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ABSTRACT
The design of a general-purpose multibody simulator that runs in
real-time and features haptic display is presented. The repertoire
of this simulator includes systems subject to holonomic con-
straints, nonholonomic constraints, and notably, systems subject
to changing constraints. In contrast to the use of generic equa-
tions of motion, Kane’s method is used by a computerized sym-
bolic manipulator to produce custom-built, compact, and com-
putationally efficient ordinary differential equations for each vir-
tual system to be simulated. A method is presented whereby new
equations, reflecting the presence of a transient constraint, may
be formulated on-line by a recombination of terms comprising
the nominal equations. This paper also serves as a tutorial intro-
duction to Kane’s method and includes a detailed derivation of
Kane’s equations with a geometric interpretation. An illustrative
example featuring changing constraint conditions is developed in
the body of the paper while two more examples, chosen to high-
light certain features within Kane’s method, are presented at the
conclusion.

1 INTRODUCTION
To render a system of virtual objects that responds dynami-

cally when touched or manipulated through a haptic interface re-
quires real-time integration of that virtual system’s equations of
motion. For some systems, generic equations of motion, say for a
single body or an open chain, can be adapted to the target dynam-
ics by setting parameters, but such an approach usually severely
limits the family of virtual objects that can be simulated. Instead,
customized equations can be formulated using a variety of tech-
niques, and a particular technique might be carried out either by
hand with pencil and paper, or by a computer equipped with sym-
bolic manipulation or specialized numerical routines. Naturally,

computerized production of the equations of motion is desirable
when the target system is large or complex. This paper presents
the design of a general-purpose multibody simulator with haptic
display, one that automatically formulates the equations given a
system description (geometry, interconnections, inertia proper-
ties, and constitutive laws for springs, dampers, or control ele-
ments). Once formulated, the governing equations are passed to
a real-time solver that couples the virtual system to a human user
through the action of motors and sensors in a haptic interface.

Of the available techniques for formulating equations of mo-
tion for multibody systems, Kane’s method was chosen for its
relative ease of computerization and its computational efficiency.
Efficiency may be interpreted here both as producing equations
efficiently (with the fewest symbolic operations) and producing
efficient equations (which require the fewest numerical opera-
tions for their solution). Also, Kane’s method produces equa-
tions in ordinary differential form (ODEs) even for nonholonom-
ically constrained systems, which can be accommodated using
standard solvers.

The label ‘general-purpose’, when applied to a simulator,
refers to the relative ease with which a new virtual system may be
described, set-up, and run by the simulator to address the needs
or desires of the user/analyst. Within this ‘general’ scope, how-
ever, attention shall be restricted in this paper to multibody sys-
tems, or systems of rigid bodies interconnected by various joints
but also bodies variously making or breaking contact with one
another. The inclusion of target systems whose bodies collide,
slide, roll, or sometimes merely rest on one another is a signif-
icant feature, since a human user’s haptic exploration is often
aimed at inciting such changing contact conditions.

Under the hood of any multibody simulator is one of sev-
eral methods for holding interconnected bodies together or main-
taining the pertinent constraint conditions. Satisfaction of the
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constraints can be guaranteed either by embedding the constraint
equations into the equations of motion (i.e. , eliminating depen-
dent variables) or by applying the appropriate constraint forces,
computed as part of the simulation. Alternatively, violation of
the constraints can be permitted to some degree and so-called
penalty forces applied to ensure that such violation is minimal.
These penalty forces may be computed by multiplying the maxi-
mum interpenetration between bodies by a constant and their ac-
tion may be interpreted as that of virtual springs. Naturally, these
various methods for maintaining constraints can be mixed within
a given simulator design. Perhaps the constraints associated with
the joints of a mechanism that will not be broken during simula-
tion would be embedded while the constraints associated with a
rolling or sliding contact that are subject to change during simu-
lation would be treated by application of constraint forces or the
penalty method. For example, in the simulator in (Haug et al.,
1986) and more recently (Garcia de Jalón and Bayo, 1994), cer-
tain holonomic constraints are embedded using Lagrange’s equa-
tions, while nonholonomic constraints and constraints subject to
change during runtime are handled using the method of undeter-
mined multipliers. Changing constraint conditions are reflected
by swapping out the constraint equations, which are appended
to the invariant core equations. Baraff (Baraff, 1989), (Baraff,
1994) has shown that constraint force computation can be posed
as a linear complementarity problem (LCP), for which efficient
numerical techniques have been developed. Even the multibody
dynamics and impulse resolution problems can be posed as LCPs
and thus combined in a common architecture with computation
of the constraint forces. Thus in the simulator design by Bar-
raff (Baraff, 1995), certain holonomic constraints are embed-
ded using Lagrange’s method, while those subject to change are
handled by constraint force computation. Rather than imposing
the forces of constraint, Mirtich (Mirtich and Canny, 1994) ap-
plies repeated impulses, sized to hold the constraints. Even a
block resting on a table experiences many repeated tiny colli-
sions rather than a constraint force.

Concentrating on simulators that feature haptic rendering,
the design by (Constantinescu et al., 2000) and (Cadoz et al.,
1984) use the penalty method to compute constraint forces.
These simulators, however, do not feature any constraint em-
bedding or multibody methods, rather they use generic Newton-
Euler equations for each body separately. The simulator by Rus-
pigi (Ruspini and Khatib, 2001) and further elaborated in (Khatib
et al., 2002) and the simulator by Berkelman (Berkelman et al.,
1999) follow the Baraff design and also feature haptic display.
The Mirtich method has been adopted by (Chang and Colgate,
1997). The simulator by Gillespie (Gillespie, 1993), (Gillespie,
1994) features constraints that are fully embedded. Changing
constraints in this simulator are handled by swapping the entire
equations of motion, passing final conditions as initial conditions
at each exchange.

Rather than computing constraint forces as an auxiliary pro-
cess to the forward dynamics problem, the work in (Nahvi et al.,

1998) uses an inverse dynamics formulation. The resulting force,
computed in response to sensed motion, is rendered by a haptic
interface to allow a user feel constraints imposed by a virtual
mechanism whose motion is fully prescribed by the haptic inter-
face motion. However, if objects within the virtual environment
have internal degrees of freedom or are not fully constrained by
their connection to the haptic interface, then a forward dynamics
model must be simulated, at least to compute the certain motions.
A topic not covered in detail here, but related to the choice of a
forward or inverse dynamic model for simulation is the choice
of haptic rendering approach: whether impedance display or ad-
mittance display. Forces are displayed and motion sensed by the
haptic interface in impedance display while motion is displayed
(often using an an inner control loop) and forces sensed in admit-
tance display. Most haptic interface devices are by design better
force sources than motion sources, so impedance display is more
common, the work of Yoshikawa (Yoshikawa et al., 1995) and
MacLean (MacLean and Durfee, 1995) being exceptions. A con-
venient link between a haptic interface using impedance display
and a forward-dynamics simulation is provided by the virtual
coupler (Brown and Colgate, 1997). Forces for haptic display
and equal and opposite forces for imposing on the forward dy-
namics model are computed by multiplying the vector difference
of the image of the operational point of the haptic interface and
the point of contact with the virtual environment by a spring con-
stant (and perhaps multiplying velocity by a damping constant,
together which form the virtual coupler). A second advantage of
the virtual coupler approach is the clean separation it imposes be-
tween hardware and simulator, which allows a coupled stability
analysis to be undertaken. In particular, the sampled data pas-
sivity analysis may be reduced to a discrete time passivity anal-
ysis (Colgate, 1994), (Brown and Colgate, 1997) (Colgate and
Schenkel, 1997), (Miller et al., 2000) .

The simulator presented in this paper uses embedded con-
straint handling. The simulator is outfitted with a set of sym-
bolic manipulation routines that produce a new model, custom-
tailored to each new target system. In this way, the structural
properties of each target system can be incorporated to the fullest
extent to yield compact equations. Just before runtime, the equa-
tions are wrapped in a numerical integration routine to yield the
simulation code. The present system employs either AUTOLEV
(Schaechter, 1988), (Kane and Levinson, 1999), (Autolev, 2003)
or our own toolbox in Matlab/MAPLE to perform the symbolic
algebra. Constraints that are subject to change, however, are
optionally not embedded until run-time as will be shown be-
low. Briefly, constraint equations are formulated on-line for each
change in contact condition within the system and embedded
in the model (used to reduce the model to its minimal realiza-
tion) in real-time. There are two major components of this tech-
nique: the automated selection of generalized speeds, developed
by Reckdahl, and efficient constraint embedding, first presented
by Wampler et al. (Wampler et al., 1985) and further refined by
Mitiguy (Mitiguy, 1995). In this paper, these components are
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assembled into a complete method for real-time constraint em-
bedding.

The presentation of this simulator is intended to serve in
part as an introduction to Kane’s method for the haptics commu-
nity. A step-by-step discussion of the model construction process
is included and references to the Lagrange formalism are made
throughout to increase the tutorial value of the paper. Designers
of virtual environments who are familiar with the Newton-Euler
and Lagrange methods, but have perhaps only heard of Kane’s
method, make up the intended audience for this paper.

The body of this paper is organized around the following
three steps for the creation of a virtual environment simulator:

Step 1, presented in section 2: A mathematical model is con-
structed by naming variables and parameters. Initial condi-
tions are assigned to the variables as appropriate and values
are assigned to the parameters according to the material or
geometric properties for which those parameters stand.

Step 2, discussed in section 3: Kinematic, kinetic and mass dis-
tribution quantities are formed and these quantities are ma-
nipulated according to a principle of mechanics to formulate
the equations of motion.

Step 3, discussed in section 4: The equations of motion are in-
corporated into an interactive simulator with haptic display.
Constraint conditions, if transient, may be embedded on-line
in an automated fashion.

An illustrative example featuring a changing constraint is devel-
oped stepwise in each of the above sections, and two more exam-
ples are presented in Section 5. One of these examples demon-
strates the influence of the choice of model variables on the com-
pactness of the resulting equations of motion, and the other ex-
ample demonstrates various methods for embedding constraints.

2 STEP 1: MODEL CONSTRUCTION
To begin the formulation of the equations of motion, one

chooses a set of parameters and variables to describe certain
mass distribution, kinematic, and kinetic quantities in the target
system. Choosing parameters and variables sounds deceptively
simple, but the decisions made here exert a strong influence on
the eventual form and numerical efficiency of the equations of
motion. This section introduces the variables used in Kane’s
equations, in particular generalized speeds, and compares them
to those used in Lagrange’s equations.

