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ABSTRACT
The �eld of computational dynamics is surveyed, focusing
on issues relevant to the construction of a general purpose
simulator with haptic display. The various formalisms avail-
able for generating dynamical models will be examined with
regard to the form of the equations of motion which they
produce. To render the e�ects of intermittent contact and
other transient phenomena as driven by a human haptic
explorer, a model is needed which is computationally e�-
cient yet can handle changing kinematic constraints neatly.
Models in dependent and independent coordinates produced
with the Newton-Euler, Lagrange and Kane formalisms will
each be examined in order to provide a vantage point from
which an informed selection may be made from among the
many tools now available in computational dynamics.

INTRODUCTION
The repertoire of a virtual environment simulator is deter-
mined by the modeling and simulation tools upon which
it is based. Most virtual environments to date are limited
to static objects or systems of dynamic bodies whose mo-
tions are restricted to a plane and whose interconnections
are modeled by relatively soft springs. This paper addresses
the incorporation of modeling and simulation tools from the
�eld of multibody dynamics into a simulator, so that its
repertoire may be expanded to include articulated systems
free to move in space. Articulated systems are character-
ized by the presence of constraints, or imposed relation-
ships among the con�guration and/or motion variables of
the model such as occur in mechanisms, linkages, vehicles,
and the human body. The tools of multibody dynamics al-
low a constrained system to be modeled using a minimal
or near-minimal (at the option of the analyst) set of state
variables. The dynamics of a multibody constrained system
will evolve in a manifold whose dimension is equal to the
size of the state vector. This fact can result in signi�cant
computational savings and improved stability properties.

In a brief review, let us contrast the state of the art in

interactive dynamics with the currently available tools for
o�-line simulation of dynamical systems.

Interactive dynamics . Most simulators with haptic dis-
play to date are based on what we call the `Coupled Force
Balance' scheme (to be described in more detail below).
Basically, each link or contact between bodies is modeled
as a spring or spring-damper connection. Each interaction
force is computed as a function of the spring and damper
displacements and the forward dynamics of each body is
computed independently according to Newton's laws. Al-
though bodies will in fact interpenetrate, violations can be
held low by sti�ening the springs. While justi�able in the-
ory, in practice this approach is computationally expensive
and the presence of highly disparate time constants creates
so called `sti�' di�erential equations which require special-
ized di�erential equation solvers. The presence of fast time
constants is especially insidious with haptic display, where
sampled data control of a haptic interface and the coupling
of a human operator into the system can further incite non-
physical oscillatory behavior. The simulator with haptic
diplay by Cadoz et al. [1] is an example of the Coupled
Force Balance.

Though largely the result of unpublished work, numer-
ous planar multibody systems such as double pendulums
and pendulums on carts have been developed for demon-
stration of haptic interfaces. These systems generally do not
allow for changing kinematic constraints. Yoshikawa et al.
[2] have created virtual objects using an inverse multibody
dynamics formulation. A simulator for articulated systems
which does accommodate changing constraints has been de-
veloped by Gillespie [3] [4] but the set of constraint con-
�gurations must be known prior to simulation time. This
somewhat restricted set of systems includes devices such as
the piano action and other multibody mechanisms, but ex-
cludes systems with collisions between asymmetric ballistic
objects.

Other human-in-the-loop simulators have been produced



in the �elds of 
ight simulation, computer music and com-
puter graphics. Rather than haptic interfaces, these simu-
lators feature motion, audio or graphical display.

Flight simulators probably have the longest history in
interactive dynamics. Even before the advent of the digital
computer, the equations of motion of aircraft were solved
using analog computers with human input of certain con-
trol variables. But of course 
ight simulators are used to
train pilots to avoid changing contact conditions, whereas
changing contacts are among the most salient features in
haptic exploration of everyday objects. In computer music,
the recent sound synthesis technology known as `physical
modeling' uses a musical instrument as the simulacrant [5].
In contrast to prior algorithmic sound synthesis techniques,
physical modeling simulates a string, aircolumn, or even
membrane using waveguide equations. Due to its basis in
the wave equation, however, the domain of this technique
is rather limited. The �eld which has produced the most
general of packages for interactive simulation of dynamical
objects is computer graphics, where the principles of multi-
body dynamics are applied to automate the job of the ani-
mator. Update rate requirements, however, are signi�cantly
less stringent in graphic display than haptic display. The
techniques developed in computer graphics will be further
reviewed in the body of the paper.

