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A Closest Point Algorithm for Parametric Surfaces
with Global Uniform Asymptotic Stability

Volkan Patoglu and R. Brent Gillespie

Abstract—We present an algorithm that determines the point on a direct method. Our reasons for pursuing direct rather
on a convex parametric surface patch that lies closest to a given than indirect methods have to do with certain properties
(possibly moving) point. Any initial point belonging to the surface that can be developed and proven much more easily for the

patch converges to the closest point (which might itself be moving) . ) . )
without ever leaving the patch. The algorithm renders the direct methods. These properties will not be available fer t

patch invariant and is globally uniformly asymptotically stable. ~indirect methods (the polyhedral methods accompanied by
The algorithm is based on a control problem formulation and tessellation algorithms), primarily because tesselatitasks
solution via a switching controller and common control Lyapunov  the construction of the parametric models. We further belie
function. Analytic limits of performance are available, delineating .-+ these properties will be essential for any method that i
values for control gains needed to out-run motion (and shape) . L2
and preserve convergence under discretization. Together with to be extended for use in an.advance.d. collision detector. We
a top-level switching algorithm based on Voronoi diagrams, the Use the ternadvancedo describe a collision detector that can
closest point algorithm treats parametric models formed by tiling treat intersecting, non-convex, and possibly deformabtids
together convex surface patches. Simulation results are used tocomposed by tiling together multiple convex surface pache
demonstrate invariance of the surface patch, global convergee, — (e that a body itself may be non-convex, even when all
limits of performance, relationships between low-level and top- .
level switching, and a comparison to competing Newton-iteration component surface pqtg:hes are convex, depend'ln'g on the
based methods. orientation and composition of the patches.) We anticifizde
direct methods (again, with those certain properties) hal
especially advantageous for the case of deforming bodies si
parametric models offer compact geometric represention
fast and reliable collision detection algorithm is ess#ntieven under deformation. Polygonal models, on the other,hand
for computer simulation of dynamical systems, includingequire calculation of new tessellations as the bodiesraefo
systems of rigid bodies and deformable bodies. CollisigParametric models also support solid mechanics-basetheont
detectors are also important components of software to@lsus deformation models which, in certain cases, may prove
for computer-aided design and computer-aided manufacturi computationally more efficient than finite element appresch
Many collision detectors are based on closest point alymst Although very high resolution tessellations can be achieate
that determine the pair of closest points on two disjointiéed interactive speeds, smoothness and continuity indepéondian
A closely related problem is the determination of the fustheparticular rendering are intrinsic properties of directtinoels.
points on two intersecting bodies. Also, the determinatbn  In this paper we present a closest point algorithm with
the point on a body closest to a penetrating point is usedrtain properties not possessed by our previous algasithm
in penalty-based haptic rendering algorithms. The petietya The algorithm applies to a convex parametric surface patch,
point might be the image of a stylus tip in the hand ofathematical object that we will define carefully in the body
an operator acting through a haptic interface. The vectef the paper. The certain provable properties @evergence
connecting the closest point and the image of the stylad initial points on the patch converge to the closest point
tip determines the magnitude and direction of the reactieidinvariance all paths starting in the patch never leave the
force to be rendered. Likewise, closest point algorithne thpatch. These two properties taken together yield an alyurit
can determine the penetration depth and direction (defingt isglobally asymptotically convergent.
suitably) between two intersecting bodies can be used tteren |n the algorithm’s nominal form it determines the point
reaction forces appropriate to the intersection of the Enaiy on a convex surface patch that is closest to a given (pos-
a fingertip and a virtual object through a thimble-based ibapsibly moving) point. In forms that are simple extensions, it
interface. determines the pair of closest points on two disjoint convex
In our previous work [1] [2], we developed a closesturface patches. In forms that we claim are further simple
point tracking method with local convergence properties thextensions, but will not fully lay out here for lack of spadte,
operates on pairs of parametric surface patches. Thaitalgor determines the furthest pair between two intersecting @onv
can be called alirect method, in that it operates directly onsurface patches, and thus becomes what may be called an
parametric surface representations such as NURBS surfagggemalalgorithm.
rather than on polyhedra such as those that result from thealthough convergence may seem like a desirable property
tessellation of such surfaces. For a full literature sureey (and indeed a property possessed by many available algo-
direct and indirect closest point algorithms for paraneetrrithms) invariance and global convergence at first glancg ma
surfaces, see [2]. In the present paper, we also concentsdem unwarranted. We argue, however, that global conver-
I . , gence is essential if a given closest point algorithm is to be
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tiled together convex surfaces patches, the point on théy'®o 1. PRELIMINARIES

surfacg thgt is clqsest to.a given point in its mte_norwﬂlm a8 A Convex Surface Patch

path with discontinuous jumps as the given point moves acros , . . .

a medial axis [3] of the body. With discontinuous jumps, it is In this paper we treat bodies descnb_ed by a collection of
much more difficult to guarantee that the initial conditioitl w tiled together surface patches. We restrict the surfacenpat

lie within a local region of attraction of the analytical skst to be clonvex gnd for now, we also require the bodles'to be
point. convex®. That is, the convex surface patches shall be oriented

and joined together at their boundaries in such a way that
Another very desirable feature in any closest point algarit a line joining any two points in the interior of the compact
is the availability of analytical limits of performance, tte body will be wholly contained in that body. While defining
availability of adjustments that can be made to preserve thenvexity for a body is straightforward even when it is a
properties in the face of demands made upon the algorithtied body, defining convexity for a surface patch requires
Such a limits of performance provide what adjustments capecial consideration. Like the definition for a convex spac
be made to preserve the properties under relative motionafrve [8], we have defined a convex surface patchaag
the bodies, especially fast relative motion, how are thogatch cut from a compact convex body. Convexity of the
adjustments dependent on the sharpness of body shapessamtice patch only depends on convexity of the body from
what tradeoffs exist between the algorithm speed (in terinswhich it is cut, and not on the curvature of the bounding
large time step used in a discretization) and convergeries.racurves that lie in the surface. Thus the projection of a serfa
_ ) patch onto a plane may well produce a planar area which
Many closest point algorithms are based on a NewtoQ ot convex. Likewise, smoothness of the surface patch
Iteration [4] [5] [6] [7]. A well-known deficit in Newton's jenends on smoothness of the body from which it was cut
iteration, however, is a limited region of attraction. Even&Ne require at least> smoothness). Note that the body from
for convex problems, Newton's iteration cannot yield globg,hich a patch is cut is to be distinguished from the body
convergence. Its region of attraction is local and COmBr&e tormeq py the tiled together patches. The convex tiled body
not necessarily connected set. In our work, we build algot# ;s the intersection of the bodies that play host to the patch
based on the explicit use of fee(_jback control. Newton’s Flot‘f\btting operations. To accommodate a requirement for our
can be interpreted as a special case of feedback con{ighyergence proof that appears below, we further define a
(using a particular control law) which, as can be shown usiRg . o-" o\ \rface patch as ‘nice’ when the angle between any
control analysis, inherits onlipcal convergence. In the work two surface normals (pointing outward) subtend less than 18