Before treating the parameters and variables used in formu-
lating the equations of motion, mention must be made of a sec-
ond major part of the system description, the geometric model.
Whereas the equations of motion (which might be called the
kinematic/dynamic model) are differential equations in terms of
configuration and motion variables that locate reference points
and reference frames, the geometric model is an algebraic de-
scription of the boundary of each body with respect to its refer-
ence point and reference frame. While the kinematic/dynamic

model is solved through numerical integration to evolve the sys-
tem configuration forward in time, the geometric model is han-
dled by a collision detector to determine when and at what points
bodies within the system collide. Upon detecting a collision, in-
tegration must be halted, impulses resolved, new constraints im-
posed if appropriate, and integration re-started with the appropri-
ate initial conditions.

This paper will concentrate on the construction of the kine-
matic/dynamic model and its use within a differential equation
solver for simulation. Neither the geometric model nor the col-
lision detector that makes use of the geometric model will be
considered in detail. Instead, this paper assumes that a mecha-
nism to detect changing contact conditions is already in place.
The literature contains presentations of several specialized geo-
metric models and associated collision detectors. Perhaps most
successful are the Lin/Canny algorithm (Lin and Canny, 1991),
(Lin and Manocha, 1997) and the GJK algorithm (Gilbert et al.,
1988) (Gilbert and Foo, 1990) (Ong and Gilbert, 1997), (Ong and
Gilbert, 2001). The Lin/Canny algorithm has been adapted for
use with haptic rendering (Gregory et al., 2000) (Gregory et al.,
1999). For good reviews on the issue of collision detection, see
(Lin et al., 1996) and (Jimenez et al., 2001). See also (Holler-
bach, 2000) and (Mark et al., 1996) for reviews with focus on
haptic interface to virtual environments.

2.1 Kinematic/Dynamic Model
To construct the kinematic/dynamic model for a systemS,

one chooses variables to describe the configuration ofS, or vari-
ables that specify the location of a reference point and orienta-
tion of a reference frame fixed within each body ofS. These
variables may be calledconfiguration variables. In Lagrange’s
method, one usesgeneralized coordinates, commonly labelled
qi (i = 1, ...,n), as configuration variables. Generalized coor-
dinates specify the location of reference points and orientation
of reference frames defined forS relative to one another rather
than all relative to a single origin and single Newtonian refer-
ence frame. The generalized coordinates describe only the al-
lowed configurations and thus encapsulate certainconfiguration
constraints. For example, if a revolute joint connects two bodies,
only the joint angle is needed to describe the configuration of the
second body if the configuration of the first is known. Compared
to a set of variables that specifies the location and orientation of
each body relative to a common ground, a set of generalized co-
ordinates is reduced in number i.e.,n< 6ν, whereν is the number
of bodies ofSand spatial motion is being considered. IfM is the
number of configuration constraints encapsulated by the choice
of generalized coordinates, thenn = 6ν−M.

A set of generalized coordinates is usually found by inspec-
tion. In some cases, as in the case of closed kinematic chains,
however, an independent set is difficult to find. It is then conve-
nient to carry along a configuration constraint equation as part of
the system description (or to carry along a differentiated config-
uration constrainti.e. , motion constraint, as elaborated below).
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Lagrange’s equations are second order differential equations
in the generalized coordinatesqi (i = 1, ...,n). These may be
converted to first-order differential equations or into state-space
form in the standard way, by defining an additional set of vari-
ables, calledmotion variables. To convert Lagrange’s equations,
one defines the motion variables simply as configuration variable
derivatives, sometimes calledgeneralized velocities. Then the
state vector is made up of the configuration and motion variables:
the generalized coordinates and generalized velocities. Table 1
shows the configuration and motion variables used in Lagrange’s
method in the first column.

In Kane’s method, generalized coordinates are also used as
configuration variables. However, the motion variables in Kane’s
equations are defined asfunctionsthat are linear in the configu-
ration variable derivatives and in general nonlinear in the con-
figuration variables. The use of such functions can lead to sig-
nificantly more compact equations, as will be demonstrated in an
example in section 5 below. The name given to these new motion
variables isgeneralized speedsand the symbol commonly used
is u, as shown in the second column of Table 1.

More explicitly, each generalized speed is defined by the
analyst as a linear combination of the generalized coordinate
derivatives:




u1

...
un


 = Y




q̇1

...
q̇n


+Z (1)

where the elements of the(n×n) matrixY and(n×1) matrix Z
are functions ofqi (i = 1, ...,n) and possibly the timet. Recip-
rocal relations express the generalized coordinate derivatives in
terms of the generalized speeds:




q̇1

...
q̇n


 = W




u1

...
un


+X (2)

where the(n×n) matrix W and(n×1) matrix X are functions
of qi (i = 1, ...,n) and possibly the timet. The expressions of
the generalized coordinate derivatives in terms of the general-
ized speeds (Eqs. 2) are calledkinematical differential equations
and form the first part of the state equations (equations of mo-
tion). The equations of motion will take on a particularly com-
pact (and thus computationally efficient) form with the effective
use of generalized speeds.

For certain physical reasons, a second type of constraint
equation may arise, restricting not the allowable configurations
that the system may occupy, but restricting the types of motion
that it may undergo. These are called motion constraints1. Just

1The terms ‘configuration constraint’ and ‘motion constraint’ have been used

as configuration constraints may be encapsulated within the def-
inition of a set of generalized coordinates,motion constraints
may be encapsulated in the definition of a set of generalized
speeds. By judicious choice of the functions defining the gener-
alized speeds in terms of the generalized coordinate derivatives
and generalized coordinates, the motion constraint equations can
be automatically satisfied. Thus if a system is subject tom mo-
tion constraints, the number of generalized speeds isp = n−m.
In Kane’s equations, the motion constraints may be fully em-
bedded, yielding ordinary differential equations in independent
variables. Whereas in Lagrange’s method, if a motion constraint
exists, it must be carried along as part of the system descrip-
tion. Guaranteeing the satisfaction of a motion constraint in La-
grange’s method is then handled using the method of Undeter-
mined Multipliers.

Motion constraints may be conveniently expressed as func-
tions among a non-minimal set of generalized speeds. Note also
that differentiated configuration constraints may be considered
motion constraints; such treatment of configuration constraints
is often convenient. Motion constraints that arise for physical
reasons (e.g., rolling constraints) may be expressed in Pfaffian
form, as a linear relationship among the generalized speeds and
are calledsimplemotion constraints by Kane. Thus, simple mo-
tion constraints may be expressed

A B




u1

...
un


+C = 0 (3)

where the elements of the matricesA B andC are functions of
the generalized coordinates and time.

Givenm motion constraints, there will bem dependent gen-
eralized speeds in the setur (r = 1, ...,n), which may be ex-
pressed in terms of the remainingp = n−m independent gen-
eralized speeds. After selecting which generalized speeds are to
be considered independent and re-ordering (a process which will
be considered again in Section 4) Eq. (3) can be re-arranged as
an expression for themdependent generalized speeds in terms of
the p independent generalized speeds:

A




up+1

...
un


 = B




u1

...
up


+C. (4)

One must choose theA andB matrices so that Eq. (4) may be

in favor of the roughly equivalent terms ‘holonomic constraint’ and ‘nonholo-
nomic constraint’ in this paper so that a differentiated holonomic constraint
(which is still properly referred to as a holonomic constraint) may be grouped
with nonholonomic constraints under one heading. Simply put, configuration
constraints are expressed as equations involving configuration variables and mo-
tion constraints are expressed as equations involving motion and configuration
variables.
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Table 1. Options For The State Variables

M: # configuration constraints; m: # motion constraints;

n: # independent generalized coordinates;p = n−m: # independent generalized speeds.

Lagrange’s method Kane’s method

generalized coordinatesgeneralized coordinates
Configuration Variables

qi (i = 1, ...,n) qi (i = 1, ..,n)

generalized velocities generalized speeds
Motion Variables

q̇i (i = 1, ...,n) ui (i = 1, ..., p)

number of constraints encapsulated M M +m

solved uniquely for the dependent generalized speeds and the re-
sults written in terms ofD = A−1B andE = A−1C as:




up+1

...
un


 = D




u1

...
up


+E, (5)

where the elements ofD andE are functions ofqi (i = 1, ...,n)
and possibly the timet. Now that the motion constraints have
been expressed in an explicit linear form, the construction of the
reduced set may be completed by substitution. This process is
called embedding the motion constraints.

One more note regarding generalized speeds is in order. The
definition of the set of generalized speeds is up to the analyst.
The definition of the generalized speeds can have a profound ef-
fect on the compactness of the equations of motion, although the
effect does not become apparent until the equations are actually
formulated in Step 2. Mitiguy (Mitiguy and Kane, 1996) has de-
veloped a set of directives for the optimal choice of generalized
speeds for systems with open chains interconnected by revolute,
Hooke’s, or ball-and-socket joints.

To summarize Table 1, two choices have been presented for
the set of variables for a kinematic/dynamic model. Although
in both sets, M configuration constraints have been encapsulated
by the choice ofn= 6ν−M generalized coordinates, differences
exist in the encapsulation ofm motion constraints. Column 1,
with n generalized velocities, carries alongm motion constraint
equations. Column 2 usesp generalized speedsur (r = 1, ..., p)
wherep = n−m. Thus column 2 embeds both the configuration
and the motion constraints and forms what may be considered a
set ofindependent variables.

Example 1 Figure 1 shows a a planar system compris-
ing a uniform diskB of radiusr, massm, and central moment
of inertiaJ in contact with a rampA fixed in a Newtonian refer-
ence frameN. Let the horizontal lineX and vertical lineY, both
fixed in N, intersect at the pointO on the edge ofA and useφ to
designate the angle betweenX and the edge ofA.

φ

B A

r
q

2

Bo

Y

X

q
1

a 2

a1

a 3

O

N

Figure 1. A rolling disk

To characterize the configuration ofB in N, the X-Y coor-
dinatesx andy of the mass centerBo of B may be used, along
with the angleq2 betweena2 and a line fixed inB that is initially
parallel to the ramp edge. However, ifB is to remain in con-
tact withA, the coordinate set{x,y,q2} satisfies a configuration
constraint: xcos(φ)− ysin(φ) = r. After introducing mutually
perpendicular unit vectorsa1,a2, anda3 fixed inA, with a1 paral-
lel to the edge ofA, a3 normal to the X-Y plane anda2 = a3×a1

as shown in Figure 2, this configuration constraint may be ex-
pressedpOBo ·············a2 = r, wherepOBo is the position vector fromO to
Bo. If we defineq1

∆= pOBo ·············a1, then the set of generalized coordi-
nates{q1,q2} encapsulates the configuration constraint.