Off-line simulation . In contrast to the real-time sim-
ulators which are application speci�c, dynamicists have at
their disposal a number of general purpose and in many
cases commercialized packages for the solution of problems
in multibody dynamics. These include DADS, ADAMS,
WORKING MODEL, AUTOLEV, SD-EXACT, and many
others. See [6] for surveys.

It is the intention of this paper to review the architec-
ture of these packages and the methods upon which they are
based to pave the way for the creation of a general purpose
multibody dynamics package with haptic display. Beyond
the challenge of real-time simulation, this survey will pay
particular attention to the handling of constraint changes
and singularities and the manner in which a haptic inter-
face may be incorporated. As opposed to motion, audio,
or graphical display, the issues of stability are of greater
concern in haptic display.

Now, despite the fact that they all derive from a few
fundamental principles of mechanics, a great number and
variety of formalisms have been developed to solve prob-
lems in multibody dynamics. Specialized tools exist for
the analysis of articulated bodies in open or closed loop
chains, systems involving collisions, systems involving uni-
lateral constraints, and systems involving friction. Since
haptic exploration often involves all of these phenomena, a

wide variety of tools from the �eld of multibody dynamics
must be called upon for haptic display of dynamical ob-
jects. This paper will review each of the major formalisms
for generating models: Newton-Euler, Lagrange's method,
and Kane's method. A major purpose of this paper is to
introduce the haptic community to Kane's method by com-
paring it to more widely known methods. Kane's method
yields many advantages in terms of e�ciency of formulation,
computational e�ciency of the resulting model, and ease of
handling changing constraints, the latter two of which are
quite relevant to real-time simulation.

This paper is organized around the following three steps
for the creation of a touchable virtual object:

Step 1: A mathematical model is constructed by naming
variables and parameters. Initial conditions are as-
signed to the variables as appropriate and values are
assigned to the parameters according to the material
or geometric properties for which those parameters
stand.

Step 2: A principle of mechanics is used to formulate equa-
tions, called the equations of motion, which govern the
variables in the model.

Step 3: Those equations are incorporated into an interac-
tive simulator with haptic display.

These three steps may be considered a procedure for using
the familiar relationship f = ma: First, collect together
f ;m, and a. Second, relate these with an = sign. Finally,
wrap everything up in an ODE solver.

Before launching into the survey in earnest, the incor-
poration of an ODE solver into a haptic interface controller
will be described. Section Step 1 will discuss assembly of
the elements of a model|paying particular attention to
the description of system con�guration, motion, and con-
straints. In section Step 2, the various formalisms for gen-
erating equations of motion will be surveyed, with an eye
to the manner in which constraint equations are handled.
Each form becomes the basis for a simulator design in sec-
tion Step 3, and numerical methods for handling changing
constraints will be discussed.

IMPEDANCE DISPLAY: THE VIRTUAL COUPLER
A haptic interface controller may be designed using one of
two paradigms: impedance display (sensing motion and pro-
ducing force) or admittance display (sensing force and pro-
ducing motion). The limits of performance of each paradigm
are still matters of active research, but current lore holds
that the optimal implementation depends on the physical
characteristics of the haptic interface itself (including its



sensor suite) and whether the virtual object impedance is
dominated by inertia or compliance. Most virtual environ-
ments to date, whether static or dynamic, are implemented
using impedance display|the work of Yoshikawa [2] and
MacLean [7] being notable exceptions.

In this paper we treat impedance display: sensing mo-
tion and producing force. An image of the manipulandum
handle or puck is placed in the virtual environment and
attached to a certain virtual object through a spring and
damper, together called the virtual coupler. (The attached
virtual object is often isomorphic to the handle.) Thus cou-
pled to the interface hardware, an ODE solver may operate
on the forward dynamics simulation of the virtual environ-
ment, computing motion from applied force. As shown in
Figure 1, the di�erence between the sensed hardware po-
sition x and attached virtual object position y is taken as
the extension of the virtual coupler and used to produce
the force f . This force is simultaneously displayed on the
interface and used as the applied force in the forward dy-
namics simulation of the virtual environment. One of the
primary advantages of the virtual coupler approach is the
clean separation it imposes between hardware and simulator
which allows a coupled stability analysis to be performed.
In particular, a sampled data passivity analysis may be re-
duced to a discrete time passivity analysis [8]. Finally, we
assume the use of a constant step-size explicit numerical in-
tegration routine with computational time reserved at each
step for the detection and resolution of any possible col-
lisions and, as discussed at length below, the handling of
constraint changes.