presented here, we rely on control laws that can be provggyrees. This requirement is non-restrictive as any convex
globally convergent. Interestingly, these control laws als0 g, iface patch that is not nice can easily be divided into at

simpler to implement. As a natural product of our adoption of ;<t two convex surface patches that are nice.
control theoretic design tools, our algorithm is equippdthw
gains that_ can be tuned to preserve the_ des_lrable proper%gsFee dback Based Algorithm
under various demands. One can even imagine tuning gainis
adaptively to yield maximum computational efficiency when In this paper, and without loss of generality, we shall use
the body shape and motion allows it, without risking loss dpur curves intersecting in four distinct vertices to defthe
global convergence. This is possible since the boundaries Rpundary of a surface patch. For example, Figure 1 shows
the gain values where the properties break down can be eadilgonvex surface patcly composed of its interior5 and
evaluated. the four curvesc; (i = 1...4) that bound it. Further, a
parametric surface patch may be conveniently parametkrize
In the following, we first carefully define eonvexsurface using parameters: and v whose domains are restricted to
patch and outline the design of our closest point algorith[o,1]. Thus the boundaries are the= 0,v = 0,u = 1,v =1
in Section Il. In Section Il we present the control law thagurves and the whole patc$i is described as the image of
renders the closest point globally asymptotically congatg the vector mappind (u, v) : ([0,1] x [0,1]) — R*. Given a
even when there exists relative motion between the point apdint Q lying outside a convex surface patéh there exists
surface patch. The controller is presented in the form ota+th a unique point P* of the patch that is closer t than any
rem and the proof (based on a common Lyapunov function)dsher point of the patch [9]. We will calP* the closest point
given in detail. The basic closest point algorithm involeedy and (u*,v*) the parameters of the closest point.
a single patch and point. Extensions to two patches areetelat The central problem we address in this paper is how to
in Theorem Il. In Section IV we present four simulationgietermine the closest poilt* given surface patch and point
which are designed to feature each of the critical propedfe Q and how to maintairP* given relative motion betweef
our algorithm: invariance, global region of attractionlestion and Q. To determineP*, we use an algorithm that causes an
of gains given relative motion and discretization, and tke dinitialization pointP, lying anywhere in the patch to converge
coupled nature of the top-level Voronoi-region based sviilg  to the closest point. The algorithm drives to zero the tahgen
and low-level switching between the surface patch interiglane projections of the vectax R from the best current guess
and its bounding curves. Finally, in Section V, we revisi th
relationship between our controls-based approach tosawli ILater, after a means of tracking tHerthest points on two intersecting

detector desi d the Newt iterati b d ﬁonvex surface patches has been developed, the restriét@mvexity on the
etector design an € Newton [erauon based approac I@ﬁ—together bodies can be lifted. These topics will beradsed in future

espoused in the past by other researchers. papers.



Fig. 2. This figure demonstrates the feedback stabilizedyiaten of the
differential error kinematics of the closest point problerheprojection errors
W (x) are regulated to zero by the proportional control |Aithat drives the
inversedifferential error kinematics, whose convergent integratiesults in
the desired surface parameters.

the error kinematics¥“ and Ww». Differentiating the error
, kinematics produces an expression which may be encapdulate
in ¥ = M(z)i + b(z), whose inverse appears (solved for
renamedw) in the forward loop in Figure 2. Note that, by
Fig- 1. A Sf“,rfa‘?e patctb, Za_fa"t‘)e‘e”g?d byu,v) € ([0,1] x [0,1]), is  convexity of the surface patch, the projection errorsl are
O { ebndig Ao 2870 O if the withess poin s the closest poin”. For
point on the patch) an#® (the current best estimate of the closest point) arany other pointP?, the projection vectoWw has a direction and

indicated in the figure. Vector§,, fy (the unit surface tangents in the v g non zero magnitude that can be used to drive the parameters
directions) andN (the unit surface normal) define the surface frame at any ando to «* andv*

point on the patch. VectaAR (the vector fromP to Q) is expressed in the
surface frame wher@*, U* and A are the resulting measure numbers. As N [2], we have shown that the control law =

the best estimat@® approaches the closest poiBt’, the measure numbers \/—!(— KU — b) renders the closest point solutidacally

in the tangent direction&“, U*, referred as the projection errors, converg ; : . .

to zero, and the measure numh&rconverges taF, the minimum distance easym_ptotlcally Stat_)le gnd an estimate on the pas'” of dtirac

betweenS and Q. of this controller is given by the set of points aroulrt
where theM matrix is positive definite. While solving for

] ] ) a manipulator’s inverse kinematics with a feedback stzdili
P (referred to as the witness point) @. Maintenance of the gjmjation of its differential kinematics, one may conside

closest pointP* comes for free, since convergence Bfto  cqnirol Jaws other than the one resulting from the direct
P ensures continual tracking as the closest pBinthanges jnersion of its differential kinematics. In [10], Lyapuno

Ioca_tion on the surface patch under the effects of relative type arguments are used to demonstrate that utilizing the
motion betweenQ and 5 and the shape of. Note that, j5cobian transpose in the control law produces performance
when the difference vectoAR is projected onto the surface qmparable to that produced using the Jacobian inverskeln t
tangentsf, andf,, these projections are called tpejection eyt section, we will prove with a control Lyapunov function
errors and labelledd* and ¥, respectively. that asymptotic convergence B* is preserved even when
Our algorithm is based on the formulation of a nonlinegpe termw = M~'(y — b) in the controller is replaced by
control problem and its solution takes the form of a feecjba%kpositive definite matrix. The convergence properties if th
stabilizing controller. The “plant” driven by the contretlis  simpiified control law follow from the fact that any positive
an integrator wrapped around the differential kinematidhe gefinite matrix can be bounded by its eigenvalues and the

error vectorAR. The outputs of the plant are the parametet§fect of motion can be counteracted by the feedback term

manipulateu and v until the projections¥, and ¥, of AR
onto the surface tangenfs andf, at P are driven to zero. C. Voronoi Switching to Locate the Active Patch
The “simulation” or numerical integration of the differéait If the modeling environment is represented withsiagle
kinematics then produces the convergent algorithm. Feddb@atch and the algorithm is initializeslfficiently closeéo P*,
is used to stabilize the integration. Note that similar fesek then the proposed controller can guarantee convergenbawit
stabilization techniques have been used to solve for thersev the patch even thougR* changes location on the patch under
kinematics of robot manipulators [10] and to solve for theéhe effect of relative motion. However, consideration of a
motion of constrained multibody systems [11]. single parametric surface patch by itself is not quite siaffic

