
Chapter 6

Analysis of Contact Instability in

the Virtual Wall

6.1 Introduction

With the new virtual wall controllers of Chapter 5 in hand, we are ready to make a purchase. Our

controllers may be used to buy improved performance for virtual walls |at the expense of a slightly

increased computational burden 1. But before we can judge the prudence of our purchase, we would

like to know what our virtual walls stand to gain. Just how much performance improvement may

a virtual wall designer expect to enjoy after having paid the price of controller design according

to Chapter 5? How bad were the destabilizing e�ects of the ZOH and the intersample threshold

crossing (ITC) in the �rst place? Our goal for the present chapter, motivated by these questions, is

to �nd measures for the performance improvements a�orded by the virtual wall controllers developed

in the previous chapter.

As discussed in the introduction to Chapter 5, the problem appears to be a serious one if we are

1The increase in computational burden which the controllers of chapter 5 represent (the price to be paid) deserves

careful evaluation|it is actually quite small. The zero order hold (ZOH) e�ect-compensating controller of section

5.4.2 (pole-placement design) requires no extra run-time computation over the standard virtual wall controller |its

structure is identical to the standard damped wall controller, only the gain settings are di�erent. To compensate for

the ZOH using the half-sample prediction algorithm of section 5.4.1, a certain amount of computational overhead is

added at each sampling step. Most of the computations associated with the dead-beat control technique of sections

5.4.3, used to compensate for inter-sample threshold crossing (ITC) may be spread out among the steps within the

wall, so that their computational impact is also small.

These new controllers do of course require extra o�-line analysis and the execution of a system identi�cation

experiment to produce the human impedance model, but these costs do not need to be factored into measures of

run-time computational complexity. To locate computations o�-line is quite desirable from an engineering viewpoint

|delegation is always appropriate when resources are tight.
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to judge by the number of virtual wall explorers who have noticed, and researchers who have reported

the phenomenon of contact instability. Most every virtual wall designer encounters contact instability

as he or she turns up the gain, attempting to create a sti� wall|or turns down the sample rate,

attempting to create a computationally e�cient wall 2. Undeniably, contact instability associated

with virtual walls remains a serious impediment to further development of virtual environments. It

limits the palette of objects which may be placed inside a believable virtual environment.

But we would prefer to judge the magnitude of the problem of contact instability by a quantita-

tive measure other than popular vote. For a gauge of the contact stability problem associated with

a particular virtual wall controller, I propose the use of the smallest inherent viscous damping which

must be present in the human and/or manipulandum to just guarantee system stability (where the

system is made up of the human, manipulandum, and virtual wall controller). A �nite amount of

damping will be required to guarantee system stability of `standard' virtual walls to compensate for

the destabilizing e�ects of the ZOH and intersample threshold crossing. By contrast, no damping

will be required to guarantee system stability for the virtual walls implemented with the controllers

of chapter 5, since these controllers, by design, do not su�er the destabilizing e�ects of the ZOH and

intersample threshold crossing. Thus the stabilizing damping coe�cients to be associated with the

old controllers may be regarded as measures for the performance improvements o�ered by the new

controllers.

Our present task, then, is to size stabilizing damping coe�cients. Since the destabilizing e�ects

under scrutiny may be viewed as pathways for the 
ow of energy into the system, we may equivalently

interpret our task as the regulation of the rate of energy dissipation. Note that with the choice

of viscous damping for dissipation, we restrict the dissipation rate to be proportional to velocity

squared, which may not be the case for the rate of energy introduction. Thus we will have to be

cognizant about the degree to which our measure is conservative. Linear damping may not always

be the least conservative measure of non-linear energy-introduction.