STEP 1: MODEL CONSTRUCTION
The basis of a virtual environment model is a description, in
parameters and variables, of a physical system of objects. In
addition, certain relationships may be imposed among the
parameters and variables. These relationships (called con-
straints) also become part of the system description. The
model is complete with the assignment of values to each pa-
rameter and initial conditions to each variable. Note that
the initial conditions must satisfy the constraints. Of course
the model is not viable for simulation until those parame-
ters and variables have been related to one another in a
di�erential equation, but that topic will be reserved for the
next section (Step 2). In the present section, the param-
eters, variables and constraint descriptions will simply be
assembled in preparation for equation formulation.

The model may be further subdivided into three parts:
the dynamic model, the geometric model, and the contact
model. The dynamic model will be used to handle the con-
�guration and the rate of change of con�guration (motion)
of the system. The geometric model will provide for the

Figure 1: Block diagram showing the incorporation of an

ODE solver operating on the Equations of Motion (EOM)

into a haptic interface controller. The interface hardware

is denoted G(s), the human user H(s), and the discretely

implemented virtual coupler C(z).

detection of collisions, and the contact model will provide
the means for resolving collisions.

Dynamic Model
Newton's laws of motion will be used in Step 2 (formulate
equations) to relate the parameters and variables describing
internal and applied forces with those describing mass prop-
erties and accelerations. Given that there exist signi�cant
di�erences in the description of acceleration among the var-
ious formalisms, we will discuss kinematic descriptions in
some detail. Note that Newton's laws produce second order
di�erential equations when written in terms of con�gura-
tion variables. Alternatively, Newton's laws may be written
in terms of con�guration and motion variables, producing
�rst order di�erential equations. (We use the term `motion'
to refer either to the velocity of points or the angular ve-
locity of bodies.) The con�guration and motion variables
together make up the state vector. As the reader will soon
appreciate, the use of state variables can lead to signi�cant
advantages when formulating equations of motion.

Table 1 organizes three sets of con�guration and motion
variables into columns. Each column represents an option
for a full set of state variables and corresponds to a partic-
ular equation formulation method: Coupled Force Balance,
Lagrange's Method, and Kane's Method.

As indicated in the left column, position and orientation
coordinates for each of � bodies may be used as con�gura-



Table 1. Options for the state vector

�: # bodies; M : # holonomic constraints; m: # nonholonomic constraints;
n = 6� �M : # generalized coordinates; p = n�m: # independent generalized speeds.

Coupled Force Balance Lagrange's method Kane's method

position and orientation generalized generalized
Con�guration

coordinates coordinates coordinates
Variables

(x; y; z; �1; �2; �3)i; (i = 1; :::; �) qi; (i = 1; :::; n) qi; (i = 1; ::; n)

position and orientation generalized generalized
Motion

coordinate derivatives velocities speeds
Variables

( _x; _y; _z; _�1; _�2; _�3)i; (i = 1; :::; �) _qi; (i = 1; :::; n) ui; (i = 1; :::; p)

number of constraints M +m m 0

tion variables. For example, one may use the Cartesian
coordinates x; y; z to locate each mass center and orienta-
tion angles �1; �2; �3 to orient the principle axes of inertia of
each body. When con�guration is restricted to a plane, the
description of orientation is trivial: it requires a single an-
gular displacement. Orientation in space, however, requires
three angular displacements, and the order in which these
displacements are carried out and about which unit vectors
must be speci�ed explicitly. To complete the state descrip-
tion, the time derivatives of the position and orientation
coordinates are commonly used.

To describe the position and orientation of � bodies in
space, 6� variables will be needed. Likewise, to describe the
system motion, 6� motion variables will be needed, bringing
the size of the state vector to 12�.

Bodies of a system S which are articulated or in contact
with one another over a period of time are subject to re-
strictions on the positions or orientations which they may
occupy. These restrictions can be expressed as relation-
ships among the position and orientation variables enumer-
ated above and are called holonomic constraint equations
or con�guration constraints.