For motion variables, the generalized velocitiesq̇1 and q̇2

are used in Lagrange’s formulation, whereas in Kane’s equa-
tions generalized speeds can be defined as linear functions of the
generalized coordinate derivatives. Although for this example
no particular advantage is available by defining the generalized
speeds as anything different than the generalized velocities, we
shall, for purposes of exposition, defineu1

∆= q̇1 andu2
∆= rq̇2.

If B slides onA, then bothu1 andu2 are independent vari-
ables. However, ifB rolls on A, a motion constraint2 may be

2When rolling takes place in a plane, as in this example, the rolling constraint
is not nonholonomic; it can be integrated to form a holonomic constraint, and then
used to reduce the set of generalized coordinates down to a single independent
member. For rolling in 3D, a rolling constraint is nonholonomic and cannot be
used to express dependencies among the generalized coordinates, only among the
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written: u1 +u2 = 0. When the rolling constraint is enforced, the
equations may be written in terms of a single generalized speed
(but still two generalized coordinates), a process which will be
taken up for this example in the next sections.

Although one rarely bothers to write down the matrices
Y,Z,W,X,D, andE defined in Eqs. (1), (2), and (5) when work-
ing Kane’s method by hand, they are generally stored in mem-
ory by a computerized (symbolic manipulator) implementation
of Kane’s method. For this example, they are:

Y =
[

1 0
0 r

]
; Z = [0]; W =

[
1 0
0 1/r

]
; X = [0], (6)

and when the constraint is imposed:

D = [−1]; E = [0], (7)

which will become useful in Section 4 below.

2.2 Handling of Constraints
Let us further discuss the handling of constraints given their

relevance to changing contact conditions. In Table 1, general-
ized coordinates and generalized speeds were introduced along
with methods for defining them in such a way that all constraints
(both configuration and motion constraints) may be embedded.
The result is a set of independent variables, aminimalstate de-
scription which can be used to produce a particularly compact set
of equations of motion.

Now it is time to re-consider whether a minimal description
is actually desired. In fact, some constraints may be subject to
change during the period of interest and should therefore not be
embedded, at least not prior to run-time. Instead, it would be
useful to pass a dependent set of state variables accompanied by
a set of possibly transient constraint expressions on to the sim-
ulator construction Steps 2 and 3. The transient constraints are
then handled, by embedding or by other means, during runtime,
where the various factors affecting their transience are available.
For this purpose, the exposition of steps 2 and 3 below will in-
clude the development of an on-line method for embedding con-
straints in the equations of motion.

In addition to embedding constraints, another operation
must be automated: the selection of the independent general-
ized speeds, for each time a constraint comes into play, the set of
generalized speeds that may be considered independent is sub-
ject to change. Usually, the selection is made by the analyst, but
for handling changing constraints, this task must be given to the
runtime code. Additionally, singular configurations may occur at
certain times during a simulation, producing ambiguities in the

generalized speeds. It is always possible, however, to treat a holonomic constraint
as if it were nonholonomic, that is, to treat it as amotionconstraint, and that is
the approach taken in this example.

state description. Although generalized coordinates and general-
ized speeds can usually be chosen with foresight to avoid singular
configurations, occasionally one would rather handle singulari-
ties by re-defining the set of independent generalized speeds or
generalized coordinates during simulation. The automated selec-
tion of independent generalized speeds to be developed in Sec-
tion 4 supports changing constraints and additionally enables the
accommodation of singularities.

3 STEP 2: FORMULATE EQUATIONS
After completing the first step, the analyst has a model in

hand that describes the configuration and motion of the tar-
get system in terms of certain configuration and motion vari-
ables. The next step is to form various vector and scalar quanti-
ties, including kinematic quantities, kinetic quantities, quantities
that describe mass distribution, and, optionally, quantities that
describe kinetic energy, potential energy, and work functions.
Then, these quantities are related to one another by applying
a principle of mechanics. The resulting equations will involve
derivatives of the motion variables and are calleddynamical dif-
ferential equations. During simulation, the dynamical differen-
tial equations together with the kinematical differential equations
will govern the behavior of the model as it interacts with a human
user through the haptic interface.

The various approaches for producing equations of motion
can be classified as either 1) vector approaches based on the di-
rect use of D’Alembert’s or Jourdain’s principles such as Kane’s
method, or 2) scalar approaches based on Hamilton’s and Gauss’
principles such as Lagrange’s equations or the Gibbs-Appell
equations. The vector approaches employ a projection or dot-
product onto certain subspaces while the scalar approaches are
each based on a variational principle. Generally, the vector ap-
proaches require the expression of accelerations or angular mo-
mentum derivatives, which can, especially without the judicious
use of generalized speeds, involve significant amounts of alge-
bra. In Lagrange’s equations, the algebra enters not in the com-
putation of accelerations, since only velocities are needed, but
in the computation of partial derivatives and derivatives of scalar
expressions.

Though the equations produced using the various ap-
proaches are equivalent in the sense that they produce the same
numerical results in simulation, Kane’s method holds some
unique advantages. Both Lagrange’s equations and Kane’s equa-
tions use generalized coordinates and thus embed configuration
constraints. Therefore mechanisms, including robots and haptic
interface devices, that are generally composed of many bodies
yet possess few degrees of freedom, are better served by either
one of thesemultibody systemmethods than by standard applica-
tion of the equations of Newton and Euler (Gillespie and Colgate,
1997). Kane’s method, because it uses generalized coordinates
yet is based on a vector approach, has been called “Lagrange’s
form of D’Alembert’s Principle”. But Kane’s method also uses
generalized speeds, which allows motion constraints to be em-
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bedded. So Kane’s method has been compared to the Principle of
Virtual Power or Jourdain’s Principle and Kane’s equations have
been likened to the Gibbs-Appell equations and Maggi’s equa-
tions (Baruh, 2000), (Papstavridis, 1998). The use of generalized
speeds in Kane’s method enables the selection of an indepen-
dent set of motion variables for nonholonomically constrained
systems and the production of a model in ordinary differential
equation form. In Lagrangian mechanics, where only general-
ized velocities are available, one must use the Method of Unde-
termined Multipliers to handle motion constraints. As mentioned
above, the use of generalized speeds can lead to more compact
equations of motion. Indeed, a special choice of generalized
speeds can produce equations that are diagonal in the general-
ized speed derivatives, that is, uncoupled dynamical equations
(Lesser, 1992). A further advantage of Kane’s method over La-
grange’s method derives from its membership in the vector ap-
proach classification: it is a projection method. The projection of
certain non-contributing forces (sometimes called non-working
constraint forces) which are known to lie in the null-space of the
basis vectors formed as part of the method allows one to dis-
regard such forces at the outset of the analysis, which leads to
savings in the operations required during formulation.

Actually, one can use generalized speeds in the scalar ap-
proaches and realize some of the associated advantages. In such
case the generalized speeds are known asquasi-velocities, and in
an extension of Lagrange’s equations there appear related quan-
tities calledquasi-coordinates. In fact, quasi-velocities were de-
veloped by Hamel and Jourdain and used to extend Lagrange’s
method in the early 20-th century (Papstavridis, 1998), thus the
concept and termqausi-velocityor nonholonomic variablepre-
dates the termgeneralized speedby about 50 years. Numerous
papers have appeared demonstrating the interrelationships be-
tween Kane’s equations, Lagrange’s equations, and Hamilton’s
equations (Mingori, 1995), (Desloge, 1987), (Townsend, 1992).
Certainly it can be said that generalized speeds are more com-
monly known and used than quasi-velocities in the engineer-
ing community today. One indicator that supports this claim is
the number and success of computer programs for dynamic sys-
tem analysis that employ Kane’s method internally (see (Trinkle,
2002)).

The success of Kane’s method within the engineering com-
munity is perhaps due to Kane’s own academic interests, which
are primarily pedagogical, and his approach, which is algorith-
mic. By the same token however, a portion of the engineering
community and the greater applied mechanics community, espe-
cially those whose background is in the more classical methods,
find Kane’s method at first unintuitive and unmotivated3. Fur-
ther, Kane’s method has been adopted to much greater extent by
the spacecraft dynamics community than by the robotics com-
munity. With the explicit intention of addressing this situation,

3One member of this community commented that learning Kane’s method
from Kane’s book (Kane, 1985) is like learning C from the book by Kernigan
and Ritchie: the material is all there, just difficult to digest.

a derivation of Kane’s equations is undertaken in the following.
A geometric interpretation, following in part (Lesser, 1992) but
also (Baruh, 2000) and (Papstavridis, 1998), using the language
of differential geometry (which is often encountered within the
field of robotics) forms the basis of the following derivation.
First, Kane’s equations for a system of particles are developed,
highlighting the projection of Newton’s equations onto a space
tangent to the configuration space. Then the production of basis
vectors for the tangent space used for the projection is discussed
explicitly, including the case for motion constrained systems. Fi-
nally, the method is extended to rigid bodies.

3.1 Derivation of Kane’s Dynamical Equations
Consider a systemSof particlesPi (i = 1, ..,ν) whose posi-

tions with respect to an arbitrary point fixed in a Newtonian ref-
erence frameN are given by the position vectorspPi (i = 1, ...,ν).
Newton’s law relates the forceFi acting onPi to mi , the mass of
Pi andNaPi , the acceleration ofPi in N as follows:

Fi −mi
NaPi = 0 (i = 1, ...,ν), (8)

whereNaPi = d
dt

NvPi andNvPi = d
dt

NpPi . To generate scalar equa-
tions from theseν vector equations, one may dot-multiply with
various vectors, including, for example, any three non-parallel
vectors fixed inN, or, optionally,any ν sets of 3 non-parallel
vectors. Use of such vectors would produce3ν scalar equations,
which could, conceivably, be solved for theN-measure numbers
of NaPi (i = 1, ...,ν), which are3ν in number. However, if the
configuration ofS may be parameterized by a set ofn general-
ized coordinatesqi , (i = 1, ...,n) and timet, i.e. , if vector func-
tionspPi may be written:

pPi = pPi (q1, ...,qn, t) (i = 1, ...,ν), (9)

then the motion ofSevolves on ann-dimensional manifold em-
bedded within the3ν-dimensional coordinate space. That mani-
fold may be called the configuration space or configuration man-
ifold for S and the generalized coordinatesqi (i = 1, ...,n) are
curvilinear coordinates that parameterize that manifold. If the
vector functionspPi (i = 1, ...,ν) (or equivalently, the configura-
tion constraints embodied by the choice of generalized coordi-
nates) do not depend on time, then the manifold is fixed in the
coordinate space. If the vector functions do depend on time, then
the configuration manifold moves within the coordinate space, or
it may be considered a one-parameter family of manifolds, where
t is the parameter.