One caveat remains before launching into a search for damping coe�cients. If the zero-order

hold e�ects have already been taken care of, the intersample threshold crossing may either introduce

energy or extract energy. At wall entry it introduces, at wall exit it extracts. We may expect

the two e�ects to balance|but we cannot prove this supposition without a full analysis. 3 For

2Naturally, virtual wall algorithms which can tolerate long sampling periods are highly valued because they allow

the comparatively modest computing resources of the computers with which virtual haptic environments are typically

implemented (personal computers) to be spent on other time-critical tasks such as graphic updates or networking. Note

that personal computers support the hardware interfacing needs of haptic display whereas more powerful computers

usually do not
3The proof that the energy introduced is balanced by energy extracted will not be undertaken in this chapter.

We will stop short of this goal because our problem turns out to be extremely complex. Similar but more tractable

problems which have been treated in the �eld of nonlinear dynamics will be discussed to tentatively infer that a

bound on the net energy introduced does in fact not exist. In this chapter, we will instead concentrate on worst-case
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the purposes of �nding a measure for the destabilizing e�ects of intersample threshold crossing, we

choose the damping coe�cient which will balance the worst-case energy introduction. We seek the

energy dissipation rate which will balance energy introduced by a full sampling period's delay in

turning on and no delay in turning o� the wall controller.

For the present, we shall assume that the virtual wall controller is designed to render a wall

without virtual damping and that the only means of energy dissipation (aside from the discontinuity

in constraint) is through an inherent damper. In this manner we may consider the inherent damping

coe�cient to be sized for the manipulandum a measure of the destabilizing e�ects of the discretely

implemented virtual wall controller. Extensions to our methods for �nding the stabilizing damping

coe�cient when the virtual wall contains damping will be discussed in the conclusion to this chapter.

We will further chose to deal with models of all participants (human, manipulandum, and controller)

which are linear except for the discontinuity of the switching wall controller. The behavior we look for

when the damper is properly sized (when the energy introduction is perfectly balanced by dissipation

is sustained oscillations, indicative of marginal stability. Note that sensitivity to initial conditions

wll have to be checked since the energy dissipation rate will certainly be path-dependent, and the

energy introduction may be path-dependent in a di�erent manner.

6.1.1 Passivity versus Stability

The answer to the above damper sizing task can only be given with reference to a particular system

or at best, class of systems. Yet one participant in the system will always defy modeling and

characterization: the human. At issue is just how we will model the human for purposes of analysis,

or how we will restrict the set of behaviors which the human may exhibit within our assumed

system. We cannot leave the human out of the analysis, since uncoupled stability is not what we

are interested in. Indeed, the human �nger plays a signi�cant role in determining the stability of

this coupled system. Given that the human is capable of many roles, including active behavior, and

that as `audience' or virtual wall explorer, the human should ideally be left free of restrictions or

constraining models, it must be acknowledged that our analysis task is quite di�cult.

However, as discussed in the previous chapter, virtual wall contact instability is observed without

volitional control on the part of the human, that is, when the human can be modeled as an impedance

and a bias force. In the interest of minimally restricting the human, in fact to essentially treat the

virtual wall and manipulandum without explicit reference to the human impedance, yet guarantee

system stability, Colgate has called upon the passivity theorem in his recent work [24] and [21].

By assuming that the human remains passive, stability of the coupled system may be guaranteed

assumptions.
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simply by restricting the uncoupled controlled manipulandum to remain strictly passive. For the

passivity theorem states that the coupling of a passive and a strictly passive system creates a system

which will remain stable. An inherent damper can be sized for the manipulandum which will restrict

its controlled behavior to that of a strictly passive system, and this damper may be sized without

reference to the human impedance. That is, the expression for the lower bound on the inherent

damping will not contain any assumed mechanical properties for the human. Auspiciously, this

certain inherent damping will guarantee absence of contact instability no matter what human comes

up to explore the virtual wall, so long as that human takes on a linear time-invariant (LTI) passive

impedance. Colgate's results based on the passivity theorem and their implications for design have

proven quite valuable and will be further discussed in the literature review below.

However, Colgate's lower bound on inherent damping to guarantee passivity, which only restricts

the human to the class of all LTI passive operators, is not quite pertinent as a measure for the

performance improvement o�ered by our controllers. Our controller designs make use of much more

restrictive assumptions about the role of the human in the system. We model the human as a

particular second order impedance, and make use of that model within the controller for prediction.