In complete analogy to the solution of a manipulator'since within a parametric modeling environment, objects ar
inverse kinematics by a feedback stabilized simulationt®f igenerally modeled using collections of tiled-togetherfae
differential kinematics (see [10], Fig. 3.12), Figure 2 who patches. In such case, detection of #utive patch on which
the feedback stabilized integration of the differentiafoer P* lies becomes an important concern. At a given instant of
kinematics. The terrerror kinematicgefers to the dependencetime, the closest point solution may lie on any of the surface
of the projection errorst* and ¥ on the parameters patches and the active patch is subject to change due tiveelat
and v, on the location ofQ, and on the directions of the motion.
surface tangentf, andf, at P. Let the vectorz contain the  To update the active patch with respect to the relative motio
parameters, andv and let¥ (z) in the feedback loop contain of the bodies, we proposefeaturebased switching algorithm.

u=0



VS,

Fig. 3. (A,B) illustrate an object consisting of tiled-tdger surface patches
and all of its Voronoi regions. (C) presents only a portiontioé Voronoi
regions and labels them appropriately. (D) shows the autmmassociated
with (C) that governs the discrete dynamics of the Voronoeldaswitching
algorithm.

D. Boundary Switching for Global Convergence

Incorporation of the feedback controller with the Voronoi
based switching algorithm extends our results presented ea
lier for the feedback controller to multiple patches, hoarev
initialization sufficiently close toP* is still required for
the asymptotic convergence of this hybrid algorithm. The
requirement to initialize sufficiently close t®* is quite
restrictive and it is desirable to design an algorithm tret ¢
be initialized anywhere within the active patch. In parécu
special attention must be paid to the constraints imposed by
the boundaries to achieve global convergence within a ceirfa
patch.

Having two unconstrained degrees of freedom, the controlle
as presented is feasible at any point of a surface without
boundaries; however, when applied to a surface patch, there
is no guarantee that the updated witness points will stay
within the patch boundaries. To guarantee that the parasete
u and v locating the withess point stay within the defined
range (which is constrained {@0, 1] x [0, 1])), we propose to
saturate the parameters at the boundaries to keep the svitnes
points on the boundary curves. The saturated version of the
control algorithm is utilized whenever the withess poinbis
a boundary curve and the main control algorithm attempts
to drive it outside the boundary. Saturation is implemented

Feature based switching algorithms are well established by simply determining the component of control signal that

the literature for the collision detection of polygonal netsi

attempts to drive the witness point outside the boundary and

[12] [13]. The Voronoi diagram of an object partitions thesetting it to zero.

space around it into distinct regions. Feature based siwich

algorithms rely on the fact that if an external po@tis in the
Voronoi region of a feature, it is closer to this correspoigdi
feature than any other feature.

Voronoi diagrams also exist for parametric objects formed
using tiled-together surface patches [3] [14]. For example

Figure 3 (A) illustrates an object consisting of severafaue

patches whereas (B) shows all of its Voronoi regions. Figure
3 (C) presents only a portion of these Voronoi regions with

appropriate labels and (D) illustrates the automaton éstsat

with (C) that governs the discrete dynamics of the Voronot.

based switching algorithm. Note that determination of Vimio

regions for curved objects can be computationally expensiv
however, the Voronoi switching algorithm requires only a nu

merical pre-computation of these regions before the sitionla
is started. Consequently, this step does not affect thetireal
performance of the algorithm.

The proposed Voronoi based switching algorithm is virtall
the same as the Lin-Canny closest feature algorithm [123. Th

algorithm triggers updates to the closest feature whendire p

A.mode 1 mode 2 B.

@ ty u=0and¥" >0

ts v=0andV¥’ <0
ts u=1and¥* <0
ty v=1and¥"’ >0
ts otherwise
Switching conditions

mode 4 mode 3

Q crosses between the Voronoi regions of the object. Thg. 4. This three-part figure illustrates the incorponatis several controller
discrete dynamics of this switching algorithm can be madieléayers to obtain the overall hybrid control algorithm. (A)presents the
by an automaton constructed according to the connectedn%‘g mfﬁ%nat:titmdaigf?: C‘;”mtr',‘fsf_ﬁ”cfmeernﬁ’ﬁh”essfgértrgiﬁgfﬁgeﬁiﬁgg
of the object’s features. For example, Figure 3 (D) showspgich interior$ and the bounding curves; (i = 1,...,4) and tracks the
portion of such an automaton. Incorporation of the Voron@iode changes due to motion of the witness pdibn the closed patch.

S : - (B) shows the switching conditions for autonomous mode charajethe
based SWItChlng algorlthm with the feedback controllenftss boundary switching. (C) indicates the overall controllechétecture driving

in a hybrid control system that can handle object modeld bug to P*. The lower level feedback controller maintains the currestineate
from tiled-together patches. In our previous work [2], deta of the closest point by continually driving the projectiomaes to zero while

; it i ; T : the boundary switching selects controller gains that guesaconvergence for
of the Voronoi based switching algorithm and its incorpiomt any initialization within the patch. The Voronoi switchiigrms the highest

with the feedback controller are discussed in detail andl Wivel of the controller and keeps track of the active patclenvthe objects in
not be further elaborated here. the modeling environment consist of tiled-together surfaateipes.



As a consequence of the saturated control law at the patchLet the first fundamental matrix for the surface patie
boundaries, another switching layer is added to the Overﬁgnoted byZ — E F
controller at a lower level than the Voronoi based switching F g
algorithm. The discrete dynamics of this switching at th@lso define¢ as the Euclidian norm of the difference vector
boundaries is completely decoupled from the dynamics petween unit error direction and unit surface normal at the
Voronoi based switching algorithm and is dictated instepd [§olution, ﬁ - N*
the current parameters of the witness point. The boundary
switching is best represented using an automaton with fiveTheorem 1:If the image of the mappingj(u, v) : ([0, 1] x
distinct modes. Such an automaton is illustrated in Figure[@ 1]) — R* defines a ‘nice’ rigid convex parametric surface
(A). Each mode in the automaton corresponds to a differant patch S, the pointQ is in the external Voronoi region of),
of gains for the feedback controller. The mode switchesiwithQ andf are in continuous motion with respect to one another,
the automaton take place depending on the current parameg#id given controller gains satisfyingd > % :

of the witness point. A summary of the switching rules arg, > ZSIARL gng i, > BELARL then the switching

and leta be its largest eigenvalue.

w2 v2
shown in Figure 4 (B). controllerg Y o
The global controller for a surface patch has two interactin
Iaylerskthéa auto(;naton wr;:ch selects the profpir set_ of dtmtro. . 0 if w—0and®¥* >0 (mode 1)
gains epending on the current state of the witness point v v l'oru=1and¥* < 0 (mode 2)

and the feedback control law which makes use of these gains v ,
to update the witness point. On top of these two contrgl @ | _ —ku{ e } if v =0and¥” >0 (mode 3) )
layers, the Voronoi based switching algorithm is put in plac| © | 0 Jjorv=1and¥" <0 (mode 4)
to keep track of the active patch. An abstraction of the divera _ K{ v
controller is presented in Figure 4 (C).
In the next section, we will show that, for any initializatio
within the active surface patch, uniform asymptotic convefenders the minimum distance poifit uniformly asymptoti-
gence of the witness points to the closest point is guardntg&@lly stable over the whole surface patsh
by the proposed switching controller.