Generalized coordinates . In place of the position and
orientation variables for each body, a set of con�guration
variables called generalized coordinates, which encapsulate
the holonomic constraints, can be de�ned for the system.
For example, if two bodies are connected by a revolute joint,
only the joint angle is needed to describe their relative ori-
entation. Let us use n to designate the smallest number of
generalized coordinates needed to unambiguously describe
the con�guration of a system S of � bodies in a reference
frame N . The number n for S is then less than 6� by
the number M of holonomic constraint equations in e�ect:
n = 6� �M .

Often, however, it is convenient to use a set of gener-
alized coordinates which is not independent and to carry
along a holonomic constraint equation as part of the sys-

tem description. For example, a minimal set of generalized
coordinates may be di�cult to �nd, as in the case of closed
kinematic chains. The use of a non-minimal set is also use-
ful when a constraint is subject to change, as we shall see
later. Let us continue to use n to designate the number of
generalized coordinates, whether they make up an indepen-
dent set or a dependent set (a set containing at least one
dependency).

In Lagrange'smethod, the generalized coordinate deriva-
tives, called generalized velocities, make up the remainder
of the state vector as indicated in the second column of
Table 1.

In addition to the holonomic constraints, there may ex-
ist nonholonomic constraints. Nonholonomic constraints
are relationships among the generalized velocities and may
arise for certain physical reasons such as rolling. The word
`nonholonomic' signi�es that these constraints cannot be
integrated to produce relationships among generalized co-
ordinates. It is often convenient to treat a holonomic con-
straint by di�erentiating it with respect to time to produce
a relationship among the generalized velocities. To refer to
either a di�erentiated holonomic constraint or a nonholo-
nomic constraint, we will use the term `motion constraint'.

Generalized speeds . Kane's method also uses general-
ized coordinates to describe system con�guration, but new
variables known as generalized speeds are used rather than
generalized velocities to describe system motion. On the
way to generating expressions for the velocities of relevant
points (and angular velocities of bodies) the analyst has the
opportunity to de�ne generalized speeds as independent lin-
ear combinations of the generalized velocities.

ur =

nX
s=1

Yrs _qs + Zr; (r = 1; :::; n) (1)

where Yrs and Zr are functions of qi; (i = 1; :::; n) and possi-
bly the time t. Reciprocal relations express the generalized



velocities in terms of the generalized speeds:

_qs =

nX
r=1

Wsrur +Xs; (s = 1; :::; n) (2)

whereWsr andXs are functions of qi; (i = 1; :::; n) and pos-
sibly the time t. The equations of motion will take on a par-
ticularly compact (and thus computationally e�cient) form
with the e�ective use of generalized speeds. Note again,
however, that the de�nition of generalized speeds is up to
the analyst. Mitiguy [9] has developed some directives for
the optimal choice of generalized speeds for articulated bod-
ies in open chains.

Motion constraints may be expressed as relationships
among the generalized speeds. Given m motion constraints,
there will bem dependent generalized speeds, which may be
expressed in terms of the remaining p = n�m independent
generalized speeds. Ordering the independent generalized
speeds �rst, the motion constraints may be expressed :

ur =

pX
s=1

Arsus +Br; (r = p+ 1; :::; n) (3)

where Ars and Br are functions of qi; (i = 1; :::; n) and
possibly the time t.

To summarize the components of a dynamic model, we
may choose 6� con�guration and orientation variables and
identify M holonomic constraints and m motion constraints
to be carried along as part of the description. Alterna-
tively, we may use generalized coordinates qi (i = 1; :::; n)
where n = 6� �M and carry along m motion constraints.
As yet another alternative, we may use generalized coordi-
nates qi (i = 1; :::; n) and generalized speeds ur (r = 1; :::; p)
where p = n �m in which case we have embedded all the
constraints and formed what is refered to as a set of `inde-
pendent coordinates'. For virtual environments, changing
contact conditions are of interest for rendering, and these
will most e�ectively be handled as constraint equations ac-
companying a nonminimal set of coordinates.

The modeling of gravitational forces and forces arising
from the extension of springs or motion of dampers is rel-
atively simple for objects commonly manipulated by a hu-
man, at least after capacitive and dissipative e�ects have
been lumped into springs and dampers and mass proper-
ties have been described. The expression of friction forces,
on the other hand, deserves special attention. Coulomb's
law will often render the equations of motion implicit or
give rise to existence and uniqueness problems. The famil-
iar modeling issue of indeterminacy and over determination
are closely related to the existence and uniqueness of a solu-
tion for the di�erential equations of motion. Existence and
uniqueness of solutions for models with friction are topics

of active research [10]. These issues may be side-stepped by
adding spring damper couplers at the frictional contacts.