Having adopted the viewpoint that the human can be modeled by a particular impedance, and even

folding in the idea of an on-line system identi�cation experiment (to characterize that impedance)

into the controller design, Colgate's results based on less restrictive assumptions may be considered

conservative for our purposes. We are therefore interested in lower bounds for the inherent damping

which stabilize a system which includes a particular human impedance. In seeking these bounds, we

are (once again) considering a problem of stability rather than passivity, and in our presentation of

lower bounds, we will be required to make reference to the assumed human impedance.

6.1.2 Outline

In this chapter, we will treat the destabilizing e�ects of the ZOH and intersample threshold crossing

independently. Although we cannot rely on the superposition of the two e�ects given that we are

dealing with a nonlinear system, we are nevertheless interested in separate measures. We would like

a measure of the destabilizing e�ects of the ZOH alone, since we may choose to implement a new

controller with ZOH-compensation, but without ITC compensation. Adding the damping coe�cient

given as a measure of the ITC destabilizing e�ects to a ZOH-alone compensating controller would

account for the ITC e�ects and thereby guarantee stability. We also undertake the two issues

separately in the interest of simplicity of analysis.

The remainder of this chapter is divided into three main sections. Section 6.1 reviews the

literature with regard to stability measures for nonlinear systems such as ours. Section 6.2 analyzes
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the destabilizing e�ects of the ZOH on certain models. Section 6.3 treats the destabilizing e�ect of

the intersample threshold crossing. Finally, section 6.4 wraps up.

6.2 Literature Review

The use of a smallest damping coe�cient as a measure of the destabilizing e�ects in a system is by

no means new. To alter a system with the addition of damping (inherent or virtual) is a natural and

reliable means of stabilizing a linear system |it is a standard tool of the controls engineer when

a destabilizing e�ect cannot otherwise be removed. Our choice of viscous damping as a measure

of nonlinear destabilizing e�ects is perhaps unique, but probably not to be celebrated, as it is may

not be reliable. No claims as to originality or extensibility are being made about the stabilizing

damping coe�cients found in this chapter. Their intended use, as discussed in the introduction, is

for measuring the size of a problem|a problem for which we already have a solution. Basically,

these damping coe�cients are derived to lend support to statements of usefulness about our solution

to the contact instability problem |the new controllers of Chapter 5.

Interestingly, though, Chapter 5 (and by association the present chapter) represent in some

signi�cant ways a departure from recent work on the virtual wall. Our contributions to the contact

instability problem are new controller designs, whereas most recent work has been centered on

analytical treatments of the standard virtual wall controller yielding design guidelines pertaining

only to the standard controller. Rather than building on recent analytical results, we have chosen

to reject the standard controller and start from scratch on the design problem. Since we now have

controllers in hand which are not subject to the energy-introducing e�ects of the sampled data

implementation, we are no longer interested in design guidelines regarding sampled data energetics.

Our new designs instead inspire us to undertake some modi�ed analytical treatments of the standard

virtual wall. In particular, because our controllers make certain assumptions which were not a part of

recent analytical work, we are compelled to revisit this analytical work, incorporate our assumptions,

and thereby adapt it for our purposes.

In preparation for the analytical treatments of this chapter, I will give a rather complete review of

Colgate's passivity analysis. The subtleties between the results presented here and those presented

by Colgate have to do with assumptions of the role of the human in the system (and controller

design). The implications of these assumptions lie in degree of conservativeness of results.

A further purpose for covering the literature in such detail is to highlight the one attribute of

the standard virtual wall controller which has not been treated explicitly in any published work: the

e�ect of intersample threshold crossing.
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6.2.1 Passivity Analysis

Our controllers are designed to work with a particular human impedance, and, when implemented

in full, will render stable walls without requiring any extra stabilizing damping from the manipu-

landum or human. This being the case, the lower bound on inherent manipulandum damping to

guarantee passivity determined analytically by Colgate is not quite appropriate as a measure for the

performance improvement o�ered by our new controllers. Rather than incorporating a particular

assumed human impedance, Colgate's analyses assumed that the human impedance simply belongs

to a class of impedances |the class of all LTI passive impedances. We are now looking for instabil-

ity measures consistent with the spirit of our new controller designs, that is, which make particular

assumptions about the human impedance. We shall be deriving such measures (pertaining to the

ZOH e�ects) with linear stability analyses in the discrete domain.