], otherwise (mode 5)

Proof: The proof is based on@mmon control Lyapunov
I11. A GLOBALLY CONVERGENTCLOSESTPOINT functionwhich is defined as the difference between the Euclid-
ALGORITHM ian norm of the the vectoAR and the minimum distancg

In this section, we consider the problem of finding thBetween the point and the surface patch,
minimum distance between a point and a convex surface
patch when both of the bodies to which they are attached V =|AR| - E. (2)

are allowed to undergo rigid body motion with respect to ONfhe common control Lyapunov functiol’ is continuous,

another. Below, we statg and prove a theorem j[hat guarantggsiive definite and decresent. To prove uniform asymptoti
global uniform asymptotic convergence of solutions when t tability of the algorithm, the negative definiteness oftihee

controller gains are chosen to be sufficiently high to COMP€herivative of the control Lyapunov function is to be shown.
sate for the motion of the bodies. We provide a practicall-y

) i e time derivative oV is given b
implementable lower bound for these controller gains anc!ﬂI g y
show global convergence of solutions when the algorithm is

initialized using any point within the patch. V = |AR|-E
The algorithm relies on a controller to generéied) whose B 1 d F-Q)-(F—Q)—E
integration producegu,v) that converges tqu*,v*). The ~ 2||AR]| dt[ Q- (f-Q)]-
switching nature of the controller guarantees that givey an 1 ) N A
initialization (ug,vo) in the patch, the controller drives:, v) = AR]| (fau+f,0-"w® xQ)- AR
to the minimum distance solutidm*, v*) without ever leaving N, ,A N+
the patch. That is, the switching controller renders thetpat + (Wi xQ)-N 3)
positively invariant. where N* is the unit vector fromP* to Q and Nw* is the

Before stating the theorem, we will introduce some norangular velocity vector of bodyl with respect to fixed frame
restrictive assumptions on the types of motion allowedstFir V.
we will require that the motion be continuous to assure Since the boundaries of the surface patch constrain the
Lipschitz continuity of the closest distance between theveg allowable motion directions of a candidate point whenevir i
bodies [15]. An upper bound on the speed of the relati@ a boundary, the feasible control inputs are also comsttai
motion is also required. Given the angular velocity ve€la* at the boundaries. The difference between feasible control
of A (the body to which the surface patch is fixed) in a worldirections on the boundaries and on the interior of the sarfa
reference frameV , we will define the upper bounl as the patch results in different control modes, within each of ahhi
Euclidian norm of the vectofNw” x Q). This bound is not proper control laws are to be designed.
restrictive and is only required so that a fast enough ctiatro  Next, it is shown that rendering the time derivative of the
can be designed to compensate for the perturbing effectscohtrol Lyapunov function negative definite in each comérol
motion. mode is possible with a switching controller. Feasibilitfy o



the control laws in each control mode are also analyzedts< = 0. In this case, rather than expressidgR in
and proper switching conditions are supplied. Although therms of the surface tangents and the unit surface normal, we
controller is of a switching nature, the existence of a commamow expressAR in the surface frame defined by the surface
Lyapunov function guarantees uniform stability over theafe normal, the surface tangent indirectionf, and the geodesic
all switching signals [16]. normal of the boundary curvay as
The possibility of undesirablgeno behaviofaccumulation
of the switching events) is ruled out from the analysis sithee . Y
number of mode changes during convergence is constrained by AR = 0'ng +¥'f, + AN. (8)
the number of sign changes of the curvatures of the bound#fyhe control law (7) is substituted into (3), then
curves, thus eliminating the possibility of infinite amouoft

switchings in finite time. Vo 1 (£, £, T 5)+ (Nwh < . AR
= RS i +( w™ % Q) N - ——
ARl [AR]|
—k AR
v — v \IIU q/’U N, A . N*f 9
- which is negative definite as long ab* # 0 and k&, >
z Eelatl, sinceg =1, - £, = ||, || > 0.
To complete the proof for case Il, it is required to show
=1 v=0 that ¥* # 0 on theu = 0 (v = 1) boundary as long as

mode 1 (mode 3) is active. By construction, at every point
Fig. 5. The boundary curve; atw = 0, parameterized by € [0,1] and along the boundary. = 0 (v = 1), f, points in the direction
its tangent vectofy (the unit surface tangent in thedirection) are depicted. of increasingu, or toward the interior (exterior) of the patch.
Since the boundary curve is included in the pagthithe unit surface normal . . :
N and the unit surface tangent in thedirection,f,, are also defined. Vector Moreove_r’ from the two allowable directions fng that satisfy
ny is the geodesic normal afy; it lies in the tangent plane defined iy the requirementsy - f, = 0 andng - N = 0, we choose the
andfy, and is normal tdfy. one in the direction of increasing Thenn? can be expressed

as

Case I: If none of the conditions of mode 1 through mode

4 are met, then the case | controller is applied AR is

expressed as wherey; > 0. At any point along the boundary, the projection
of AR ontony is given as

n; =iy + 7t (10)

AR = U“f, + U°f, + AN (4)
and the control law [AR] - ng =7 0" + 9, 0" 11)
i Ju However, whenl'” = 0, and the poinfQ is inside the Voronoi
w = { . } =-K [ - ] (5) region of the surface patch, we have

is substituted into equation (3), then |AR|-nY =7, T* >0 (<0) (12)
M :

. : Moreover, sincey; > 0, then¥* > 0 (I* < 0) on theu =0
1 u v u B * AR . .. .
V= HARH[\I} vz +(w®xQ)- “TAR| (u = 1) boundary at any point wherg® = 0. But this implies
K o AR that the control law is no longer active whenevit = 0.
= —— [ \IJU}I|:\IJU:|—|—(N(‘)BX Q)-(N*— > (6) Therefore, the control law (7) rende¥s negative definite as
AR AR long as mode 1 (mode 3) is active.