STEP 2: FORMULATE EQUATIONS
Each equation formulation method produces equations of
motion in a particular form. Despite the fact that in the
long run the simulated behavior will be the same, there ex-
ist large discrepancies in computational e�ciency and ease
of handling changing constraints among the various forms.
Furthermore, the form of the equations of motion dictate
to large extent the software architecture of the simulator.
Figure 2 presents an overview of the various forms which
may be taken on by equations of motion, categorizing these
forms according to three general headings: `Coupled Force
Balance', `Model in Dependent Coordinates', or `Model in
Independent Coordinates'. Roughly, models produced by
application of the Newton-Euler equations are treated as
Coupled Force Balances, Lagrange's method produces mod-
els in dependent coordinates, and Kane's method produces
models in independent coordinates. Modi�cations can be
made to each formulation procedure, however, in order that
models belonging to other categories are produced, and this
point will be treated in detail in section Step 3 below. Let
us investigate each standard form with regard to constraint
handling and discuss its preparation for a numerical di�er-
ential equation solver to be run in real-time.

The Coupled Force Balance
The forces and torques called for in the Newton-Euler equa-
tions include not only applied forces, but also contact forces
between touching bodies and joint forces between articu-
lated bodies. Each such interaction force must be computed
by some means and then made available to the force/torque
balance of each contacting body so that their resulting mo-
tion may be computed by solving the ODEs produced with
the Newton-Euler equations. Essentially, the state of each
body is evolved forward in time independently of the others;
with interaction among bodies taking place only through
the communication of forces. The Coupled Force Balance
models are further broken down in Figure 2 by the method
for computing the interaction forces.

Coupling through Spring-Damper Pairs . The simplest
of the methods for determining the interaction force be-
tween bodies in the coupled force balance scheme consists
of placing intervening springs or spring-damper couplers be-
tween contacting bodies. During those times interference
between two bodies is detected, an interaction force is com-
municated to each according to the constituent equation of
the intervening spring-damper coupler. This is often called
the `penalty method' since interference is penalized. To



Figure 2: Overview of the Formalisms for Equation of Mo-

tion Production

mimic unilateral constraints, the spring-damper pair is re-
moved when a change from compressive to tensile interac-
tion force is detected. Many examples of this approach may
be drawn from the computer graphics community [11], [12],
[13]. Most demonstrations of touchable virtual objects to
date fall into this category.

Further enhancing its simplicity, the penalty method al-
leviates the need for separate impulse resolution. The com-
pliant coupler smoothes out impulsive forces. If the value
of the sti�ness coe�cient of the couplers is increased in an
attempt to approximate rigid body behavior, however, the
system equations may become `sti�' and numerically ill-
conditioned.

Coupling through Bilateral Constraint Forces . By as-
suming that a bilateral constraint is locked into place when
two bodies make contact, an inverse dynamics model may be
set up and used to solve for the unknown interaction forces.
Since the kinematic state is known (relative acceleration be-
tween contacting bodies assumed nil), the interaction forces

may be determined from a linear system of equations [14]
[15].

Coupling through Unilateral Constraint Forces . The in-
verse dynamics problem may be formulated together with
inequality conditions stipulating non-interpenetration and
repulsive contact forces as a linear complementarity prob-
lem (LCP) or quadratic programming problem (QP) [16]
[17]. These unilateral contact force computation methods
have been introduced to the computer graphics community
by Bara� [18]. Treatments of friction between contacting
bodies are presented by L�otstedt in [19] and Bara� in [17].
Lee, Ruspini and Khatib [20]. have applied the methods of
Bara� to robotic simulation.

Coupling through Repeated Impulse . As an alternative
to solving for and imposing contact forces to prevent inter-
penetration of contacting bodies, Hahn [21] has suggested
using impulses, found through the solution of impulse-momentum
equations. To handle resting contact, repeated impulses are
used. Mirtich and Canny have extended the impulse tech-
nique [22] [23] and also combined it with constraint tech-
niques [24]. Chang and Colgate explore the e�cacy of an
impulse technique for haptic display in [25].

