
 1 Brent Gillespie, Mark Cutkosky

ABSTRACT
The simulation of virtual environments which are multi-degree-

of-freedom presents unique challenges to the designer of control
software for haptic display devices. Once the successfully rendered
stiffness, damping, and mass elements are interconnected to form
multibody systems, a host of controller implementation choices
arise. For one, the control law must manifest the dynamics of the
simulated multibody system. Further extensions are required if the
interconnection topology is allowed to change, as in the case of
changing kinematic constraints. The control law must be able to un-
dergo transformations in order to reflect these. We want to include
such capabilities in our simulator repertoire, as these are among the
most interesting to explore haptically. This paper describes a com-
bined simulation and experimental apparatus for exploring issues in
the haptic display of dynamical models. In particular, we address
problems in the simulation of changing kinematic constraints with
numerical integration methods which have been specialized for real-
time mechanical system simulation. Issues in the software design of
a haptic display are addressed. A simplified model of the piano ac-
tion is used as an illustrative example.

1.0 INTRODUCTION
Humans are admirably equipped to explore and characterize the

mechanical properties or behaviors of objects in the environment.
Our muscles and articulated limbs allow us to manipulate, and our
haptic senses (tactile and kinesthetic) provide us with information
about an object’s mechanical response to our manipulations. Our
goals, however, often go beyond system identification or character-
ization of the mechanical impedance of an object. We may want to
influence an object’s behavior. Such is the case when playing a mu-
sical instrument. While attempting to exact a desired dynamical be-
havior (and corresponding sound) from an instrument in our hands,
we use not only the sound but also the force/motion response in a

feedback sense to modify our manipulation. If the musical event is of
a long duration in comparison to human response times (typically
greater than 200ms), this information may be used by the musician
for real-time feedback control . Otherwise, the response information
is used for anticipatory control to modify the manipulation the next
time around, as with practice and learning. Examples of musical in-
strument playing in which haptic information is of relatively obvious
and immediate value to the player include ¾sultandoà or ¾ricochetà
bowing1 of a string instrument and use of the repetition feature on a
grand piano2. When an instrumentàs mechanical behavior has no
correspondence to its acoustic behavior or there is no haptic infor-
mation available, a very valuable channel of communication from
instrument to player is lost. This is the case for most synthesizer-
based musical instruments. In order to alleviate this deficiency on
keyboard synthesizers, yet preserve and even expand their program-
mability, we are developing a synthesizer keyboard with haptic dis-
play.

A virtual piano action (a mathematical model), a simulation al-
gorithm, and a set of 88 single degree-of-freedom haptic display de-
vices constitute a promising means to make a synthesizer keyboard
feel like a real grand piano. Other keyboard instruments could be
simulated with the same device at the touch of a button. We propose,
then, to simulate the feel of the grand piano by numerically inte-
grating the equations of motion of the multibody piano action in
real-time in a human-in-the-loop simulation scheme. As the inte-
gration proceeds, the finger-key interaction force is computed and

1. The sultando bowing technique involves bouncing the bow on the string
with control of the contact/non-contact timing according to a desired rhythm.

2. For a quick re-strike of a note on a grand piano, it is necessary to let the
key up only beyond a certain level which allows re-set of the jack under the
hammer knuckle. This level is detectable by feel.

INTERACTIVE DYNAMICS WITH HAPTIC DISPLAY

Brent Gillespie
Center for Computer Research in Music and Acoustics (CCRMA)

Stanford University
Stanford, California

Mark Cutkosky
Department of Mechanical Engineering

Stanford University
Stanford, California

 2 Brent Gillespie, Mark Cutkosky

 generated by a haptic interface. In addition, the motion (needed for
use in the integration) is sampled from the haptic interface hardware.

Beyond the need to simulate configuration dependent impedanc-
es, the piano action inspires another desired feature. Because the pi-
ano action relies on various trip mechanisms for its function, and
these have a significant effect on its touch-response, our simulator
must be capable of simulating multibody systems with changing ki-
nematic constraints.

