ω̃, Z)Ŵ

(n)
j (ω, ω̃′, Z).(D.5)

The expression of the variance becomes

V (ζ, j) ≈ ε3(2−σ)

16

∫ B

−B

dh

2π

∫ Ω

−Ω

dh̃

2π

∫ Ω

−Ω

dω̃

2π

∫ Ω

−Ω

dω̃′

2π
e−i(ω̃+ω̃′)ζβ′

j(ωo)

× f̂B

(
h+

ε2−σ

2
(ω̃ + h̃)

)
f̂B

(
h− ε2−σ

2
(ω̃ − h̃)

)
× f̂B

(
h− ε2−σ

2
(ω̃′ + h̃)

)
f̂B

(
h+

ε2−σ

2
(ω̃′ − h̃)

)

×
N(ωo)∑
l,n=1

βl(ωo)βn(ωo)

β2
j

φ2
l (x�)φ

2
n(x�)

×
[
V llnn
jjjj + (1− δln)V lnln

jjjj − Ŵ
(l)
j (ωo, ω̃, Z)Ŵ

(n)
j (ωo, ω̃

′, Z)
]
,(D.6)
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where the arguments of V llnn
jjjj and V lnln

jjjj are (ωo, ω̃, ω̃
′, h̃, Z). The expectation of

R(ζ, j) is computed in Proposition 6.1, and we rewrite it here as

|E {R(ζ, j)}|2 ≈ ε2(2−σ)

16

∣∣∣∣∣
∫ B

−B

dh

2π

∫ Ω

−Ω

dω̃

2π
f̂B

(
h+

ε2

2
ω̃

)
f̂B

(
h− ε2

2
ω̃

)
e−iω̃ζβ′

j(ωo)

×
N(ωo)∑
l=1

βl(ωo)

βj(ωo)
φ2
l (x�)Ŵ

(l)
j (ωo, ω̃, Z)

∣∣∣∣∣
2

.(D.7)

Now, let us recall from (5.29) that, as Z increases,

(D.8) Ŵ
(l)
j (ωo, ω̃, Z) → 1

N(ωo)
eiω̃β′(ωo)Z−ω̃2σ2

eZ/2.

It is difficult to get an explicit limit of V ll′nn′
jjjj for arbitrary values of h̃, ω̃, and ω̃′.

Their maximum is attained at h̃ = ω̃ = ω̃′ = 0, where we have from [11, section
20.9.3] that

V llll
jjjj(ωo, 0, 0, 0, Z) → 2

N(ωo) [N(ωo) + 1]
,(D.9)

V llnn
jjjj (ωo, 0, 0, 0, Z) → 1

N(ωo) [N(ωo) + 1]
, l �= n,(D.10)

V lnln
jjjj (ωo, 0, 0, 0, Z) → 1

N(ωo) [N(ωo) + 1]
, l �= n.(D.11)

Using these results and writing the probabilistic representation4 of the transport equa-
tions obtained by taking the Fourier transform over (ω̃ + ω̃′)/2 and (ω̃ − ω̃′)/2 in

Proposition D.1, for h̃ = (ω̃ − ω̃′)/2, we can also obtain that

V ll′nn′
jjjj

(
ωo, ω̃, ω̃

′, h̃ =
ω̃ − ω̃′

2

)
� V ll′nn′

jjjj (ωo, 0, 0, 0)e
i(ω̃+ω̃′)β′(ωo)Z−(ω̃2+(ω̃′)2)σ2

eZ/2.

The choice h̃ = (ω̃ − ω̃′)/2 simplifies the problem in Proposition D.1 because we can
set by symmetry Vjqjq = Vjjqq . The equations are much harder to analyze in the
remaining cases, but we observe with direct numerical computations, which solve the
system of equations in Proposition D.1, that V llnn

jjjj and V lnln
jjjj remain of the same order

as Ŵ
(l)
j Ŵ

(n)
j .

Let us look closer at the sum in (D.6) and estimate it at h̃ = ω̃ = ω̃′ = 0. We
have that, as Z grows, this sum approaches

2

N(N + 1)

∣∣∣∣∣
N∑
l=1

βl

βj
φ2
l (x�)

∣∣∣∣∣
2

− 1

N2

∣∣∣∣∣
N∑
l=1

βl

βj
φ2
l (x�)

∣∣∣∣∣
2

=
N − 1

N + 1

1

N2

∣∣∣∣∣
N∑
l=1

βl

βj
φ2
l (x�)

∣∣∣∣∣
2

,

whereas the sum in (D.7) satisfies

N(ωo)∑
l=1

βl(ωo)

βj(ωo)
φ2
l (x�)Ŵ

(l)
j (ωo, ω̃ = 0, Z) → 1

N

N∑
l=1

βl

βj
φ2
l (x�).

4The probabilistic representation is obtained with a procedure similar to that in [11, section
20.6.2], but for a jumpMarkov process {Jz , Qz}z≥0 with state space in [1, . . . , N(ωo)]×[1, . . . , N(ωo)],
and with the generator given by the right-hand side of the equations in Proposition D.1.
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That is, the sum in (D.6) is a factor of (N − 1)/(N + 1) ≈ 1 of the sum in (D.7), in

the vicinity of h̃ = ω̃ = ω̃′ = 0, where the terms attain their maximum. Therefore, we
cannot expect a small ratio V/|E{R}|2, unless we are in a broad band regime with
σ < 2.

For σ < 2, we can approximate (D.6) as

V (ζ, j) ≈ ε3(2−σ)Ω

16π

∫ B

−B

dh

2π
|f̂B(h)|4

N(ωo)∑
l,n

βl(ωo)βn(ωo)

β2
j

φ2
l (x�)φ

2
n(x�)

∫ Ω

−Ω

dω̃

2π

∫ Ω

−Ω

dω̃′

2π

× e−i(ω̃+ω̃′)ζβ′
j(ωo)

{∫ Ω

−Ω

dh̃

2Ω

[V llnn
jjjj + (1− δln)V lnln

jjjj

]− Ŵ
(l)
j (ωo, ω̃, Z)Ŵ

(n)
j (ωo, ω̃

′, Z)

}
(D.12)

and (D.7) as

|E {R(ζ, j)}|2 ≈ ε2(2−σ)

16

[∫ B

−B

dh

2π
|f̂B(h)|2

]2 N(ωo)∑
l,n

βl(ωo)βn(ωo)

β2
j

φ2
l (x�)φ

2
n(x�)

×
∫ Ω

−Ω

dω̃

2π

∫ Ω

−Ω

dω̃′

2π
e−i(ω̃+ω̃′)ζβ′

j(ωo)Ŵ
(l)
j (ωo, ω̃, Z)Ŵ

(n)
j (ωo, ω̃

′, Z),(D.13)

where [∫ B

−B

dh|f̂B(h)|2
]2

≤ 2B

∫ B

−B

dh|f̂B(h)|4

by the Cauchy–Schwarz inequality. We conclude by comparing these expressions and

the fact that V llnn
jjjj and V lnln

jjjj are of similar magnitude to Ŵ
(l)
j Ŵ

(n)
j , that is,

(D.14)
V (ζ, j)

maxζ |E {R(ζ, j)}|2 = O

(
ε2−σΩ

B

)
,

as stated in Proposition 6.4.
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