Given the parameterization of the configuration space by
qi (i = 1, ..,n), a set ofn < 3ν vectors can be found that spans
the configuration manifold’s tangent space and thesen vectors
shall be very useful for dot-multiplying Eq. (8) to produce scalar
equations. Let us for the moment postpone the discussion of
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how such a spanning set of vectors, or abasis for the tangent
space, is found and simply designate the members of this set
τττττττττττττPi

r , (r = 1, ...,n), where we note that there aren such vectors
for each particlePi . Dot-multiplication of Eq. (8) with each of
τττττττττττττPi

r , (r = 1, ...,n) leads to the scalar equations

τττττττττττττPi
r ·············Fi −τττττττττττττPi

r ·············miaPi = 0 (r = 1, ...,n; i = 1, ....,ν)) (10)

After summing over theν particles ofS, one arrives at:

ν

∑
i=1

τττττττττττττPi
r ·············Fi −

ν

∑
i=1

τττττττττττττPi
r ·············miaPi = 0 (r = 1, ...,n) (11)

Note that there are now onlyn such equations which may be
solved for then quantitiesq̈r (the generalized velocity deriva-
tives) that show up in expressions foraPi .

But now we go a step further and introduce a linear trans-
formation to the tangent space basis vectorsτττττττττττττPi

r (r = 1, ...,n) to
produce a new set of tangent space basis vectorsvPi

r (r = 1, ...,n).
This is where Kane’s method departs from the traditional La-
grangian approach. We will again defer the full definition of this
transformation for a moment, but note that any independent lin-
ear combination of all members of the basis setτττττττττττττPi

r (r = 1, ...,n)
may be used to produce a new basis set. The tangent space it-
self remains invariant. As we shall see below, the production of
the new basis vectorsvPi

r (r = 1, ...,n) by differentiation with re-
spect to the curvilinear coordinatesqr (r = 1, ..,n) will no longer
be possible as it is withτττττττττττττPi

r (r = 1, ...,n), however, this does not
matter. It just so happens that there is no coordinate system on
the configuration manifold in terms of which the basis vectors
vPi

r (r = 1, ...,n) can be generated.
Using the new basis vectors for the tangent space, we now

write:

ν

∑
i=1

vPi
r ·············Fi −

ν

∑
i=1

vPi
r ·············miaPi = 0 (r = 1, ...,n) (12)

The first term on the left is used to define thegeneralized active
forcesFr for S in N:

Fr
∆=

ν

∑
i=1

vPi
r ·············Fi (r = 1, ...,n) (13)

and the second term is used to define thegeneralized inertia
forcesF∗

r for S in N:

F∗
r

∆=−
ν

∑
i=1

vPi
r ·············miaPi (r = 1, ...,n). (14)

Thus Eq. (12) yields

Fr +F∗
r = 0 (r = 1, ...,n) (15)

which are called Kane’s dynamical equations.
If the systemS is subject to motion constraints (assume that

the configuration constraints have already been accounted for
by the choice of generalized coordinates,) then the motion ofS
can be characterized byp < n independent generalized speeds
ur (r = 1, ..., p) as discussed in the previous section. In such case
the motion ofSevolves in ap-dimensional sub-manifold embed-
ded within the configuration manifold. We say thatSstill hasn
global (position or configuration) degrees of freedom (dof), but
n−m local (velocity or motion) dof (Papstavridis, 1998). Geo-
metrically speaking, this means thatScan still reach all points in
the configuration manifold, but not by any path;i.e. , the motion
constraints impose local restrictions (rather than global restric-
tions imposed by configuration constraints). Given the motion
constraints, a set of basis vectors with onlyp members can be
found that spans the space tangent to thep-dimensional subman-
ifold. Let us call the members of this setṽPi

r , (r = 1, ..., p). Now
Eq. (8) may be dot-multiplied with each ofṽPi

r , (r = 1, ..., p)
which leads to, after summing over theν particles:

ν

∑
i=1

ṽPi
r ·············Fi −

ν

∑
i=1

ṽPi
r ·············miaPi = 0 (r = 1, ..., p) (16)

After using the first term to define the constrained generalized
active forcesF̃r (r = 1, ..., p) for S in N and the second term (in-
cluding the negative sign) to define the constrained generalized
inertia forcesF̃∗

r (r = 1, ..., p) we may write Kane’s dynamical
equations for the constrained systemS

F̃r + F̃∗
r = 0 (r = 1, ..., p) (17)

Let us summarize the operations performed so far and re-
iterate the geometric interpretation. We began with the force bal-
ance equations for each particle (Eq. (8)) and then took the dot-
product of each term with the basis vectorsvPi

r (r = 1, ...,n) (or,
for the motion-constrained system,ṽPi

r (r = 1, ..., p)). Then we
summed over all the particles to yieldn scalar equations (15) (for
the constrained system,p scalar equations (17),) which are first
order differential equations in the generalized speedsur . Hence
the r-th differential equation is the sum of all force balances in
the direction defined by ther-th basis vectorvr (or ṽr). The indi-
vidual force balances have been projected onto the tangent space
of the configuration manifold (or in the case of the constrained
system, onto the space tangent to the motion-constraint subman-
ifold).

Because Kane’s method is fundamentally a projection
method, a further advantage is realized, namely, noncontributing
forces may be dropped from the analysis at the outset. To see this,
we may decompose the total forcesFi acting on the particles into
two components: the applied forcesFa

i and the constraint forces
Fc

i , thusFi = Fa
i + Fc

i . The constraint forces, whether they arise
from configuration constraints or motion constraints, are some-
times called non-working forces since they are orthogonal to the
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tangent space of the configuration manifold (or in the case of a
motion-constrained system, orthogonal to the tangent space of
the motion sub-manifold) and thus they do no work on the sys-
tem. D’Alembert’s principle of constraint is another statement of
this fact:

Fc
i ·············vPi

r = 0 (i = 1, ...,ν) (18)

We may thus re-define the generalized active force:Fr
∆=

∑ν
i=1 vPi

r ·············Fa
i (r = 1, ...,n) (or F̃r

∆= ∑ν
i=1 ṽPi

r ·············Fa
i (r = 1, ..., p)).

Hence in the construction of Kane’s dynamical equations, one
need not consider any forces of constraint in the analysis, which
often greatly simplifies the task. Even if included in the analy-
sis, constraint forces will be automatically eliminated, since they
are orthogonal to the tangent space. Note that constraint forces
include forces of interaction between bodies such as the forces
which hold a joint together in a multibody system. They do not
include, however, friction forces acting at a joint or spring or
damper forces when such an element spans the axis of a joint.

Construction of the tangent vectors

Let us now take up the topic deferred above, the construction of
a set of basis vectorsτττττττττττττr for the tangent space. To begin, let us
apply the chain rule to the vector functionspPi (Eq. (9)), to arrive
at an expression for the velocityNvPi in terms ofq̇i (i = 1, ...,n):

NvPi =
[

N∂p
∂q1

...
N∂p
∂qn

]



q̇1

...
q̇n


+

N∂p
∂t

(i = 1, ...,ν) (19)

where the left superscript indicates that differentiation is per-
formed in frameN (see (Kane, 1985) Chapter 1, for a discussion
of the importance of keeping track of reference frames during

differentiation of vectors). The coefficients
N∂pPi

∂qr
(r = 1, ...,n)

of the generalized velocities in fact form a set of vectors that
spans the tangent space of the configuration manifold. We may
thus use these vectors in place ofτττττττττττττPi

r used above in the deriva-

tion of Kane’s equations. Each
N∂pPi

∂qr
represents the direction in

which pPi is affected byqr . Thus if one obtains, by any means,
an expression forNvPi in terms of the generalized velocities, one
may simply read off the coefficients ofq̇r (r = 1, ...,n) to obtain
a basis for the tangent space.

In the treatment so far, including Eq. (19), the particles of
systemShave been dealt with one at a time. If instead one writes
down column matrices with vector functions as elements, then
certain very satisfying items make appearances, including a Ja-
cobian matrix. For a matrix formulation of Kane’s equations, see
(Blajer, 1990) and for some discussion of the Jacobian matrix,
see (Scott, 1988) and (Storch and Gates, 1989).

The tangent vectors that appear in Eq. (19) play an important
role in the generation of relationships between Kane’s equations
and more classical equations. From Eq. (19) and a similar ex-
pression forNaPi , one can easily conclude from the definition of
partial derivative that

N∂pPi

∂qr

=
N∂vPi

∂q̇r

=
N∂aPi

∂q̈r

. (20)

The first equation plays an important role in establishing inter-
relationships between Kane’s equations in the form (10) and La-
grange’s equations (Baruh, 2000). The second equality is used to
relate Kane’s equations to the Gibbs-Appel equations (Mingori,
1995) (Desloge, 1987).