Simulation of multibody dynamical systems with visual display
has been the subject of much research in the computer graphics field.
Simulation of changing kinematic constraints has also been ad-
dressed (Barzel, 1992, van Overveld, 1991). However, the use of
haptic display with simulation creates a number of unique challeng-
es. For example, to guarantee passive behavior of a system or even
just stability would require some rather sophisticated analytical tools
(Colgate, 1989). Coupling the force/motion sensors and actuators to
a physical display device to allow for interactive dynamics effec-
tively closes a control loop and changes the behavior of the simu-

Figure 1.
This is an example of some 7 pt text.

FIGURE 1.

A FEEDBACK LOOP INTERPRETATION OF THE SIMULA-
TOR COUPLED TO THE HUMAN.

x(t) = f(x(t), u(t))
y(t) = g(x(t), u(t))

Haptic Display Device

Human

Piano Action Model

forcemotion

motion

u y

x

Σ

Impedance Operator

NS S

Impedance Operator

Admittance Operator

motion input u
force output y
internal state x.

force

lation. For example, a virtual system with undamped behavior
when uncoupled will demonstrate damped behavior when the
powered manipulandum is tied in. (In fact, if the actuator signal is
sign-reversed, it will exhibit negative damping!) The mass and
damping properties of the manipulandum will figure into the
closed-loop behavior and effectively mask the feel of the virtual
system to the user. Figure 1 presents a feedback loop interpreta-
tion of the electrical signal coupling between the simulator (an
impedance operator in this case) and the manipulandum. The me-
chanical contact between the user and manipulandum can also be
considered a feedback connection. If the simulator is implement-
ed as an impedance operator (operating on motion to produce
force), then the manipulandum must necessarily be viewed as an
admittance. The user, if coupled, appears as an impedance oper-
ator as shown in Figure 1. Other analytical viewpoints, including
that of scattering operators also exist. See, for example, (Han-
naford 1989). This paper does not address questions of coupled
stability with analytical tools, rather it suggests the addition of
some parameters into the interaction controller which will allow
the range of stability to be fully explored.

Several standard forms exist for expressing a multibody model
(ordinary differential equations (ODEs), differential algebraic
equations (DAEs), coupled force balances). A simulator ar-
chitechture can be based on any one of these (Haug, 1991). Each
approach has its own advantage, be it ease of expression or ease of
implementation. We have chosen to formulate the equations of
motion in their reduced form (incorporating the kinematic con-
straints) so that they may be integrated by a standard ODE solver.
Thus, the rendering of a system with multiple constraint condi-
tions requires the formulation of multiple models and a passing of
the state information from one model to the next at the transition
times. Each sub-model governs the behavior only during that
time-period which corresponds to the particular kinematic struc-
ture for which it was developed. Our simulator must be able to
handle models described by ODEs which are only piece-wise con-
tinuous, with the discontinuities occurring at times which are
themselves functions of the state. A simulation of the piano action
will then be able to account for the changing kinematic constraints
that occur when the elements of the action make and break contact
with one another.

 In this paper, we introduce a single-key motorized keyboard
and its simulation algorithm which is capable of synthesizing cer-
tain aspects of the mechanical impedance of a grand piano. We
discuss the application of an ODE solver to the rendering of a
driving point impedance which may include changing kinematic
constraints in section 2. In section 3, we briefly introduce our soft-
ware environment and mention some of its features, especially
those relevant to the integration scheme. In section 4, a simplified
model of the grand piano action and one variant thereof are in-
troduced. We use these models in sections 5 and 6 as specific ex-
amples of the methods outlined in section 1. In particular, the
advantages of the model variant are discussed along with some ex-
perimental results. Section 7 summarizes.

 3 Brent Gillespie, Mark Cutkosky

2.0 CONSTRUCTION OF A HUMAN-IN-THE-LOOP
SIMULATOR FROM AN ODE SOLVER

The driving point mechanical impedance of a very large class of
mechanical systems can be simulated using an ODE solver as the
primary computational workhorse. In the following, we describe one
possible construction of an impedance operator from an ODE solver,
taking note of whatever restrictive assumptions must be made. An
impedance operator we define as any causal mapping from a velocity
input u to a force output y. In order to allow for non-linear models,
we cannot use a transfer function or impulse response description
and may not express the impedance operator as a convolution. So
while Z(s), the linear impedance transfer function, may not exist, we
nevertheless use the term impedance to describe a mapping from
motion input to force output.