With the advent of object-oriented programming tech-
niques, the coupled force balance modeling approach is re-
ceiving a fair amount of attention since it is by nature mod-
ular. Most importantly from our viewpoint, changing kine-
matic constraints are handled quite easily in such models.
A communication line between objects (over which the in-
teraction force is relayed to each force balance equation) is
simply toggled on and o� when interference or clearance is
detected. Resolution of impulses may be performed upon
detection of a collision.

The number of second order di�erential equations to be
integrated in the coupled force balance scheme is 6 times the
number of bodies. Accordingly, the number of independent
coordinates is large compared to a formulation involving
constraints, and computational e�ciency must be regarded
as poor.

Models in Dependent Coordinates
The Newton-Euler equations may not be the most expedient
starting point for the construction of a interactive simulator
since certain contact forces are of no intrinsic interest, espe-
cially the constraint forces between articulated bodies. The
generalized coordinates used in Lagrange's equations and
Kane's equations facilitate writing equations of motion on
a lower dimension state space|the space of allowable mo-
tions. That is, the equations consider only those motions
which satisfy those holonomic constraints encapsulated by



the choice of generalized coordinates.

After performing the operations indicated in Lagrange's
equations, the terms may be arranged in the form so familiar
from the robotics literature:

M(q)�q + h(q; _q) = � (4)

where M(q) is called the inertia matrix, h(q; _q) consists of
centripetal, Coriolis, and gravity terms, and � contains the
generalized input forces and torques. This second order
di�erential equation contains n rows.

Further constraints, including those subject to change,
or arising through intermittent contact between bodies are
handled with the method of LagrangeMultipliers (also called
undetermined multipliers). Holonomic constraints may be
expressed

�(q; t) = 0: (5)

Di�erentiating this equation with respect to time produces:

�q _q = ��t: (6)

Nonholonomic constraints may also be expressed in this
form, so let Equation 6 contain both the holonomic and
nonholonomic constraints. The method of Lagrange multi-
pliers entails adjoining these constraints to the n di�erential
equations, resulting in a set of n equations in (n +m) un-
knowns. Adjoining means appending the Jacobian of the
constraint matrix, �q with a pre-multiplying vector of m
undetermined coe�cients (Lagrange multipliers) � to the n
Lagrange equations:

M(q)�q + h(q; _q) + �T

q (q; t)� = � (7)

The m constraint equations themselves may then be
used together with the n dynamical equations to bring the
number of equations up to the number of unknowns in one
of two ways. Firstly, the algebraic constraint equations may
be used directly with the di�erential equations if a Di�er-
ential Algebraic Equation (DAE) solver is available. DAE
simulators are favored in the real-time 
ight simulation and
automobile simulation communities, where changing kine-
matic constraints are occasionally of interest [26]. DAE
solvers, however, are not the most numerically e�cient and
are not free of numerical stability problems [26] [27].

The second manner in which the constraint equations
may be incorporated is by di�erentiating them twice (in
the case of con�guration constraints) or once (in the case
of motion constraints) to produce m acceleration constraint
equations which may be integrated along with the dynami-
cal di�erential equations in an ODE solver. Di�erentiating
Equation 6 again yields the acceleration constraint equa-
tions:

�q�q = �(�q _q)q _q � 2�qt _q ��tt

�

= �(q; _q; t) (8)

Equations 8 and 7 may be expressed together in matrix
form: �

M �T
q

�q 0

��
�q
�

�
=

�
Q

�

�
(9)

There is, however, one problem remaining with the model
expressed in Equation 9. The acceleration constraint equa-
tions are unstable. Through two di�erentiations of the
holonomic constraints, information about displacements has
been lost. To stabilize the system, the motion constraints
are appended with penalizing factors in either the Baum-
garte stabilization [28] or penalty stabilization methods.
(See [27], p. 162). The penalty method is closely related to
the method of the same name discussed above in connection
with the Coupled Force Balance|and subject to the same
short-comings. That is, numerical ill-conditioning.

One very good reason for formulating a model in de-
pendent coordinates is to facilitate handling of changing
constraints.