Generalized speeds and a transformation of basis vectors

As mentioned above, Kane introduced a linear transforma-
tion to the set of basis vectorsτττττττττττττr ,(r = 1, ..,n) (or equivalently

to the set
N∂p
∂qr

, (r = 1, ...,n)) that leads to significant advantages

in certain cases. Specifically, the set of vectorsτττττττττττττr shall be sub-
jected to a linear transformation using the matrixW that we first
encountered in the definition for the generalized speeds, Eq. (1).
As above, the transformed basis vectors are denotedvPi

r , so the
transformation reads:

NvPi
r =

n

∑
j=1

τττττττττττττPi
j Wjr =

n

∑
j=1

N∂pPi

∂qr

Wjr (21)

We see that the elements of each column ofW spell out the par-
ticular linear combination of the basis vectorsτττττττττττττPi

j . The basis vec-
torsvPi

r are given the namepartial velocitiesby Kane, for reasons
that will become apparent soon. To see the utility of this trans-
formation, substitute the inverted generalized speed definitions
(the kinematical differential equations) Eq. (2) into Eq. (19) to
obtain

NvPi =
[

N∂p
∂q1

...
N∂p
∂qn

]
W




u1

...
un


+

[
N∂p
∂q1

...
N∂p
∂qn

]
X +

N∂p
∂t

(22)

The r th partial velocityvPi
r of Pi is then defined as the coefficient

of ur (r = 1, ...,n), consistent with Eq. (21). The portion ofvPi

not containing anyur is denotedvPi
t and called the velocity re-

mainder ofPi in N. Rewriting Equations (22) yields

NvPi =
[
vPi

1 ... vPi
n

]



u1

...
un


+vPi

t (23)

9



The motivation for the termpartial velocityis now evident. After
one has in hand an expression for the velocityvPi in terms of
the generalized speeds (generated by kinematic operations, not
necessarily by performing the operations in Eqs. (22) and (23))
one simply reads off the coefficients of ther-th generalized speed
to obtain ther-th partial velocity. Ther-th partial velocity is in
fact a partial derivative ofvPi with respect tour :

vPi
r =

∂vPi

∂ur

(24)

In practice (when applying Kane’s method by hand) one does not
carry out the transformation Eq. (21) but rather uses Eq. (2) to
substitute for thėq’s in expressions for particle velocities. Then
the matter of identifying partial velocities (and arranging them
into a table, as is often convenient) is simply a matter of reading
off coefficients of theu’s.

Motion Constraints

For systems subject to motion constraints, the operations are not
much more difficult: one simply additionally uses Eq. (5) to
substitute for the dependent generalized speeds before reading
off the partial velocities as the coefficients of theu’s. Only the
independentu’s will appear in the velocity expressions and there
will be only p of them.

For further use later, let us develop a linear transformation
relating the constrained basis vectorsṽPi

r to the unconstrained
(but transformed in terms of generalized speeds) basis vectors
vPi

r , analogous to the transformation of Eq. (21). Equation (23)
can be partitioned as:

NvPi =
[
vPi

1 ... vPi
p

]



u1

...
up


+

[
vPi

p+1 ... vPi
n

]



up+1

...
un


+vPi

t (25)

and then the right hand side of Eq. (5) can be substituted for
ui (i = p+1, ...,n) to produce:

NvPi =
([

vPi
1 ... vPi

p

]
+

[
vPi

p+1 ... vPi
n

]
D

)



u1

...
up


+

vPi
t +

[
vPi

p+1 ... vPi
n

]
E

(26)

Now the coefficient ofur (r = 1, ..., p) in Eq. (26) is the definition
of theconstrained partial velocitỹvPi

r (r = 1, ..., p) of Pi in N and
the portion ofNvPi not containing anyur is the definition of the
constrained partial velocity remainderṽPi

t of Pi in N. Rewriting
Eq. (26) now gives:

NvPi =
[
ṽPi

1 ... ṽPi
p

]



u1

...
up


+ ṽPi

t , (27)

which also demonstrates that the constrained partial velocity vec-
tors can be read off by inspection of velocity expressions.

Extension to rigid bodies

To extend the projection method to rigid bodies requires
the availability of a tangent vector for each point of each rigid
body within the mechanism. Although this initially sounds like
a daunting task, it does not turn out bad at all since the forces
of interaction between points in a single rigid body are non-
contributing and since a new quantity (the angular velocity)
makes an appearance for each rigid body, enabling the forma-
tion of simplified expressions. Let us begin with a single rigid
body B. From standard kinematics, the velocityNvP in N of an
arbitrary pointP of B may be expressed:

NvP = NvBo + NωωωωωωωωωωωωωB×pBoP (28)

whereNvBo is the velocity of the center of massBo of B in N,
NωωωωωωωωωωωωωB is the angular velocity ofB in N andpBoP is a position vec-
tor from Bo to pointP. Now the angular velocity of bodyB that
appears in Eq. (28) can be expressed in terms of the generalized
velocities, just as we expressed the velocity of a particleP in
terms of the generalized velocities in Eq. (19). However, since
the angular velocity is itself a defined quantity, that is, it cannot
be constructed by differentiating an angular displacement, the
coefficients appearing in front of the generalized velocities are
not partials of an angular displacement with respect to the gen-
eralized speeds, but rather partials of the angular velocity with
respect to the generalized velocities (see Eq. (20)).

NωωωωωωωωωωωωωB =
[

N∂NωωωωωωωωωωωωωB

∂q̇1
...

N∂NωωωωωωωωωωωωωB

∂q̇n

]



q̇1

...
q̇n


+

N∂NωωωωωωωωωωωωωB

∂t
(29)

We shall give the coefficients of the generalized velocities
the namespartial angular velocitiesand denote themωωωωωωωωωωωωωr (r =
1, ...,n) and the second term the namepartial angular velocity
remainderand denote itωωωωωωωωωωωωωt

4. Now, using an equation analogous
to Eq. (19) forNvBo and Eqs. (28) and (29), the velocity of the
arbitrary pointP of B can be expressed:

NvP =
n

∑
r=1

(τττττττττττττBo
r +ωωωωωωωωωωωωωB

r ×pBoP) q̇r +τττττττττττττBo
t +ωωωωωωωωωωωωωB

t ×pBoP, (30)

which is analogous to the expression for the velocity of a particle
in Eq. (19). The coefficient oḟqr can be identified as ther-th

4Here, for simplicity of notation, we have chosen not to use different symbols
for the angular velocity tangent vectors defined as the partials with respect to
the generalized velocities and those defined as the partials with respect to the
generalized speeds, as we did for the velocity tangent vectorsτττττττττττττr andvr . Later,
we shall generalize the definition (invoke a transformation on the basis) and re-
use the same symbols.
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tangent vector for the pointP on bodyB. However, the sum
and cross product contained within this coefficient need not be
carried out inside the sum.

Now if RB is the resultant of all forces acting onB andRB is
a bound vector applied atBo, andTB is the sum of all moments
acting onB so thatRB andTB may be considered areplacement
for all forces and moments acting onB, then the Newton-Euler
equations forB may be expressed

RB− L̇LLLLLLLLLLLL
B
= 0; TB− ḢHHHHHHHHHHHH

B
= 0 (31)

whereLLLLLLLLLLLLLB = mB
NvBo is the linear momentum ofB andHHHHHHHHHHHHHB is the

angular momentum ofB. Note thatL̇LLLLLLLLLLLL
B
= mB

NaBo wheremB is the
mass ofB andNaBo is the acceleration inN of Bo. Also, ḢHHHHHHHHHHHH

B
may

be expressed as(IB ·············NαααααααααααααB + NωωωωωωωωωωωωωB× I B ·············NωωωωωωωωωωωωωB) whereIB is the central
inertia dyadic ofB and NαααααααααααααB is the angular acceleration ofB in
N. Alternate expressions exist foṙHHHHHHHHHHHHH

B
, which are more efficient

(fewer operations needed) in certain situations (Kane, 1985).
To produce scalar equations from Eq. (31), we dot-multiply

the first of Eqs. (31) withτττττττττττττr and the second of Eqs. (31) withωωωωωωωωωωωωωr

and sum the two. This operation projects the equations onto the
appropriate tangent spaces. If there areN bodies in a systemS,
indexed by the subscripti, we may sum over each of the bodies
to obtain:

Fr =
N

∑
i=1

(RBi ·············τττττττττττττBi
r +TBi ·············ωωωωωωωωωωωωωBi

r ) (r = 1, ...,n), (32)

called the generalized active force for the system of bodiesS in
N, and

F∗
r =

N

∑
i=1

(
L̇LLLLLLLLLLLL

Bi ·············τττττττττττττBi
r + ḢHHHHHHHHHHHH

Bi ·············ωωωωωωωωωωωωωBi
r

)
(r = 1, ...,n), (33)

called the generalized inertia forceF∗
r for S in N, so that the

dynamical differential equations may be expressed simply as:

Fr +F∗
r = 0 (r = 1, ...,n), (34)

which looks no different than (15). Indeed, for a system of par-
ticles and rigid bodies, one simply sums the contribution toFr of
the collection of particles, formed according to Eq. (13) with the
contribution toFr of the collection of bodies, formed according
to Eq. (32). Likewise,F∗

r is formed according to Eqs. (14) and
(33).

Finally, note that the transformations that were applied to the
basis vectorsτττττττττττττr to producevr for the system of particles above
may be extended to the system of rigid bodies without modifica-
tion. The same arguments hold, that a linear combination of basis

vectors spans the same tangent space. Thus the transformed tan-

gent vectors are definedvBo
r

∆=
N∂vBo

∂ur
andωωωωωωωωωωωωωB

r = ∂NωωωωωωωωωωωωωB

∂ur
. Equation

(29) now reads:

NωωωωωωωωωωωωωB = [ωωωωωωωωωωωωωB
1 ... ωωωωωωωωωωωωωB

n]




u1

...
un


+ωωωωωωωωωωωωωB

t (35)

while a similar expression (much like Eq. (23)) may be written
for vBo. These new tangent vectors are used in place ofτττττττττττττBo

r andωωωωωωωωωωωωωB
r

in Eq. (34) above. Likewise, for a system of motion-constrained
rigid bodies, the use of the constraint equations (5), expressed
as relationships among the generalized speeds may be used to
eliminate the dependent generalized speeds and form a reduced
set of p independent basis vectorsṽBo

r andω̃ωωωωωωωωωωωωB
r that span the tan-

gent space to the motion-constrained sub-manifold. The same
formalism and geometric interpretation of the equations still ap-
plies. Finally, note that non-working forces, including forces of
constraint, need not be included in the analysis of rigid bodies.