As our model is dynamical, it will take the form of one or more
differential equations. In these differential equations, the force out-
put need not be the variable whose time derivative we choose to ex-
press in terms of itself and of the input, so we allow an internal state
variable x, where

 (1)
The dimension of the state vector is twice the number of the degrees-
of-freedom, p. Because the differential equations of motion of a me-
chanical system are second order, there are p kinematical differential
equations and p dynamical differential equations lined up in:

 (2)
A readout function r then expresses the force output in terms of the
state x and input u.

 (3)
We do not allow for time varying models; the time t does not ap-

pear as an argument in the above description. The solution y is ob-
tained in the usual way by numerical integration. The value of the
state x, which the impedance operator maintains, may be viewed as
an encapsulation of the action of the input history on the model.

2.1 Multiple Constraint Conditions
Thus far, we have not introduced the use of kinematic constraints

(either configuration or motion constraints) into our modeling pro-
cess. These arise if, in constructing our model, we choose to use
more generalized coordinates than exist degrees-of-freedom for the
model. Then m constraint equations can be written. The integer m is
given by

 (4)

 where n denotes the number of generalized coordinates and p the
number of degrees-of-freedom. If all constraint equations are either
holonomic or simple non-holonomic constraints, then the entire
model is expressible in the form of a set of ODEs. A simple non-ho-
lonomic constraint is expressible by a relationship between the gen-
eralized speeds ui in the following form:

x t() ℜ2p∈

xœt() f x u t(),()=

y t() r x u t(),()=

m n p−=

 (5)

where Ars and Br are functions of q1,... qn and possibly time t, but
not of u1,.un. The method used to obtain the equations of motion
in this paper is Kane’s method (Kane 1985).

2.2 Piece-wise Continuous ODEs
Finally, to further extend the class of allowable systems to

those which contain changing kinematic constraints, we define
piecewise continuous ordinary differential equations (PODEs)
and specify a numerical algorithm to solve them. In the following,
we follow the formalism developed by Barzel (1992). A PODE is
made up of a sequence of continuous ODE segments. Disconti-
nuities are allowed in both the specification and in the solution at
the transition times ti. We wrap a standard ODE solver in an al-
gorithm which can locate events during the solution and manage
the exchange of the differential functions in and out of the solver,
keeping the relevant ODE in place and starting it with the proper
initial conditions.

A complete model is described by a sequence of ODEs,

 (6)
a sequence of readout equations,

 (7)

a sequence of indicator functions,

 (8)
and a sequence of transition functions.

 (9)
 We step forward in time using our chosen numerical ODE solver
on the ith ODE and use the ith readout equation so long as

 (10)
Time ti, the end of the ith segment, is found when we detect

 (11)
 We then switch from the ith to the (i+1)th ODE. The initial con-
ditions for the next ODE are setup with

 (12)
(See Figure 2.) Of course we cannot find the precise time point at
which the event function gi is identically 0 when we are only sam-
pling the indicator function at each integration step. Therefore, we
must use a root finder to find ti to a specified degree of accuracy,
and integrate that particular integration step in which it occurs us-

ur Arsus Br+
s 1=

p

∑= r 1 …p,=()

xœi fi xi u t(),()= i 1 2 …, ,=()

yi t() r i xi u t(),()= i 1 2 …, ,=()

gi xi u t(),() i 1 2 …, ,=()

hi xi u t(),() i 1 2 …, ,=()

gi xi u t(),() 0>

gi xi u t(),() 0=

yi 1+ ti() y ti() hi xi ti() ti,()+=

 4 Brent Gillespie, Mark Cutkosky

ing first the ith ODE then the (i+1)th ODE. Multistep integration rou-
tines must be reset after each event. See (Shampine, 1991).

3.0 SOFTWARE AND HARDWARE FEATURES
The above outlined PODE-solver based simulator design has

been implemented in a C++ program and some hardware which we
briefly describe here.