Consequently, sinc&” # 0 in this controller mode, there
which is negative definite for sufficiently largdd > aways exists a sufficiently large, > Z é\\lﬁ;’»ll such thatV
—targizy, as long ask™ # 0 and U # 0 simultaneously can be rendered negative definite in this controller mode.
sinceZ is the first fundamental matrix and is always positive

definite. . Case IIl: The proof for case Ill (wheffi(u, v) is on thev = 0
Note that the lower limit on the controller gaii does not boundary andl” > 0 (mode 2) orf(u,v) is on thev = 1
grow unbounded since the terms in the numeg@@@ARQH) = boundary andl® < 0 (mode 4)) is directly parallel to case ||

AR —[[AR[|N*[| and the denominatof¥"" + ¥"°) = anq is omitted from the discussion for brevity.

||AR — ANJ| approach zero with the same rate as the witness

point P converges tdP* As a result, since the proposed controller renders the time

derivative of the common control Lyapunov function negativ
Case II: if f(u,v) is on theu = 0 boundary andl® > 0 definite at any point on the surface patch except the minimum
(mode 1) orf(ql v) is on theu = 1 boundary and¥* < 0 distance solution, uniformly with respect to switching, ean

(mode 3) then the control law claim that the common control Lyapunov function is actually
a common Lyapunov function and the control algorithm is

we —k { 0 ] Ko uniformly asymptotically stable [16]. Note that the common

vowe Lyapunov function guarantees uniform asymptotic stahilit



which is to say, stability holds under arbitrary switchirsg, standard techniques whereby the convergence rate (datami
analysis of the switching sequence is not required with@ thoy controller gains) and discretization step size can baetta
proof. Moreover, since the whole surface patch is rendereff against one another while maintaining stability. In J17
positively invariant under the proposed control law, we caend [18] standard discrete time controller design techesqu
also claim that the region of attraction of the proposed coare utilized to calculate an upper bound on controller gains
troller is the whole surface patch (including the boundgtie given an explicit integration method and fixed integratiteps
and the algorithm iglobally uniformly asymptotically stable size. With these techniques, it becomes possible to preserv
(GUAS). m the stability of the algorithm after discretization.

Remark 1:Global uniform exponential stability (GUES) Theorem 2:If the image of the mappingi(u, v) : ([0, 1] x
can be achieved by the same controller setting the controlg, 1]) — %° defines a ‘nice’ rigid strictly convex parametric
gains ask, = 1280 " — L1281 gnd g = % surface patctf, the image of the mappinky(r, s) : ([0, 1] x

vz w2 R . ) . i .

However, the control inputy required to achieve exponential[0,1]) — R* defines another ‘nice’ rigid convex parametric
stability grows unbounded as the candidate point appr@actsairface patchs,, the witness point®; and P,, on each of
the closest point. Therefore, exponential convergencebeanthese patches are in the external Voronoi region of eactr,othe
obtained only to very close vicinity of the solution (a ball of andh are in continuous motion with respect to one another,
diametere around the closest point). This result is practicallgnd there exit controller gains satisfyirfg, > %
satisfactory since convergence rate is of utmost impoetang, ~ By ¢, |AR| ;. - Br G IARI 4o By G AR

. . . . h — ap (Ur23ws2) » Mu G, wu2 y vy £, wv2 ’
when the candidate point is away from the solution. s

By ¢h IAR]| - B ¢h [AR] i i
Remark 2:When there is no relative motion between thé* = Gp, w2 and k, > , then the switching

gh Ps2
bodies, the lower bound on the controller gaikdsk, andk, controller -~
simplifies to zero. 0 _
Remark 3:The presented controller treats all possible mo- —k,¥v | ifu=0and¥" >0
tion between the two bodies as perturbations and makes use of K, |7oru=1and¥" <0
sufficiently high gains to suppress them. However, whenever | K,Ve
possible, it may be desirable to take advantage of motion to [ —k, T
achieve even faster convergence rates at a cost of a slightly 0 if v=0and®® >0
more complex control law. This idea results in an enhanced K, o™ |’orv=1and¥’ <0
version of the controller given as | K,¥°
N 0 if w=0andw" >0 i A .
G| —k,U"+b, |"oru=1and¥* <0 0 A if 7 =0and¥” <0
) .| = 0 ‘orr=1and¥" >0 (14)
U 1| kY + b, if v=0and¥’ >0 r L
[v] F 0 "orv=1and¥ <0 (13) s -7 -
g —K, "
It K\Pv +b , otherwise —K,pv | ifs=0and¥° <0
—KU" + b, S .
ko rors=1and¥° >0
where 0
\I,u 1 - N, A N, A u
bv:@§[l—szgn(\11“( w' xQ)-£,)] "w* xQ)-£, —K;¥
—K,0v .
1 s otherwise
+ = [1 = sign (V' ("w* x Q) -£,)] “w* x Q) - £,, K, 7
2 s
K, ¥
W’U ]- . v N A N A . - . . . -
bu=gus [1—sign (P'Nw* x Q) £,)] “w* x Q) -f,  renders the minimum distance points (minimum p#tf) and
Py uniformly asymptotically stable over the surface patches
1 - u(N, A N, A h
+§[1—szgn(€[}( w'xQ)-f,)] ("w' xQ)-fi, 5, andS,.
and Proof: It is relatively straightforward to extend the proof

of Theorem | to operate on two surface patches (denoted
[ b }_[ 2 [1—sign (V" ("w? x Q) - £,)] ("w? x Q) -f, | f(u,v) andh(r, s) respectively) to find the minimum distance
by || 31 —sign (¥ ("w* xQ)-f,)]("w? x Q) -f, | between them. As long as one of the surface patches is wtrictl
convex and the other is convex, and as long as the each
Note that this control law takes advantage of the motiaminimum distance point lies within the external Voronoiimey
whenever motion helps convergence and cancels it as mwéhhe corresponding patch, one can follow a similar Lyapuno
as possible whenever motion acts as a disturbance. analysis using the same proposed control Lyapunov function
Remark 4:Since the controller and its associated dynamide prove that, if both candidate points lie inside the pateti a
are implemented in discrete time, the impact of discratimat with proper choice of gains, the proposed controller resttee
on the stability properties should be considered. Discagbn minimum distance solution globally uniformly asymptotlga
introduces upper limits on the controller gains that deperstiable. For brevity, similar portions of the proof is omitte
on the integration method and step size chosen. There efistm the discussion and only the differences are elaborated



There are two additions to the proof due to the existence TABLE |
of two surface patches instead of one. The first one is relat@§FINITION OF THE CONVEX NURBS RATCH USED IN SIMULATIONS OF

to the relative motion between the bodies. Since batys FIGURES5,6,AND 7

no longer attached to just a point, but attached to a surface order OIS (5[363;,]1) FTITT T
patch,B can have angular veIocﬂVg with _respect to_ the control | (1.331) (3351) (53.6.1) (8351) (9.33.1
fixed frameN. As a result, the relative motion terms in the points  |(2,5,5,1) (3,5,7,1) (55,8,1) (8,57,1) (8,5,5,1
proof are replaced by*w® and the bound®3; and B, are (z,y,z,w) {(1831) (3851) (5861) (8851) (9831

=

(0,10,0,1) (3,10,2,1) (5,10,3,1) (8,10,2,1) (10,10,0,
knots v [0o00lZ2111]
knotsv 0005 5£111]

defined on the Euclidian norms of the vect¢few” x f) and )

(Bw” x h), respectively.