Example 1 (continued) The rolling disk considered
above will now be used to demonstrate the formulation of Kane’s
equations. First, one forms expressions for velocities of particles
and mass centers and points to which forces are applied and an-
gular velocities of bodies. For the rolling/sliding disk, the veloc-
ity NvBo of pointBo in N and angular velocityNωB in terms of the
generalized speeds are required:

NvBo = u1a1
NωB = (u2/r)a3

(36)

From these expressions, a table of partial velocities may be con-
structed by inspection:

vBo
r ωB

r

r = 1 a1 0
r = 2 0 a3/r

To complete the kinematic analysis, expressions for the acceler-
ations of particles and body mass centers and body angular ac-
celerations are formed:

NaBo =
NdNvBo

dt = u̇1a1;

BαB =
NdNωB

dt = u̇2
r a3

(37)

The forces acting onB, including the gravity force act-
ing on the mass centerBo and the contact forces acting at the
point of contact withA may be resolved into a resultantRB =
−mgn2−Ff a1 + Na2 applied atBo and a torqueTB = −rFf a3,

11



whereFf is the friction force,N is the normal force of contact,g
is the local gravitational constant, andn2 is a unit vector directed
vertically upward. The equations of motion are then composed
by performing the dot products called for in Eqs. (32) and (33).
For r = 1,

F1 = vBo
1 ·············RBo +ωB

1 ·············TB =−mgsin(φ)−Ff

F∗
1 = vBo

1 ·············(−mNaBo)+ωB
1 ·············(−JNαααααααααααααB) =−mu̇1

(38)

and forr = 2,

F2 = vBo
2 ·············RBo +ωB

2 ·············TB = Ff

F∗
2 = vBo

2 ·············(−mNaBo)+ωB
2 ·············(−JNαααααααααααααB) =− J

r2 u̇2
(39)

so the unconstrained equations of motion are:

−mgsin(φ)−Ff −mu̇1 = 0

−Ff − J
r2 u̇2 = 0

(40)

which may be easily solved foṙu1 andu̇2.
To formulate the constrained equations, with the constraints

embedded, one first substitutes for the dependent generalized
speeds in expressions for velocities, angular velocities, accel-
erations, and angular accelerations and forms a new table of
partial velocities and partial angular velocities. For this ex-
ample, we substituteu2 = −u1 to obtain: NωωωωωωωωωωωωωB = −u1/ra3 and
NαααααααααααααB =−u̇1/ra3 while NvBo andNaBo remain unchanged. The new
table of partial velocities and partial angular velocities reads:

ṽBo
r ω̃B

r

r = 1 a1 −a3/r

The constrained generalized active forceF̃1 and constrained gen-
eralized inertia forcẽF∗

1 are formulated according to the dot prod-
ucts specified in Eqs. (32) and (33) using the constrained partial
velocity and partial angular velocity:

F̃1 =−mgsin(φ)−Ff +Ff

F̃∗
1 =−mu̇1− J

r2 u̇1
(41)

so that the equation of motion now reads:

−mgsin(φ)−
(

m+
J

r2

)
u̇1 = 0 (42)

An alternative method for formulating the constrained equations,
by taking combinations of the unconstrained equations, will be
introduced in the next section and applied to the present exam-
ple. The alternative method is proposed for on-line (during simu-
lation) formulation of the constrained equations for systems sub-
ject to changing constraint conditions.

4 STEP 3: SIMULATE
Now that the equations of motion have been formulated

symbolically for the target system, they may be wrapped in a nu-
merical integration routine and solved within an interactive sim-
ulator featuring haptic display. If the constraints are embedded,
which can be accommodated by Kane’s method even for non-
holonomically constrained systems as presented above, then the
equations are in ODE form and minimal in number. A system
with m motion constraints hasp = n−m dynamical differential
equations, one for each independent generalized speed. Determi-
nation of values, by an ODE solver, for thep independent gen-
eralized speeds uniquely determines the values of them depen-
dent generalized speeds through Eq. (5). In contrast, Lagrange’s
equations supplemented with Undetermined Multipliers require
the solution, by a Differential Algebraic Equation (DAE) solver,
of n+ m equations inn+ m unknowns (thep independent and
them dependent generalized velocities, andm measure numbers
of the constraint forces).

Certainly constraint embedding appears to have its advan-
tages, both in terms of efficiency and simplicity of form in the
resulting equations. However, if certain constraint equations are
subject to change during simulation, then the process of em-
bedding those constraints must take place on-line, so that their
variation may be driven by the human user through a haptic in-
terface during interactive simulation. In addition, the selection
of independent generalized speeds must be completed on-line,
since new constraint conditions can lead to changes in whether
a given generalized speed is independent, dependent, or may
be optionally grouped with either the dependent or independent
set. Because options usually exist, the choice of which general-
ized speeds are to be considered independent is usually made by
an analyst. Auspiciously, Reckdahl has developed a method by
which independent generalized speeds may be chosen automat-
ically. In this section, a simulator architecture is presented that
includes Reckdahl’s automated selection of independent gener-
alized speeds, automated constraint embedding, and numerical
solution of the resulting equations of motion in independent vari-
ables.

Using equations with embedded constraints, the following
must occur with each detection of a collision and possible change
of constraint: integration of the equations must be stopped, the
impulses resolved, a new set of independent generalized speeds
chosen, the dependent generalized speeds expressed in terms of
the independent ones, the new constraint-embedded model con-
structed, then integration re-started. This rather involved process
can be simplified, however, if all possible constraint conditions
can be enumerated prior to simulation time. In such case, all per-
tinent equations, each with constraints embedded, may be pre-
formulated and assembled into a hybrid dynamical finite state
machine. The finite state machine then handles interactive se-
quencing during runtime. Mechanisms featuring latches, locks,
stops, escapements such as the piano action can be neatly simu-
lated using this approach (Gillespie, 1996).
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If, however, all constraint conditions cannot be anticipated
or if constructing the finite state machine would be too ardu-
ous because of necessary size or complexity, then an automated
constraint-handling method outlined in the following 4 steps can
be applied. 1) The constraint equations themselves are formu-
lated numerically or literally on-line by a symbolic manipula-
tor that is integrated into the run-time code. 2) The essentially
numerical algorithm of Reckdahl (Reckdahl, 1997), further dis-
cussed below, is used to determine a set of independent gener-
alized speeds. 3) The re-ordering of the generalized speeds or
equivalently, the partitioning of matrixA B into matricesA andB
of Eq. (4) is completed on-line by a symbolic manipulator. 4) Fi-
nally, the constrained equations are determined usingD = A−1B
of Eq. (5) through the operations of Eq. (44) and (45) developed
below.

These four steps are organized in a flow chart in Figure 2 that
also indicates the initial formulation of the unconstrained equa-
tionsFr +F∗

r , numerical integration of the constrained equations
F̃r + F̃∗

r , and a set of operations that conditionally invoke con-
straint deletion, constraint imposition, and singularity avoidance.
Steps 1), 2), and 3) lie outside the main simulation loop while
step 4) lies within and is invoked each time step. Various condi-
tional statements tie together the auxiliary loops, most notably a
check on the constraint forces, a collision detector, and a check
on the condition number of the matrixA of Eq. (4). Each of these
conditionals, if satisfied, initiates an excursion from the main
simulation loop. The excursion initiated by the check on con-
straint forces is labelledconstraint deletion(Haug et al., 1986);
it enables the simulation of unilateral constraints, or noninterpen-
etration constraints. The excursion initiated by the collision de-
tector can be calledconstraint imposition. Like constraint dele-
tion, this conditional invokes steps 1), 2) and 3) to take care of
changes to the set of active constraints. A shorter excursion, in-
voking only steps 2) and 3), is conditionally initiated by a check
on the condition number of matrixA. This excursion is called
singularity avoidance; it allows impending singular configura-
tions, indicated by small condition numbers to be side-stepped
by re-selection of the independent generalized speeds.

Blocks 1) through 4) will be further discussed below. The
collision detector will not be addressed in this paper as men-
tioned earlier, nor will the impulse resolver or the check on the
constraint forces, beyond a few notes made now. For a method
for resolving impulses and further notes on constraint imposi-
tion in the notation of Kane’s equations as in Step 2) above,
see (Djerassi, 1994), (Djerassi, 1999). The check on constraint
forces, which enables unilateral constraints, initially appears to
undermine the whole motivation for embedded constraint han-
dling, since these forces are the very ones eliminated from the
analysis using Kane’s method. However, the constraint forces
can be evaluated using an analytical procedure that complements
constraint embedding. An orthogonal complement to the tangent
space of the configuration manifold may be formed using the set
of vectors used as a basis for the tangent space (the partial veloc-

ities) (Lesser, 1992). The equations so produced are called the
kinetostatic equations(Papstavridis, 1998).

Block 1): Formulate Constraint Equations

The constraint equations in the form of Eq. (3) are formulated,
where the elements of the matrixA B are expressed symbolically
in terms of parameters of the geometric model. It is assumed that
the geometric model has been segmented into a connected graph
of entities like vertices, edges, and surfaces for use by the col-
lision detector. The same geometric representation can be used
to formulate constraint equations once a certain pair of entities is
known to be in contact.

Block 2): Select Independent Generalized Speeds

The procedure for identifying the independent generalized
speeds is based on the construction of an orthonormal basis for
the rowspace of matrixA B. An orthonormal basis may be con-
structed by performing a numerical singular value decomposition
(SVD) of the matrixA B:

A B = UΣVT , (43)

where the parameters, if expressed symbolically, have been as-
signed values. The numberm of non-zero singular values inΣ
gives the number of independent constraints. Linearly dependent
constraints, if they appear in Eq. (3), will be identified using the
SVD. A row-wise inspection, according to an algorithm that can
be automated, of the elements ofVT can be used to identify the
independent generalized speeds. See (Reckdahl, 1997).

Block 3): Re-ordering the Generalized Speeds

After the independent generalized speeds are identified, matrix
A B is partitioned into matricesA andB of Eq. (4), which in-
volves a re-ordering of the generalized speeds.

Block 4): Embedding the Constraints

Inside the main simulation loop, the constraints may be embed-
ded using Eqs. (4.4.3) and (4.11.4) in (Kane, 1985), as recom-
mended by (Mitiguy, 1995) and also detailed by (Wampler et al.,
1985). Rather than substituting the right hand side of Equation
(5) for each dependent generalized speed before forming partial
velocities as was demonstrated in the formulation of the con-
strained equations̃Fr + F̃∗

r = 0 in the previous section, the con-
strained equations can be formulated directly by taking a certain
combination of terms appearing in the unconstrained equations.
That combination is directed by the constraint equations.

More explicitly, the new constrained generalized active
force F̃r (r = 1, ..., p) and the constrained generalized inertia
force F̃∗

r (r = 1, ..., p) may be formed from the unconstrained
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Figure 2. Simulation Flow Chart

generalized active forceFr (r = 1, ...,n) and generalized inertia
forceF∗

r (r = 1, ...,n) as follows:

F̃r = Fr +
n

∑
s=p+1

DsrFs (r = 1, ..., p) (44)

F̃∗
r = F∗

r +
n

∑
s=p+1

DsrF
∗

s (r = 1, ..., p) (45)

whereD = A−1B is defined in Eq. (5). To eliminate the dependent
generalized speeds and dependent generalized speed derivatives
from the resulting expressions, one may substitute from the mo-
tion constraints (Eq. (5)) and differentiated motion constraints.
To establish the validity of Eqs. (44) and (45), simply substitute
the definition of the constrained partial velocity (See Eq. (26))
into Eqs. (44) and (45) and rearrange terms to arrive at Eq. (13)
and (14). The equations of motion in the independent general-
ized speeds are then simply formed as:

F̃r + F̃∗
r = 0 (r = 1, ..., p) (46)

which are onlyp equations in thep unknownsu̇i (i = 1, ..., p).