The equations of motion are derived from an input model de-
scription and expressed in reduced form via computerized symbol
manipulation using Kane’s method (Schaechter 1988). These are
then incorporated (see details below) into a simulator program
which features graphical, haptic and audio (MIDI--musical instru-
ment digital interface) interfaces. The user may select from a menu
of virtual objects. Screen-based sliders allow for the modification of
various model parameters during run-time, which we have found to
be an invaluable asset during development as have others (Minsky
1990). A ¾486 50 MHz PC with a Delta-Tau Co. motor control card
form the heart of the system. An electro-mechanical apparatus em-
ploying voice-coil motors attached to keys or paddles provides for
the haptic display. Virtual bouncing rubber balls, pendulums on carts
colliding with walls, simplified piano actions, and other dynamical
systems with configuration-dependent kinematic constraints are ex-
amples of the simulations currently operational.

3.1 Some Details of the Software Design
The simulator class acquires its functionality by composition

rather than by inheritance (See Figure 3.) Upon selection of say, the
virtual piano, each of the pertinent piece-part objects is constructed
and pointers to these passed as arguments to the constructor of a sim-
ulator object. Construction of a piano simulator object is shown. Be-
cause the members of the graphical objects, models, and indicator
functions are all written as virtual member functions, the simulator
object can take advantage of the run-time polymorphism features of

FIGURE 2.

NUMERICAL INTEGRATION OF PIECE-WISE CON-
TINUOUS DIFFERENTIAL EQUATIONS (AFTER
BARZEL (1992)).

yi(t)

yi+1(t)

gi(xi(t),t)

gi+1(xi+1(t),t)

y(t) -- solution to y = f(y,t)
g(x(t),t) -- indicator function,
 determines transition times

ti

t

y, g

hi(xi(t),t)

C++. Thus, the simulator engine itself is completely generic code,
able to operate on any of the models. Once created, a simulator
object (of class Simulator Engine) will be called upon at each it-
eration of the event loop to execute the following: poll the sensors
for current readings, use the current (ith) model to integrate ahead
one time-step, check the indicator function, send a force value per
the readout equation to the D/A converters, and finally, perform
graphic display functions. One more software feature is worth
noting. The class definitions highlighted with non-square boxes in
Figure 3 are themselves written by another program. Thus, a new
model may be added without actually having to write C-code.

4.0 MODELS OF THE SIMPLIFIED PIANO ACTION

4.1 Model A
A highly simplified schematic representation of the grand pi-

ano action is shown in Figure 4. With such a model, we wish to al-
low the user to manipulate (and feel), through the leverage of a
key, a hammer either resting on the key or swinging like a pen-
dulum free of the key. Both the key and hammer are rigid bodies
subject to the action of gravity, and their motion is confined to a
vertical plane. A successful rendering of the feel of throwing and
catching the hammer will be a prelude to the rendering of the rep-
etition feel of the piano action. A more detailed model of the piano
action designed to render the letoff behavior has also been doc-

Figure 3

FIGURE 3.

CLASS HIERARCHY FOR THE SIMULATOR PRO-
GRAM (C++ LANGUAGE).

Coupled key
and hammer

Driven key,
free hammer

Ball on
paddle

Ball in
airDiff Eqs.,

Rk4 code

Graphical
Object

Key

Hammer

Ball

Pendulum

Pendulum
and cart

Indicator
Function

Let go
of hammer

Catch
hammer

Catch
ball

Icon

Button

Slider

Simulator
Engine

Legend

Class definition

Class definition
written by another
program

Inheritance

Composition

 5 Brent Gillespie, Mark Cutkosky

umented (Gillespie 1992). The simple model described here is sim-
ilar to a bouncing ball simulation, with the important extra
requirement that trigonometric constraint conditions must be con-
sidered while the hammer rests on the key.