The second addition is introduced due to Voronoi based
switching. The switching functions for Voronoi based sWitc
ing depend on the witness point on the opposing active patgh
and the relative motion between the bodies. Therefore,Né@ro
based swﬁphmg can take plac_e FJurlng convergence of the /{%%WQ\\\\&\\\\Q\\
witness points. Consequently, it is necessary to guarant@\ y & '0,30.0,0&5\\\\
convergence of the witness points even under Voronoi based ‘,«“&@\\\\\\\
switching. 4 ‘
The proof of convergence under Voronoi based switching
follows from the samecommon control Lyapunov function

RN
RN

@
RSN
Q\‘ ,QQS

Voronoi based switching algorithms guarantee that treEomsit —  nNommalized Projection Errors P AR
are handled in such a way that each time a transition is 5

triggered the norm of the error vectd&xR does not increase %8| .

and there are a finite number of transitions before the twos 7/\1' 6

closest features are set active [13]. However, this implies, . s\ AR

that the common Lyapunov function does not increase during, /-
transitions. Moreover, since our controller guaranteest th /\/___
the common Lyapunov function is decreased independent of 3
which patches are active, uniform asymptotic convergence % 5 70 15 2 2 3 3 4% o 5 0 B B 5 30 3
the minimum pair is guaranteed even under Voronoi based Simulation steps Simulation steps
SWItChlng [16]' Fig. 6. This four-part figure shows the convergence of anaiigttion Po

Extensions of this controller to an enhanced version th@fough several mode changes demonstrating invariance afutiace patch

takes advantage of motion, as in the Remark 3 of Theoremntinder the proposed controller. (A) shows the path tracedherpatch by the
are Straightforward witness points whereas (B) illustrates the mode changesdhgatier goes

through during convergence. The witness point, initializéthin the surface
patch S, hits the surface boundawy, att¢ = ¢, traces along4, and leaves

IV. SIMULATION RESULTS cy att = to converging to the solution at = t3. Correspondingly, in (B)
] ) the mode switches of the controller take placet at t; andt = t2 when
We have developed computer simulations to demonstraie switching rules are satisfied. (C) demonstrates evalitithe normalized
the important features of our algorithm. Our simulations aprojection errors¥* and ¥ while the algorithm converges to the closest
. . br)oint solution as shown in (D).
implemented in MATLAB and sample results are presented be-
low. The first simulation highlights the importance of loaw|
boundary switching and shows the invariance of the surfaﬁ,?
- ) _the
patch under the switching controller. The second simufati

demonstrates the global convergence of the our contrafigr
characterizes the region of attraction of Newton iterabased the controller command would otherwise attempt to dive

methods. Importance of controller gain selection undextired outside this boundary of the patch. However, these comitio

motion and discretization is the; the'melof the th!rd simolati satisfy the rules for boundary switching and an immediate
whereas the top level Voronoi switching and its decoupleccgmroller mode change takes place, invoking a saturated

nature is shown in the fourth simulation. Common to the fir§/

th imulati is th » tch wh definiti tersion of the control law. The new controller mode (with the
three simulations IS the convex surtace patch whose Wsaturated control law) stays valid as long as the unresttict
is given in Table I.

controller attempts to drivd® outside the boundaries .

At t = t, the use of the unrestricted controller becomes

A. Invariance of a Surface Patch feasible and the controller goes through another mode ehang
The four-part Figure 6 shows a simulation that illustratggmoving the restriction on the witness points to move along

the convergence behavior of an initializati®h on the surface c.. After this mode change, the witness points are free to move

patch S. (A) shows the points that locate the witness poini§ two degrees of freedom and convergelto at timet = ¢5.

in each of the simulation snapshots. (B) demonstrates thgC) demonstrates the change in the normalized projection

mode changes of the low level controller automaton as teerors ¥, ¥* and (D) illustrates the evolution dfAR/| as

convergence takes place. At startup, the first withess pothe algorithm converges to the closest point solufidh As

(which is the initialization poinP,) belongs to the interior of shown in (C) and (D), even on a convex patch, the projection

surface patcly; consequently, the automaton governing
%he controller gains is in the corresponding mode. At time
g _ t,, the witness poinfP hits the bounding curve, and



errors do not monotonically decrease while the witnesstpoin [ initializations that do NOT converge
converges taP*. This is due to the fact that the projection™ B. o _Initializations that converge
errors are evaluated at the witness pdthtand not at the
closest pointP*. An initialization sufficiently close td* is
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required for the monotonic behavior of the projection esror Y it .5."“::’::5?.‘
) . . i Q ,ynnnm,,','.:ggs'y.z{.'
An important feature of our algorithm is its ability to haadl LTI
ST . . lllllllllllll,,"l"'t,0.’»;
any initialization whereas a Newton iteration based method ﬂlﬁ%%’""l’i"’iiﬁi
relies on the monotonic decrease of the projection errods llllllllllll[“"ll""l.'.'t'ﬁ
therefore requires sufficiently close initializations. "ll,'"'..l
This simulation demonstrates the positive invariance ef th ..g

surface patch and the importance of the boundary switching
to achieve convergence for any initialization within thegha
The boundary switching is required since without the satura, D.
tion of the control law at the boundaries, invariance of the
patch cannot be guaranteed. Without the boundary switching
invariance does not exist because the level curves of the I’I;E;;”i!"
Lyapunov functlon.for the l_mrestrlcted controller go out of IIJA’I’J;J//,',',;I,:':’.',',;
the patch boundaries. The important feature of the ﬂ%}%‘u},’
switching is to restrict the witness point to move along W%”llll"
boundary, but doing so without sacrificing the asymptoti
convergence of the algorithm.
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B. Region of Attraction for Various Controllers Newton Iteration with Boundary Saturation

The objective of this simulation is to reveal the globak. F.
basin of attraction of our controller and to compare it with "y
the limited region of attraction for Newton iteration based
methods. Figure 7 shows the convergence characteristits an

the region of attraction for three different control lawhel  Q ,,’;:mnm,,,t
figur n the left illustrate the paths that witness points ;'{"""’l’%"""'
gures o strate the paihs he poInts Z7mmiiy
follow when all three simulations are initialized at the sam ll’llllllllllll"‘
point P,. To be able to compare our algorithm to Newto lll””””’ll
based methods, no relative motion between the bodies was
used. PoinQ represents the external point wherd&slabels

the closest point solution. In the figures on the right, the Our Controller
circles o on the white background label the parameters for

initialization points that converge t®* whereas the dark Fig- 7. Inthis Figure, convergence characteristics andein of attraction
for three different control laws are demonstrated. The figusa the left