Figure 2, then, presents a simulation paradigm in which the
equations to be integrated are ODEs in a set of independent
variables, no matter what constraints might hold at a particular
time. This enables the use of a standard ODE solver, the stabil-
ity properties of which have been extensively studied (Andrew
and Humphries, 1998), which allows certain stability guarantees
to be established (Brown and Colgate, 1997). Most operations
in the flow chart can be implemented numerically, except Block
1), formulation of constraint equations. This block involves the
assembly of terms as a function of the newly determined set of
contact conditions and requires symbolic algebra. Alternatively,
the constraint equations may be composed by indexing a pre-
arranged matrix of variables according to the interconnection in-
formation provided by the collision detector. Note that the rela-
tively expensive SVD operation in block 2) is performed outside
the main integration loop while

The design of the simulator outlined in Figure 2 is based
on full constraint embedding, which enables the use of an ODE
solver and therefore allows the main simulation loop to run as
fast as possible. (Note that checking the condition number of
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matrix A can be performed efficientlye.g., Gaussian elimina-
tion). Of course if simulation is to take place in real-time, all
loops must be traversable in a single step, which may be diffi-
cult given complexity of impulse resolution, the symbolic nature
of block 1), and the relative expense of the SVD operation in
block 2). However, it is argued here that a fast main simulation
loop could be used to develop a multi-rate scheme featuring a
kind of predictor-corrector approach to constraint handling. Us-
ing a main simulation loop running faster than real-time, human
behavior is predicted a short time ahead, collisions are antici-
pated, their resolution pre-computed, and the ensuing equations
pre-formulated. Upon actual occurrence, the pre-computed col-
lision event and associated resolution could be corrected before
adoption and display through the haptic interface. A second mo-
tivation for the full constraint embedding scheme presented here
follows from the relative ease of stability or passivity analysis
that may be taken when a ODE solver is used rather than a DAE
or other solver.

Example 1 (continued) The equations of motion for the
rolling/sliding disk, with the rolling constraint embedded, may
be formulated according to the method of Eq. (44) and (45)
rather than the traditional approach employed in the previous
section. Since there is one constraint and two generalized co-
ordinates,p = n−m= 2−1 = 1, and from Eq. (7)D = [−1], so
Eqs. (44) and (45) read:

F̃1 = F1−F2

F̃∗
1 = F∗

1 −F∗
2

(47)

which, when Eqs. (38) and (39) are used to substitute forFr and
F∗

r (r = 1,2), produce the same constrained equations of motion
obtained for this example in the previous section.

One final note regarding this example is in order. Note that
the normal forceN is a noncontributing force and was eliminated
from the analysis at the outset. Yet Newton’s Law of Friction
would express the measure numberFf of the force of friction as
the product ofN and a coefficient of frictionµ. Several methods
exist for bringingN into evidence, that is, to produce an equation
for N. Kane outlines a method he calls the use ofauxiliary gen-
eralized speedsin (Kane, 1985), which is related to a process
called relaxation of the constraints(Papstavridis, 1998). The
method of Lagrange multipliers can also be used with Kane’s
method. A third method is also available: to construct a basis for
the orthogonal complement of the basis to the tangent space and
use such basis to project the Newton-Euler equations (Lesser,
1992) (Papstavridis, 1998). Whatever method is used to bring
N into evidence, great care must be taken to apply the force of
friction in the appropriate directioni.e. , opposite the relative mo-
tion, which couples the dynamic and kinetostatic equations. This
coupling can lead to some very interesting problems in wedging
and sticking having to do with the existence and uniqueness of
solutions (Trinkle et al., 1997) (Song et al., 2001).

5 FURTHER EXAMPLES
Example 2 To highlight the effect that the choice of gen-

eralized speeds has on the form of the equations of motion for a
given system, consider the spherical robot wrist depicted in Fig-
ure 3. Rigid linksA, B, andC form an open kinematic chain

B
A

C

n2
n3

n1

n2

b2

b2

c2

c  = b3

a  = n3 3

3

q1

q
2

q
3

Co

L

Figure 3. A spherical robot wrist

interconnected by revolute joints anchored in a Newtonian refer-
ence frameN. Let unit vectorsni (i = 1,2,3) fixed in N with n3

horizontal and parallel to the axis ofA, n1 directed vertically up-
ward andn2 = n3×n1. Similarly, dextral sets of orthogonal unit
vectorsai ,bi , andci (i = 1,2,3), are fixed inA,B, andC, with
a3 = n3 andb2 = a2 andc3 = b3. The quantitiesq1,q2, andq3

denote the angles betweenn2 anda2, a3 andb3, andb2 andc2,
respectively. The simplest way to introduce generalized speeds
u1,u2 andu3 is to define each as the first time derivative of the
corresponding generalized coordinate: (ui = qi (i = 1,2,3)), in
which event the associated kinematical differential equations are
(See, for example (Kane et al., 1983)):

q̇1 = u1

q̇2 = u2

q̇3 = u3

(48)

Alternatively, the generalized speeds may be defined asui
∆=

NωωωωωωωωωωωωωC ·············ci (i = 1,2,3) in which case the associated kinematical dif-
ferential equations are

q̇1 = (sin(q3)u2−cos(q3)u1)/sin(q2)
q̇2 = sin(q3)u1 +cos(q3)u2

q̇3 = u3−cos(q2)(sin(q3)u2−cos(q3)u1)/sin(q2)
(50)

Certainly the kinematical differential equations for the second set
of generalized speed definitions are more complex. To compare
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u̇1 = (T1−L(F2 +GM(s1c3 +s3c1c2))− (I3− I2−ML2)u2u3)/(I1 +ML2)
u̇2 = (T2 +L(F1 +GM(s1s3−c1c2c3))+(I3− I1−ML2)u1u3)/(I2 +ML2)
u̇3 = (T3 +(I1− I2)u1u2)/I3

(49)

Table 3. Operations count:

Eq. (48) Eqs. Eq. (50) Eq. (49)

not shown

multiply, divide 0 790 10 29

add, subtract 0 285 4 16

sin,cos 0 372 9 10

the dynamical differential equations for the two sets of defini-
tions, letA andB be massless and letM denote the mass ofC
with mass centerCo located on the axis ofC a distanceL from
the joint connectingA to B. Let I1, I2 and I3 denote the central
moments of inertia ofC about lines parallel toc1,c2 andc3, re-
spectively and replace the set of all contact forces acting onC
with a couple of torqueT1c1 + T2c2 + T3c3 together with a force
F1c1 +F2c2 +F3c3 applied atCo. Let the only distance force act-
ing onC be the force of gravity. Then the dynamical differential
equations corresponding to Eqns (48) are so long as to preclude
their inclusion here, while those associated with Eqns (50) are
shown in Eqn (49):

Table 3 compares the number of operations by category in
the dynamical differential equations associated with the custom-
ary generalized speed definition, (leading to the kinematical dif-
ferential equations (48)) and those shown in Eq. (49), which
are associated with a carefully defined set of generalized speeds
(leading to the kinematical differential equations (50)). Clearly,
the dynamical equations associated with the specialized general-
ized speeds are much shorter. For this particular example, one
might notice that the symmetry in Eq. (49) is reminiscent of
Euler’s equations for the torque-free motion of an axisymmetric
body. Indeed, the kinematical differential equations in Eq. (50)
may be found among those tabulated in (Kane et al., 1983) for
each of the 24 sets of orientation angles. However, the particular
definition of generalized speeds which leads to the most efficient
equations for a given system depends on many factors. General
directives are difficult to produce. For a few guidelines, see (Mi-
tiguy and Kane, 1996).

Example 3 To illustrate the formulation of equations of
motion using Kane’s method and to further highlight the process
of embedding constraints, an example with variable constraint
structure is presented. The target system is a shopping cart with

a single castered front wheel whose vertical axis (the caster axis)
is subject to sticking. When the front caster rotates freely, the
shopping cart possesses two degrees of freedom; whereas when
the front caster sticks, an additional motion constraint leaves only
a single degree of freedom.

P1

P2

P3

P4

P5

b2

b1c 1

c 2

L 1

L 2

L 3

q
4

q
3

n1

n2

n3

Figure 4. Schematic representation of a shopping cart, top view.

Figure 4 shows a top view of the shopping cart rolling on a
flat horizontal planeN, in which orthogonal unit vectorsn1 and
n2 are fixed. Body B, of massmB and with central moment of
inertia about a vertical axisIB, represents the basket of the shop-
ping cart. Unit vectorsb1 andb2 are fixed inB, with b1 oriented
along the long axis ofB andb2 parallel to the common axis of
the two back wheels, which are located at pointsP4 andP5. Point
P1 lies midway betweenP4 andP5 and pointBo, representing the
mass center ofB, lies a distance distanceL1 alongb1 from P1.
A single castered wheel is mounted onB at pointP2, located a
distanceL2 alongb1 from P1. BodyC, in which orthogonal unit
vectorsc1 andc2 are fixed as shown, holds the castered wheel in
contact withN at pointP3, located a distanceL3 along−c1 from
P2. Assume that the inertia properties ofC may be described by
a particle of massmC located atP3.
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A human user pushes onB, exerting a momentτb3 and a
force Fb1 applied at pointP1. The equations of motion shall
be formulated consideringN a Newtonian reference frame, both
when the caster atP2 is rotating freely and when it is sticking.
These equations would be suitable for rendering the intermit-
tent behavior (including the changing impedance or feel) of the
cart through a three axis (two translations and one rotation in the
plane) haptic interface.