 Two bodies comprise this model, which we shall call model A:
the key K and Hammer H. In sub-model A1, the motions of K and H
are coupled through a frictionless slider S which pivots on K and
slides along H. In sub-model A2, K and H move independently. Let
N denote a Newtonian reference frame. Body K pivots about point
P1 fixed in K and N; body H pivots about point P2 fixed in H and N.
Points K* and H* represent the mass centers of K and H respec-
tively. Generalized coordinates q1 and q2 and the specified variable
scompletely characterize the instantaneous configuration of sub-
model A1. Displacement q2 locates slider S on H whereas s and q1
are the radian measure of angles which locate K and H with re spect
to the horizontal. Since the motion of K will by prescribed by the

FIGURE 4.

MODEL A: SIMPLIFIED PIANO ACTION IN TWO
PHASES OF MOTION
a) COUPLED MOTION b) HAMMER FREE FLIGHT

K

H

S

s

q

q
1

2

K*

1 PP

P

3

2

q1

s

P3
1P

P2

H*

K*

H*
H

K

a) Sub-model A1

b) Sub-model A2.

1
2a
2b

1
2a
2b

coupled motion
hammer flight
key

coupled motion
hammer flight
key

S
x
x

S
x
x

0
1
0

2
1
1

2
0
0

2
0
0

Sub-model
name

Acitve
sliders

DOF
Number of
constraint
equations

Generalized
coordinates

A

B

q1, q2
q1
-

q1, q2, q3, q4
q2
q1

Model
name (p) (m) (of number n)

TABLE 1.

COMPARISON OF MODELS A AND B.
user, sub-model A1 has zero degrees-of-freedom; it is a strictly ki-
nematical model. Two constraint equations can be used to relate
q1 and q2 to s. Sub-model A2 is itself made up of two models: a
single degree-of-freedom model for the free-flying hammer and a
zero degree-of-freedom model of the key. Generalized speeds are
formed as functions of the generalized coordinates simply by set-
ting

 (13)
 An auxiliary generalized speed u3 is used to bring the inter-

action force between K and H at S, called FKH into evidence. An
auxiliary generalized speed u4 is used to bring the interaction
force between K and the user who specifies the variable s into ev-
idence; call this force FKU.

4.2 Model B
Alternatively, model B of the piano action (with linear springs

in place wherever expressions for interaction forces will be need-
ed) can be constructed as shown in Figure 5. Use of this model in
the simulator carries one very important advantage, namely, the
interaction force trajectories during simulation can be made ar-
bitrarily smooth if the spring constants are set sufficiently low,
even in the face of very noisy sensed velocity and acceleration
from the manipulandum. However, this advantage may come at
the expense of an unrealistically compliant keyboard sensation.

In model B, an additional body M (the manipulandum) is piv-
oted about point P1. A torsional spring of stiffness k1 is attached

Figure 4

FIGURE 5.

MODEL B: SIMPLIFIED PIANO ACTION WITH
SPRINGS IN TWO PHASES OF MOTION
a) COUPLED MOTION b) HAMMER FREE FLIGHT

K

H
S

s

q

q1

3

K*

1

P

P

P

3

2

q1

s
1P

P2

H*

K*

H*
H

K

M

q
2

P3M

q
2

k1

k2

k1a) Sub-model B1

b) Sub-model B2.

q
4

ui td

dqi= i 1 2,=()ui td

dqi= i 1 2,=()ui td

dqi= i 1 2,=()ui td

dqi= i 1 2,=()ui td

dqi= i 1 2,=()ui td

dqi= i 1 2,=()

 6 Brent Gillespie, Mark Cutkosky

between M and K. Also, a spring of stiffness k2 which always lies
perpendicular to the long axis of K attaches S to K . Let (s-q2) and q4
denote the extensions of springs k1 and k2. The use of two additional
generalized coordinates in model B1 is necessary since there are two
degrees-of-freedom. Sub-model B2 is made up of two one degree-of-
freedom models as shown in Figure 5b. See Table 1 for a comparison
of models A and B.

5.0 IMPLEMENTATION OF THE VIRTUAL PIANO
ACTION.

In the following, we discuss the setup of the components of the
simplified piano action models A and B for the PODE solver.