_re_g_lons \_Nlth W_hlte Crossex correspond to parameters forillustrate the path that witness points follow when initiad atPo. PointQ
initialization points that do not converge. Consequerith is the external pointP* is the closest point solution. In these simulations, no

regions with white background illustrate the basin of atican  relative motion between the bodies was used. The figures aigtiteshow the
egion of attraction of the corresponding controller in gaameter space of

of the corresponding controller in the parameter space f e patch. The dark regions with white crossesorrespond to initializations
surface patch. that do not converge whereas the circtean the white background illustrate

(A) and (B) demonstrate a controller based on Newtdhe basin of attraction. (A) and (B) belong to Newton basedation with
no special boundary control. (C) and (D) are for Newton bassdtion with

iteration. During this Simmation' no SpeCiaI ContrOI_Iasze_d saturation at the boundaries. (E) and (F) demonstrate opopeal controller.
at the patch boundaries. (A) shows that for this particul&iobal convergence of our controller can be compared to lamitgions of

initialization P,, the Newton based controller starts in th@ttraction for Newton based methods.

wrong direction and fails to converge 8* by going out

of the boundaries of the patch. (B) demonstrates the regithie unrestricted control law is re-activated, it takes tlimess

of attraction of this controller which is a relatively smallpoint inside the boundary. However, after a few iterations,

unconnected set. this new witness point inside the patch (corresponding to a
(C) and (D) are again for a controller based on Newtomew initialization) hits another boundary resulting in trer

iteration; however, this time saturation is utilized at ffach controller mode change. Once again the witness points are

boundaries. (C) shows that for the particular initialiaati restricted to the boundary and they leave the boundary when

P,, the controller acts like the previous controller until théhe unrestricted controller becomes feasible. Luckilis thme

witness point hits the patch boundary and the parameterstioé new witness point within the patch results in convergenc

the witness point saturate. At this instant, the controlveithh  to P* without attempting to leave the boundary. (D) illustrates

saturation becomes valid and the witness points move alathg region of attraction for this controller with saturatiat

the boundary until the control law no longer attempts to mowbe boundaries. The region of attraction is larger than #sec

the witness points outside the patch boundaries. As soonvéthout saturation but is not global.
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As demonstrated in (D), the region of attraction of the A. Q(t =1.6)
Newton based iteration with boundary saturation contdies t \
region of attraction of the Newton based iteration (shown in
(B)) and extends it significantly. However, the new initial-
ization points recovered by the boundary saturation are the
points that hit the boundary of the patch (probably a few Q(t=0)

7 i
y >
times) and finally land in the region of attraction of Newton s .'.':. i&,&:“
based iteration. This behavior of the algorithm is not dese 1,’1,’,’,’,’,’,",’,’"’",'...'533’.@,&::,“
for two reasons. First of all, the convergence of the sagdrat lllll%llll’,,'"','i.’.#i%o
\

==

controller at the boundaries is not guaranteed and the use of
this control law may actually result in a sequence of witness
points diverging from the solution. Secondly, to arrive at a
witness point within the region of attraction of the unrieséd
Newton'’s iteration, the algorithm may go through many mode
changes causing the witness points to jump around by hitting
the boundaries, and such a behavior is not time efficient and
is computationally demanding. B. K =50
Finally, (E) and (F) demonstrate our proposed controller. ‘ ‘ ‘ ‘
Global convergence of our controller is apparent from the fig N
ure on the right since all initializations within the suréggatch
converge to the solution. Note that this is also guarantged b
the theorem given in section Ill. Moreover, (E) demonssate
that unlike the Newton iteration based controller, the pszal C. K=02
controller converges directly to the solution without boimg ‘ T e
around at the boundaries. This behavior of the controller is

=2

0 0.2 04 0.6 0.8 1 12 14 16

Simulation time

always guaranteed by design. No matter if the witness point st

is on the boundary or within the patch, the control law always P TT S e N JTra—
results in an update that is closer@othan all previous witness Simulation time
points. Consequently, as also demonstrated in Figure 6, the

witness points always take a direct path towaRtswith no s : ’*fffmm%h&j?m;

unnecessary boundary switches.

C. Convergence under Relative Motion S

This simulation is performed to demonstrate the importance simulation time
of th? choice Of_the feedback gam. for th(:f' convergence O,f tp% 8. This four-part figure demonstrates the importance ettivice of the
algorithm. As dictated by theory in section Ill, there eSiSteedback gain for convergence of the algorithm. (A) illuisahe convergence
upper and lower bounds on the feedback controller gain. Tl the tracking behavior of the algorithm when initializetdPo and the

; ; : sexternal pointQ undergoes relative motion with respect to the fixed patch.
lower bound 9” the feedback gain exists so that dlStUI’bI,ﬁI r this simulation the controller gain is set 16 = 50. The lines in (A)
effects of motion can be suppressed by the controller. Thisnnect the witness poi® to Q at every simulation snapshot. Convergence
lower bound is primarily governed by the relative motiorf the initialization error is apparent from the first threepshots, whereas
: : essful tracking can be observed thereafter. (B,C) &)dpfesent the
between the bodies but is also depepdent on th? sha}pe._ m ation of the normalized projection errob$' and WV for three different
upper bound on the controller gain is due to discretizatiaantroller gains. For a low gain ok = 0.02, as in (C), the convergence

of the control law and is dictated by the sampling rate ariglvery slow whereas for a very high gain &f = 1300 (given in (D))
integration method selected undesirable chatter appears due to discretization. &Foe= 50 (shown in

: . . (B)), the projection errors asymptotically converge to zegsulting in the
Figure 8 (A) illustrates the convergence and the trackingicking behavior presented in (A).

behavior of the algorithm under the relative motion between
the bodies. The algorithm is initialized &, with the con-
troller gain set toK = 50. The external poinQ undergoes gains. In (B), for a gain ofK = 50, the projection errors
relative motion with respect to the fixed patch. At evergsymptotically converge to zero resulting in the tracking
simulation snapshot, the lines connecting the witnesstpolrehavior presented in (A). For this particular simulatidn,
P to Q are shown. In the first three snapshots the controller possible to increase the feedback gain upkto= 1250
is compensating for the initialization error and converges to achieve even faster convergence rates.sAt= 1250 the
the instantaneouB*, which thereafter changes location on thalgorithm becomes unstable due to discretization. Belhafio
patch under the effect of the relative motion. Once thedhiti the projection errors fo = 1300 is given in (C). Finally,
ization error is compensated for, the controller succdlgsfualthough there is relative motion between the bodies, dimee
tracks the motion ofP* keeping witness points sufficiently angular velocity of the patcNw* is zero, the lower limit on
close to the solution. K is also zero. (D) shows the projection errors for a low gain
(B,C) and (D) present the normalized projection errdts of K = 0.02, in which case the convergence still takes place
and ¥ of the same simulation for three different controllebut is quite slow.
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D. Voronoi Switching V. DIscuUssION ANDCONCLUSIONS

We have contributed a closest point algorithm with certain
attractive properties that follow from its formulation as a
dynamic control problem and its solution by synthesis of a
feedback controller. These properties incluglebal uniform
asymptotic convergence, invariance, and the availabity
s Patch Parameters analytical limits of performance.