Step 1 One may define a set of generalized coordinates
qi , (i = 1, ...,4) and generalized speedsui , (i = 1, ...,3) as fol-
lows. Let q1 and q2 be theN-measure numbers of a position
vector locatingP1 with respect to a point fixed inN 5. Defineq3

as the angle betweenn1 andb2 and defineq4 as the angle between
b1 andc1. Define the generalized speeds using

u1
∆= NvP1 ·············b1 (51)

u2
∆= NωωωωωωωωωωωωωB ·············n3 (52)

u3
∆= NωωωωωωωωωωωωωC ·············n3 (53)

Note that, since the wheels atP4 andP5 allow no motion parallel
to their common axisb2, the velocity ofP1 in N may be expressed
in terms of a single generalized speed:

NvP1 = u1b1. (54)

Thus only three generalized speeds are needed. In effect, a re-
duced set of generalized speeds has been defined, one that al-
ready encapsulates the rolling constraint of the wheels atP4 and
P5.

Looking at expressions forNvP1,NωωωωωωωωωωωωωB, andNωωωωωωωωωωωωωC, written either
in terms ofq̇i , (i = 1, ...,4) or ui , (i = 1, ...,3),

NvP1 = q̇1n1 + q̇2n2 = u1b1
NωωωωωωωωωωωωωB = q̇3n3 = u2n3
NωωωωωωωωωωωωωC = (q̇3 + q̇4)n3 = u3n3

(55)

one may express the definitions of the generalized speeds in
terms of the generalized coordinate derivatives using (see Eq.
(1))




u1

u2

u3


 =




c3 s3 0 0
0 0 1 0
0 0 1 1







q̇1

q̇2

q̇3

q̇4


 (56)

and the reciprocal relations that become the kinematical differ-

5q1 andq2 would be calledcoordinatesof P1 if coordinate frames (defined by
bound unit vectors) were used in place of reference frames (defined by free unit
vectors).

ential equations read (see Eq. (2)):




q̇1

q̇2

q̇3

q̇4


 =




c3 0 0
s3 0 0
0 1 0
0 −1 1







u1

u2

u3


 (57)

Step 2The set of generalized speeds{u1, u2, u3} contains
dependent variables since a rolling constraint exists at the wheel
at P3. If the caster is sticking, yet another constraint equation
exists. Let us first develop the equations of motion for the sys-
tem without caster sticking, with only the rolling constraint em-
bedded. Then we shall develop the equations of motion for the
system with caster sticking, with both the rolling constraint and
the sticking constraint embedded. Thereafter, the recombination
method by which the sticking equations can be developed di-
rectly from the non-sticking equations will be demonstrated.

Non-sticking system equations The wheel atP3 per-
mits no motion parallel to its axis,

vP3 ·············c2 = 0, (58)

which produces a constraint equation that may be assembled into
the matrix form of Eq. (3):

[−s4, L2c4, −L3

]



u1

u2

u3


 = 0 (59)

Let us chooseu3 to be the dependent generalized speed, in which
case Eq. (5) reads :

[
u3

]
=

[−s4/L3, L2c4/L3

][
u1

u2

]
(60)

To embed the constraint, we now substitute the right hand side
of Eq. (60) whereveru3 appears in kinematic quantities (for ex-
ample, inNvP3). Likewise, at this point an expression foru̇3 in
terms ofu̇1 andu̇2 andqi , (i = 1, ...,4) can be formed for use in
eliminatingu̇3.

Partial velocities for mass centers and points to which force
is applied and partial angular velocities for massive bodies and
bodies to which moments are applied may be assembled into a
table:

vP1
r vBo

r vP3
r ωωωωωωωωωωωωωB

r

r = 1 b1 b1 b1 +s4c2 0
r = 2 0 L1b2 L2b2−L2c4c2 b3
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The generalized active forcesFr (r = 1,2) may be now be formu-
lated according to Eq. (13)

Fr = vP1
r ·············(Fb1)+ωωωωωωωωωωωωωB

r ·············(τn3) (61)

and the generalized inertia forcesF∗
r (r = 1,2) may be formu-

lated according to Eq. (14):

F∗
r = vBo

r ·············(−mB
NaBo)+vP3

r ·············(−mC
NaP3)+ωωωωωωωωωωωωωB

r ·············(−IB
NαααααααααααααB) (62)

Expressions forNaBo,NaP3 andNαααααααααααααB may be obtained by differen-
tiating the expressions forNvBo,NvP3, andNωωωωωωωωωωωωωB. Whenu3 and u̇3

appears, substitutions are made from the right-hand-sides of Eq
(60) and its derivative.

Carrying out the dot products and referring to the table of
partial velocities, the dynamical differential equations are pro-
duced by summing theFr andF∗

r (r = 1,2) shown in Eq. (63).

Sticking system equations During those periods
when the caster sticks, an additional constraint arises sinceBωωωωωωωωωωωωωC =
0 or q̇4 = 0. In terms of the generalized speeds this adds a row to
the matrix form of Eq. (3):

[−s4 L2c4 −L3

0 −1 1

]


u1

u2

u3


 = 0, (64)

which may be used to eliminate 2 variables from the set of 3
generalized speeds. Let us declareu2 andu3 the dependent gen-
eralized speeds. Then

u3 = u2 = s4/(L2c4−L3)u1 (65)

An expression foṙu2 can be obtained by differentiation. A new
table of partial velocities and partial angular velocities reads:

r = 1

vP1
r b1

vBo
r b1− (L1s4/Z2)b2

vP3
r b1− (L2s4/Z2)b2 +(L3s4/Z2)c2

ωωωωωωωωωωωωωB
r −(s4/Z2)b3

Carrying out the dot products called for in Eq. (61) and (62), and
after defining the following intermediate variables

Z1 = q̇4 = u3−u2

Z2 = L3−L2c4

Z3 = L2mC(L2−L3c4)
Z4 = L1mB +L2mC

Z5 = IB +Z3 +MbL2
1

Z6 = s4Z1(Z5+mCL2
3−L2L3mCc4)/Z2

2,

(66)

one arrives at dynamical differential equations shown in Eq. (67)

F̃1 = F−s4τ/Z2

F̃∗
1 = (Z4−L2L3mCs2

4/Z2)u2
2−L3mC(c4−L2s2

4/Z2)u2
3−

Z6c4u1 +L2Z6s4u2−s4(Z4−L3mCc4)/Z2u1u2−
(mB +Z5s2

4/Z2
2 +mC(1−L3s2

4/Z2))u̇1

(67)

Step 3
The components of the equations of the shopping cart may

be organized into the interactive simulator design of Figure 2.
Eqs. (67) would be formulated on-line according to Eqs. (44)
and (45), but only when called for by the active constraint. (The
matrix D and the number of equationsp are declared and used
as variables.) Then a virtual coupler is used to link the forward
dynamics simulation of the cart to the haptic interface and in
turn to the human user. The human user can be regarded as an
admittance, controlling the motions of the haptic interface and
feeling the reaction force and torque. The handle of the hap-
tic interface is regarded as one end of the virtual coupler while
the values of the generalized coordinates locating the shopping
cart handle are regarded as the other end. The force and torque
(resultant and couple), used as input to the simulation and dis-
played at the haptic interface, is determined by the relative dis-
placement of the haptic interface and the image of the handle
(given by the generalized coordinate values). A three-axis haptic
interface is assumed available, capable of displaying two trans-
lations and one rotation in the plane. The linear and rotational
stiffness and damping of the virtual coupler are tuned according
to the properties of the haptic interface hardware and simulation
stepsize in order to provide good coupling yet ensure system sta-
bility (Brown and Colgate, 1997), (Gillespie, 1996).

6 SUMMARY
The design of a simulator with haptic display based on

Kane’s method has been presented. An integral part of the sim-
ulator design is a symbolic manipulator that constructs custom-
built equations of motion for each system to be simulated. The
use of generalized coordinates and generalized speeds allows
maximally efficient and maximally uncoupled equations of mo-
tion to be constructed. Changing constraint conditions within the
system are handled on-line using an automated constraint embed-
ding technique. Solution of the equations of motion by a numer-
ical solver and incorporation of the solver into a set of routines
for collision detection, resolution, and constraint handling was
presented. Three examples were presented, the first highlighting
a changing motion constraint, subject kineto-static laws of fric-
tion, the second highlighting the effect of the choice of general-
ized speeds and the third highlighting the permanent embedding
of a motion (nonholnomic) constraint and variable embedding of
a changing motion constraint.

In Step 2, Kane’s method was presented in a tutorial fashion
with a geometric interpretation. It was shown how the partial ve-
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F1 = F
F2 = τ
F∗

1 = (L1mB +L2mCc2
4)u2

2−L3mCc4u2
3−mCs4c4u1u2− (mB +mCc2

4)u̇1−L2mCs4c4u̇2

F∗
2 = mCL2

2s4c4u2
2−L2L3mCs4u2

3− (L1mB +L2mCs2
4)u1u2−L2mCs4c4u̇1− (IB +mBL2

1 +mCL2
2s

2
4)u̇2

(63)

locity vectors span the tangent space of the manifold on which
the system dynamics are constrained to evolve. These partial ve-
locity vectors play a central role in Kane’s method, since through
the dot product in the definitions ofFr andF∗

r they effect a pro-
jection of the Newton-Euler equations onto the constrained mani-
fold. It was also shown how the basis formed by the set of partial
velocity vectors (defined as partials with respect to generalized
speeds) is a linear transformation of a basis formed by a set of
vectors defined as partials with respect to generalized velocities.

In Step 1, the analyst chooses variables (generalized coordi-
nates and generalized speeds) to describe the target system and
thereby defines the directions of the partial velocity vectors. In
particular, the definition of the generalized speeds in terms of
the generalized coordinate derivatives produces the linear trans-
formation between the two bases discussed in Step 2. The judi-
cious choice of generalized speeds can have a profound effect on
the form and compactness of the eventual equations of motion.
For example, the choice of generalized speeds impacts the form
of the eventual equations by determining the complexity of ex-
pressions for accelerations and by determining the alignment of
partial velocities with applied forces. Also, a particular choice
of generalized speeds can produce an orthogonal basis of partial
velocity vectors. Such an orthogonal basis produces dynamical
equations which are decoupled in the generalized speed deriva-
tives, or said another way, the mass matrix is diagonalized. A
diagonal mass matrix is easy to invert, even symbolically, which
is advantageous when it comes to real-time simulation of com-
plex systems.

In Step 3, a design was presented in which practically all
steps of the process of producing and simulating customized
equations was automated, except of course for the operations of
Step 1, the definition of variables. This simulator design fea-
tures a combined approach with both symbolic algebra formula-
tion and numerical solution of the equations of motion. Because
all constraints are embedded, the model for numerical integra-
tion is p ordinary differential equations, wherep is the (velocity)
degrees of freedom. Thus the numerical solution of the model is
a particularly efficient operation.
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