5.1 Simulation with model A
The formulation of model A1 described in section 4.1 produces

the differential equation d/dt(x)=f1 (Eq 6, i =1) upon which the ODE
solver is first invoked. We use the expression of the interaction force
at point P3, FKU for the readout equation r1 (Eq. 7, i =1). For the
event function g1 (Eq. 8, i =1), the expression for the interaction
force between the key and hammer FKH is used. So long as the in-
teraction force FKH remains compressive, that is, g1 > 0, the sim-
ulation continues with the motions of the hammer and key coupled
as guaranteed by Model A1. The transition function h1 is constructed
to ensure that the initial conditions for Model A1 satisfy its con-
straint conditions. Generalized coordinates q1, q2, and generalized
speeds u1 and u2 are determined from s and d/dt(s) according to the
constraint equations.

Upon first detecting g1 < 0, integration with Model A2 begins.
The hammer now flies freely towards the string. During this time,
along with integration using the differential equation d/dt(x)=f2 (Eq.
6, i =2), and use of readout function r2 (Eq. 7, i =2) from model A2,
a new event function g2 (Eq. 8, i =2) is used. Event function g2 is an
interference checker which evaluates to a number less than 0 when K
intersects the line segment P2H* . No special transition function h2 is
used for Model A2. The final conditions of A1 are used as initial con-
ditions for Model A2. Note that the two independent sub-models of
Model A2 can be integrated independently using a multi-state inte-
grator by uncoupling 2 states. The hammer will either fall back to-
wards the key under the action of gravity or reach a height at which it
strikes a virtual string. A struck string event is demarcated by the
sounding of a tone by a synthesizer hooked into our hardware setup.
At the time of contact, the sign of u2 is reversed to effect a perfectly
elastic collision between hammer and string. 1 At the end of the sim-
ulation epoch with model A2, that is, at time t2 detected by g2 < 0, we
return to simulation with model A1 (catch the hammer)

The most obvious errors in the algorithm outlined so far are in-
troduced because the roots of the event functions are not found ex-
actly but instead crossed over due to the finite step size h. If
computational time allows, a root finder can be used once a cross-
over is detected to find ti to within some prescribed bounds. Model
A1 is used to simulate up to time ti, then model A2 is used for the re-

1. The hammer/string interaction is the subject of future work. For now, we
assume that the duration of this simulation epoch is zero.

mainder of that step. Portions of this computational burden can be
shared by prior integration steps if the location of a root can be
predicted in advance. This requires even more stringent smooth-
ness (Lipschitz) conditions on gi. Multistep codes are especially
well suited for such applications. These techniques are the subject
of ongoing work.

5.2 Simulation with model B
Because the acceleration of the manipulandum appears in the

expressions for the interaction forces FKU and FKH , these force
signals will be in error if that acceleration signal is beset with
noise. Such noise is a serious performance limiting characteristic
of most hardware setups. Temporal filtering may help, but will in-
troduce de-stabilizing lags into the control loop.

Instead, use of Model B for simulation provides tolerance to
noisy input signals. Expressions for the interaction forces are very
simple in model B:

 (14)

 (15)
These expressions are used for the indicator function and readout
equation, respectively. Otherwise, the setup of model B for the
PODE solver is quite analogous to the setup of model A. During
simulation with model B, the signals FKH and FKU will be very
smooth in comparison to those for model A. The more compliant
the springs k1 and k2 are made, the smoother these signal will be-
come. Essentially, the resonant frequencies of the structure are
lowered as a result of lowering the stiffness. Thus, the use of Eq.
15 for readout r1 (force display) will produce a signal of limited
bandwidth which is well suited for force-display on a manipu-
landum. Likewise, Eq. 14, used for the indicator function g1, will
be more trustworthy because of its smoothness. This smoothness
could be expressed as a Lipschitz condition and used to guarantee
the ability to find the transition times with a finite sampling rate of
the indicator function. Most importantly, the extra degrees of free-
dom in model B provide filtering of high-frequency noise on the
input signals.

Unfortunately, piano action B will feel spongy. Extra dynamics
have been added which we are not interested in feeling. Model B,
however, does provide a means of measuring the capabilities of
the haptic display hardware for dynamical simulation. The spring
stiffnesses may be raised incrementally until the associated nat-
ural frequencies are high enough, or outside of the capabilities of
the display.