Models in Independent Coordinates
Although models employing Lagrange multipliers can be
converted into independent coordinate models using an `em-
bedding technique' discussed in the next section, let us use
Kane's equations to introduce independent coordinate for-
mulations. Kane's method in its traditional application al-
ways produces models in independent coordinates. Inti-
mately related to this capability is the production of the
equations of motion as �rst order di�erential equations in-
volving a state vector of generalized coordinates and gen-
eralized speeds. Note that the dependent coordinates may
be found during integration either by solving the position
problem at each time step, or, more conveniently, by inte-
grating the constraint equations 6, which are only �rst order
and stable, along with the di�erential equations.

Using a model in independent coordinates, the following
must occur with each change in contact condition (change
of constraint): Integration of the equations of motion must
be stopped, the impulses resolved, a new set of independent
coordinates must be found, the entire model reformulated,
and integration re-started. Such a simulator construction
which involves re-formulation of the equations of motion on
the 
y each time a change in constraint occurs is indeed fea-
sible, since both symbol manipulation and numerical inte-
gration may be computerized, but this proposition remains
a topic for future consideration. We will instead consider
these as two separate steps: the formulation of equations
to be performed prior to simulation and the solution to be
performed in real time. If all possible constraint con�gura-
tions are known prior to simulation time, all models may
be pre-formulated and sequenced together during run-time
interactively using a �nite state machine [3].



We shall assume in this paper that constraints which
are subject to change shall be carried along with a model
in dependent coordinates as supplemental constraint equa-
tions. Kane's method can also be used to produce e�cient
formulations in dependent coordinates and routines for han-
dling changing constraints numerically during simulation
time will be described in the next section.

STEP 3: SIMULATOR DESIGN
Now that we have the equations of motion for our target
multibody system in hand, we are ready to incorporate
them into a real-time simulator with haptic display. We will
now discuss the means by which each of the various mod-
els discussed in the previous section may be used to create
virtual multibody systems, including those with changing
kinematic constraints.

The discussion accompanying Figure 2 suggests that in
choosing a model formulation method (and by implication
a model form), there exists a tradeo� between computa-
tional e�ciency and ease of handling changing constraints.
The Coupled Force Balance is simple and accommodates
changing constraints easily, but it is quite computationally
intensive. On the other side of the spectrum are the mod-
els in independent coordinates which make no provisions
for handling changing constraints (unless the simulator can
formulate models on the 
y), but are maximally computa-
tionally e�cient.

Let us discuss the compromises: models formulated in
dependent coordinates either with Lagrange's method or
Kane's method and accompanied by constraint equations.
These models will be simulated with numerical di�erential
equation solvers out�tted with numerical constraint han-
dling routines. Note that the constraint handling methods
discussed in the present section are to be implemented nu-

merically whereas the ODE formulation methods discussed
in the previous section are to be implemented symbolically.
We assume that symbolic manipulation shall take place o�-
line, prior to simulation time, and those constraints used to
eliminate dependent generalized coordinates or generalized
speeds are not subject to change.

Figure 3 shows a pair of models in dependent coordi-
nates, one produced with the method of Lagrange Mul-
tipliers and expressed as a second order ODE (Equation
9), and the other a �rst order ODE produced with Kane's
method but without having used certain constraint equa-
tions to eliminate dependencies. These models, the prod-
uct of symbolic manipulation, shall be operated upon by the
various procedures to be discussed presently and indicated
by arrows in Figure 3. The end-product of these numeri-
cal procedures is in certain instances a model in dependent

Figure 3: Coordinate reduction technques

coordinates and in other instances a model in independent
coordinates as indicated by the organization of the termi-
nation points of each arrow in Figure 3.

The arrows numbered 1 and 2 have already appeared in
Figure 2 and indicate two means by which a model produced
by the method of Lagrange multipliers may be simulated.
This model is ready to go if a DAE solver is available. Al-
ternatively, after di�erentiating the constraint equations to
form acceleration constraints and adding constraint stabi-
lization, an ODE solver may be used as discussed above in
connection with Figure 2.

Changing kinematic constraints are handled by swap-
ping out the adjoined algebraic constraint equations at the
transition times. The di�erential equations derived sym-
bolically persist throughout the simulation. Gilmore and
Cipra [29] [30] use an `incidence matrix' containing the con-
tinually updated system topology to automate the handling
of changing constraints in the simulation of planar systems
expressed in dependent coordinates. See the work of Haug
et al. [31], [32] [33], in which changing constraints, impact,
and friction are treated in one framework based on a model
in dependent coordinates with Lagrange multipliers.