‘ Global uniform asymptotic stability of our algorithm folis
from its derivation from a control Lyapunov function and
such stability implies that any initialization within antae
convex surface patch converges to the unique solution. The
algorithm is in fact a switching algorithm, even at the lowdk
involving only patches (not tiled bodies), and ours oammon
Lyapunov function that need not switch as the controllersdoe
o 0» Oéfmulgimmle 2 15 Switching certain control gain terms to zero is necessary if
the witness point moves onto a boundary curve as it navigates
toward the closest point. We call thisoundary saturation
This control gain switching renders the active patch irastri

Fig. 9.  This two-part figure illustrates the upper level Mowo based meaning that the witness point cannot leave the patch during
switching algorithm for an object consisting of tiled-ttiger surface patches. convergence.

(A) demonstrates the convergence and the tracking behakibealgorithm . .

when initialized atPo and the external poin@ undergoes relative motion 1 hese features pertain to the control-based algorithm that

with respect to the fixed object. The lines in this figure catribe witness handles the closest point on a convex parametric surfach.pat

point P to Q at every simulation snapshot. (B) presents the evaluation _ it ; T
the patch parameters andv. The Voronoi regions of the object used in theﬂ top level SWItChlng algorlthm based on Voronoi d|agram

simulation and the automaton associated with the Voronotawig are given Nandles switching among convex surface patches, bounding
in Figure 3 (C) and (D). curves, and vertices making up the convex body (collegtivel

called features). The top-level algorithm significantlytesds
the properties outlined above, for it effectively increaske
This final simulation demonstrates the upper level Voronbiasin of attraction of the closest point beyond the active

based switching algorithm for an object consisting of tiledfeature to the entire tiled body. We discussed how the Vdrono
together surface patches. Figure 9 (A) shows a convex objbased switching and stabilized closest point algorithmhwit
made of five planar patches and a convex curved patch. Thundary saturation can be combined to form a hybrid dy-
same object and its Voronoi regions are illustrated in Rigupamical system, wherein the membership of the witness point
3. The simulation is initialized at poinP, in the curved to a particular Voronoi region controls the switching among
patch S, and the external poinQ is allowed to trace a features on the body. Transitions between surface patches
pre-specified curved path around the fixed object. The lingg handled in a manner that decreases minimum distance,
in the figure connect the witness poilt to Q at every as guaranteed by the the V-Clip [13] or the Lin-Canny [12]
simulation snapshot. Figure 9 (B) presents the evaluafitmeo algorithm. Of course determination of the Voronoi diagram f
surface patch parametersandv as the closest point trackingparametric models can be computationally intensive affeit
takes place. Compensation for the initialization error ben this can be undertaken off-line.
observed from the trajectory of the surface parameterseat th Invariance is an important property for that part of the
very beginning of the simulationt (< 0.01). At ¢ = 0.89 algorithm that handles closest point convergence on pstche
whenu decreases to zer@ hits the boundary of the Voronoi in order to de-couple the low-level and top-level switchiitg
region of S, labelledVS;, and crosses to the Voronoi regioris only appropriate to switch patches according to changes i
of the bounding curve, ; . At the same instant, a switching isthe Voronoi region containing the point on the opposing body
triggered by the Voronoi based switching algorithm, thas senot according to the convergence behavior of the witnesg poi
1, as the active feature. As long as the bounding curye In our previous work [1] [2] (represented in Figure 2), we
stays active, tracking is restricted to this feature; tfese presented a closest point algorithm that possessedlocdy
only the parameter is updated whileu is kept at zero. At convergence. Whereas the present controller is based on a
t = 1.26, when Q crosses intd/S,, another switching takes Lyapunov function defined in terms of the magnitude of the
place andS, becomes the active patch. Tracking continues dlifference vector, the previous controller was based on the
S, until the simulation is terminated. Note that mode changsguared sum of the error vector projectioh% and ¥*. The
triggered by the Voronoi based switching algorithm are dumehavior of the present Lyapunov function is monotonic over
to motion of the external poinf and are independent of thethe entire patch as the witness point converges. The behavio
motion of the witness poinP. lllustrations of the features of the previous Lyapunov function is hot monotonic over the
that become active in this simulation and the correspondiegtire patch, an example of which can be seen in Figure 6
Voronoi regions are given in Figure 3 (C). Also, the automatqC). An estimation of the basin of attraction of the previous
associated with the Voronoi switching algorithm is shown inontroller is a ball around the minimum distance solution
Figure 3 (D). where the Jacobian matrik/ is positive definite.
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As discussed in [2], there exists a close relationship betwe [4]
Newton iteration based methods and our previous contral law
Without compensation for the motion of the bodies and undeg;
discretization using Euler's method, our previous fee#bac
controller reduces to that published in [6]. Both methods
possess onlyocal convergence characteristics. The basin ofg)
attraction of the Newton-iteration algorithm was demaaistd
by simulation in section IV-B to be a complicated and notm
necessarily connected set.

Analytical limits of performance for the algorithm are
discussed in section lll and demonstrated in section IV4@& T

. . . .[8]
lower bound on the controller gains (defined in Theorems) |Is
due to the relative motion between the bodies. The uppet limio]
is due to discretization and its analysis is simple. Details [10]
the use of discrete time controller design techniques ttyaea
convergence rates under various integrators are given9h [111]
[20] [21]. Once these bounds are in hand, the algorithm can
be driven to its limits in speed. Note that the determinatbn (1]
stability-preserving gaing( for algorithms based on Newton
iteration is a much more complicated affair, since these 3[5%]
discrete and nonlinear methods.

When it comes to comparing the computational efficiency ¢f4]
our algorithm with that of the previously available methods
our argument relies on the simplicity of our feedback cons;
trol law relative to the Newton iteration and gradient based
methods. Our algorithm requires a mere simple controll
gain K, whereas the Newton iteration based methods requires
calculation andnversionof a Jacobian matrix//. Moreover,
since derived in continuous time, the computational efficye (18]
of our algorithm can be adjusted with a broader choice of
numerical methods to be used for its discretization. [19]

However, our chief motivation for pursuing a closest point
algorithm that operatedirectly on parametric surfaces rather
than on their tessellations is for benefits expected to acasu [20]
its use is extended to non-convex, intersecting, and defoien
bodies. The global property in particular will become impor
tant not just during initialization, but when a witness poin21]
undergoes discontinuous jumps between patches on a tiled
body that is penetrated by a point or other body. We aim for an
algorithm guaranteed not to break down except as quanéfiabl
limits on performance are exceeded.
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