FKH k2 q4 t()⋅=

FKU k1 s t() q2 t()−()⋅=

 7 Brent Gillespie, Mark Cutkosky

quired by such codes, the numerical accuracy lies somewhere be-
tween that of the Euler method and the fourth-order Runge-Kutta
method. The model parameters used for the experiment are shown
in Table 2.

For this particular simulation, the manipulandum was held still
for 0.3 seconds, the hammer was then thrown upwards, it flew
free, and was caught at 0.9 seconds into the simulation. It was then
thrown again, this time harder, so that the hammer hit the virtual
string, landed on the key again at 1.5 seconds and bounced several
times. Note from Figure 6 that the virtual piano action expresses
different dynamics during differing epochs. In particular, the key
pushes up on the user (compressive FKU) with more force during
simulation with model B1. It is during these times that the weight
of the hammer is felt through the key. At present, we do not con-
sider the possible loss of contact between user and key. In fact, the
user holds the key on both top and bottom, so that both compres-
sive and tensile values for FKU are possible when viewed as a
force on one side only.

Figure 6 depicts what we consider a relatively successful sim-
ulation of a (rather soft) hammer and key. One certainly gets the
feeling of manipulating a bouncing object through a lever. In a
preliminary experiment, our subjects were able to bounce the
hammer on the key so as to either make a sound or not (as desired
or called upon) without watching the graphic display. Readers fa-
miliar with synthesizer keyboards will recognize that this virtual
piano action already overcomes many of the limitations of the di-
rect mapping from key velocity to loudness used on MIDI key-
boards.

In contrast, use of model A does not produce a successful sim-
ulation. No matter what parameter values are used, the system
quickly goes unstable. Simulation with model A is unsuccessful
in large part because of noise on the only velocity and acceleration
signals available in our present system. We are using a 50-line-
per-inch linear optical encoder for position and taking first and
second backward differences of this to obtain velocity and accel-
eration signals. The range of motion is about 3 inches, corre-
sponding to 45 degrees on the manipulandum. The current
hardware setup is only capable of simulating springs of up to 100
N/m and dashpots of 1 N/m/s, and cannot simulate masses. Hard-
ware improvements are underway so that we may stiffen up the
springs in model B and eventually use model A.

Forthcoming integration routine improvements include the use
of a root finder to locate the transition times ti within a step along
with the intra-step switching of sub-models. The mis-estimation
of the transition times in the present system will cause constraint
violations in the hammer/key model, which will quickly lead to
instability. The design of indicator functions is another area which
could use improvement. Note that both of the indicator functions
g1 and g2 used for Figure 6 start at zero. Therefore, they run a high
risk of evaluating to a number less than zero and causing faulty
transitions at early periods in each epoch.

6.0 RESULTS AND DISCUSSION
 Figure 6 shows the results of an experiment using model B (with

springs). The time-histories of the output force y(t) and the indicator
function are plotted in the upper graph of Figure 6 in a manner anal-
ogous to that of Figure 2. Directly below, the angular displacements
of the manipulandum, key, and hammer are plotted. The model
switch times ti as found by the indicator function are noted with
prominent vertical lines. The simulation epochs of model B1 and of
B2 are noted by highlights. The simulation step size was .002 sec-
onds but the closed loop servo step size was .007 seconds, so the
simulation was not synchronized to real-time. The numerical inte-
grator used is of fourth-order Runge-Kutta type. However, as we
sample the inputs only once per step instead of three times as re-

y (force output)

g (indicator function)

q2 (hammer)

q1 (key)

s (manipulandum)

ge
ne

ra
liz

ed
 c

oo
rd

s
(r

ad
)

re
ad

ou
t y

 a
nd

 in
di

ca
to

r g
 (u

ns
ca

le
d)

time

time (cycles)
 (seconds)

Highlighted areas indicate simulation with sub-model B2,
 other time-periods use model B1.

-5

0

5

10

15

20

0 200 400 600 800 1000 1200

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000 1200
0.4 0.8 1.2 1.6 2.0 2.4

0.4 0.8 1.2 1.6 2.0 2.4

 (cycles)
 (seconds)

t1 t2 t3 t4
5

6
7

8
9 11 t1210

FIGURE 6.