The embedding technique indicated in Figure 3 by arrow
number 4 involves partitioning the generalized coordinates
into an independent and a dependent set. The acceleration
constraint equation may be partitioned:

[�qi
j�qd

]

�
�qi
�qd

�
= � (10)

and thus the column matrix of generalized accelerations



may be expressed in terms of the independent set:

�q =

�
�qi
�qd

�
=

�
I

���1qd
�qi

�
�qi +

�
0

��1qd
�

�
�

= A�qi + b (11)

which, when substituted into Equation 9 produces the sec-
ond order di�erential equation in n = p+m unknowns:

�
MA ��T

q

� � �qi
�

�
= � � h�Mb: (12)

which is ready for an ODE solver. This method has been
espoused by Wehage and Haug [34].

Two further methods for handling the Lagrange mul-
tiplier formulation involve reducing this dependent coordi-
nate model to a model in independent coordinates. These
methods are attractive because they produce a more com-
putationally e�cient model, minimizing the variables han-
dled by the ODE solver. These methods are known as the
embedding technique (also called coordinate partitioning)
and the orthogonal complement technique. Both of these
methods require that the coordinates be partitioned into
an independent set and a dependent set, which can be a
non-trivial task. For example, the Jacobian matrix of con-
straint relations may be solved for the independent rows at
each time step, and used to direct and maintain a set of
well-conditioned (maximally independent) coordinates.

The coordinate reduction (also called orthogonal com-
plement method ) indicated by arrow number 4 requires
that a matrix T be found whose columns are orthogonal
to the constraint Jacobian matrix �q. Methods for con-
structing said matrix include SVD and triangularization.
Once found, it may be used to pre-multiply Equations 7
and knock out the � term, leaving a second order ODE in
only p coordinates.

A �rst order model produced with Kane's method can
be converted to a model in independent coordinates (arrow
numer 5) using the methods of Wampler [35] and further
developed by Mitiguy [9].

A �rst order model can also be converted to a second or-
der model in independent coordinates as indicated by arrow
number 6 [36].

Collision detection and impulse resolution . One of the
largest challenges in multibody dynamics simulation is the
detection of interference and the determination of contact
points when two bodies collide (called the collision detec-
tion problem), for this determines the points of application
of interaction forces. When interacting bodies are each ar-
ticulated to a common base, indicator functions which take
a form very similar to constraint equations may be con-
structed and used to detect collisions [3].

The impact restitution problem must be handled upon
detection of a collision since the bodies have been assumed
rigid and the time intervals over which the impact forces
act will be very short, giving rise to discontinuous jumps in
certain velocities. Recall that a contact may be established
between bodies only when a collision occurs and the colli-
sion resolver indicates a null departure velocity. Deletion of
a contact, however, may happen in one of three ways: the
contact breaks because of insu�cient closing force (unilat-
eral condition), the contact breaks due to relative sliding
(one body slides o� of the edge of another), or the con-
tact breaks due to the restitution of an impact (possibly
occurring at a location remote to the contact under con-
sideration). Figure 4 illustrates the sequencing of events.
The integration routine must be stopped upon the detec-
tion of a collision, the momentum-impulse equations solved
for the subsequent velocities, and the integration routine
re-started. This issue is not a consequence of discrete sim-
ulation, but an essential part of analysis using rigid body
models. Note that collision response problems can be for-
mulated as ODEs with many of the same tools used to de-
rive the equations of motion and certainly solved with the
same solvers. Note that the worst-case simulation time-
step, including collision detection and response, and model
reduction or constraint equation swapping must �t into one
servo period.

Figure 4: Sequencing events through the Collision detector

and Collision Resolver

SUMMARY
This paper has surveyed the �eld of computational dynam-
ics, contrasting the Newton-Euler, Lagrangian and Kane
approaches for formulating models. In particular, the form
of the model and the implications of that form on the de-
sign of a simulator for virtual environments with chang-
ing kinematic constraints were reviewed. Models produced
with Kane's method were suggested as computationally e�-
cient yet modular candidates for the development of a gen-
eral purpose simulator. The ability to handle constraints
(including nonholonomic constraints) using Kane's method
without having to introduce additional unknowns a�ords
signi�cant advantages in computational e�ciency. Sym-
bolic derivation of the equations of motion of articulated
structures would be supplemented with numerical handling
of coordinate partitioning and automated model reduction.
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