SIMULATION USING MODEL B

 8 Brent Gillespie, Mark Cutkosky

8.0 REFERENCES
Barzel, R., Physically-Based Modeling for Computer Graph-

ics, Academic Press, Boston, 1992.

Colgate, J. E., 1988, ¼The Control of Dynamically Interacting
Systems,½ Ph.D. Thesis, Massachusetts Institue of Technology,
Cambridge, MA.

Gillespie, B., ¼Dynamical Modeling of the Grand Piano Ac-
tion,½ International Computer Music Conference Proceedings,
Held: San Jose, CA 1992, pp. 77-80.

Gotow, J. K., et al. ¼Controlled Impedance Test Apparatus for
Studying Human Interpretation of Kinesthetic Feedback,½ Pro-
ceedings of the 1989 American Control Conference, vol. 1, 1989,
pp. 332-7.

Hannaford, B., ¼A Design Framework for Teleoperators with
Kinesthetic Feedback,½ IEEE Transactions on Robotics and Au-
tomation, vol. 5, no. 4, Aug. 1989, pp. 426-34.

Haug, E. J., and Deyo, R. C., eds. NATO Advanced Workshop
on Real-Time Integration Methods for Mechanical System Simu-
lation, Springer-Verlag, Berlin, 1991.

Kane, T. R., Dynamics, Theory and Applications, McGraw-
Hill, New-York, 1985.

Minsky, M., et al. ¼Feeling and Seeing: Issues in Force Dis-
play,½ Computer Graphics, vol. 24, no. 2, March 1990, pp. 235-
43.

van Overveld, C. W. A. M., ¼An Iterative Approach to Dy-
namic Simulation of 3-D Rigid-Body Motions for Real-Time In-
teractive Computer Animation,½ Visual Computer, vol. 7, no. 1,
1991, pp. 29-38.

Schaechter, D. B., and Levinson, D. A., ¼Interactive Comput-
erized Symbolic Dynamics for the Dynamicist,½ Journal of As-
tronautical Sciences vol. 36, no. 4, Oct-Dec 1988, pp. 365-88.

Shampine, L. F., and Gladwell, I., ¼Reliable Solution of Spe-
cial Event Location Problems for ODEs,½ ACM Transactions on
Mathematical Software, vol. 17, no. 1, march 1991, pp. 11-25.

7.0 SUMMARY
We have presented a modeling and simulation algorithm which

accommodates dynamical systems with changing kinematic con-
straints and provides for the re-creation of their mechanical imped-
ance by simulation and haptic display. The method involves
modeling the system in each of its constraint conditions and lining
these differential equation descriptions up in a sequence along with
the requisite readout equations. Indicator functions which signal the
end of applicability accompany each model as do transition func-
tions which ensure the proper set-up of initial conditions. The se-
quence of models can be considered a piece-wise continuous
ordinary differential equation. An ODE solver together with some
managing routines constitutes a means of creating an impedance op-
erator for use in the real-time simulator. Although the method is in-
tended only for systems for which all constraint conditions are
known ahead-of-time, it is conceivable that model formulation could
be accomplished in real-time and general non pre-determined sys-
tems accommodated.

Our hardware and software setup was briefly described. A sim-
plified piano action model was presented and used as an illustrative
example and basis for reporting some initial experimental results. A
model with additional compliant elements was introduced and sug-
gested as a first-cut approach to simulating dynamical systems. Such
a ¼less-stiff½ set of equations produces smooth output signals despite
noisy input velocity and acceleration signals. The extra dynamics
and associated spongy feel can be incrementally tuned out by in-
creasing the stiffness of the added springs as hardware improve-
ments reduce sensor noise.

k2

k1

L
1

L

L
2

L

4

3
M

1

M
2

L1
L2
L3
L4

M1
M2

k1
k2

4
10
1
0.5

6.5
.01

620
15

Dimensions
 (m)

Masses
 (kg)

Stiffnesses
(N/m)

TABLE 2.

MODEL PARAMTERS USED FOR
EXPERIMENTS