A comment regarding Colgate's passivity treatment is in order, however. There lies a power in

the passivity formalism which makes the results particularly amenable for use as design guidelines.

That is, that the damping coe�cient which guarantees passivity may be expressed in terms of

the transfer function of the controller alone; the human impedance properties are not part of the

expression. Our analyses in this chapter, precisely because of our desire to incorporate a particular

human impedance, will not take advantage of this power.

Colgate's derivation of the passivity condition for sampled data systems is presented in [24].

Colgate's result is expressed as a lower bound on inherent damping, is based (as is the proof of the

passivity theorem) on the small gain theorem. Because the small gain theorem takes only magnitude

information into account and completely disregards phase, linear fractional transformations (which

have equivalent interpretations as loop transformations and coordinate changes) must be used to

reduce conservativeness in applications of the small gain theorem. Using only the constraint that the

human operator be passive, Colgate �rst �nds the area in the Nyquist plane within which a passive

human operator in feedback connection with the manipulandum and linked with a zero-order hold

and integrator must lie. This area (a disk) can be mapped to the unit disk (uncertain phase;

unity magnitude) by a linear fractional transformation (LFT). A corresponding LFT (coordinate

transform) is found for the discrete controller in [21]. Placing the unit disk as a constraint upon this

area in the Nyquist plane to which the controller is mapped by this LFT then guarantees coupled

stability by the small gain theorem.

A statement of su�ciency is derived via an observation regarding stored kinetic energy. By

requiring that the kinetic energy of the mass of the manipulandum never be as great as the total

energy input by the human source, the same lower bound on inherent damping is derived as in

the necessary condition except that there appears a modulus around the transfer function of the
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controller.

Colgate's analysis as outlined thus far does not account for the unilateral nonlinearity of the

virtual wall. In fact, all components have been assumed linear up to this point. Colgate extends the

su�ciency statement to cover a switching controller by making the observation that, since without

its feedback controller the manipulandum is passive, if the control input (from the actuator) is set

to zero (turned o�) at any time, passivity properties will not be a�ected. This statement does

not, however, account for the possible introduction of a small amount of potential energy when the

controller is turned on. Due to the possibility of crossing the threshold between sampling times, up

to a full sampling period T may have elapsed before the wall control law is enacted and the wall

will, upon being turned on, e�ectively hold potential energy without having had the requisite work

done on it.

In this chapter we will treat the e�ects of intersample threshold crossing explicitly.

In an altogether di�erent approach to the contact instability problem, Tsai and Colgate treat

the unilateral nonlinearity explicitly in [95]. This analysis, in contrast to that of [24] and [21] is made

entirely in the discrete domain. A zero-order-hold equivalent of the plant in feedback connection

with a assumed human impedance is found, and used together with a result in �lter theory having

to do with the saturation non-linearity by Mitra [75].

Rather than via a circle criterion, which uses sector bounds, more complete information about

the unilateral nonlinearity is exploited. Tsai and Colgate's results are presented as a Nyquist domain

criterion which is reminiscent of the circle criterion. Rather than circles, the forbidden zone for the

Nyquist plot of the controller becomes a wedge whose size is frequency-dependent.

In our treatment of the energetics of the intersample threshold crossing, we shall be making use

of Poincar�e maps|a standard tool in the �eld of nonlinear dynamics. Although we shall not be

contributing to this �eld, nor making direct use of any theorems from it, I will brie
y review similar

applications of Poincar�e maps and associated stability theorems, especially in the �eld of robotics.

In the �eld of robotics, Poincar�e maps have been utilized by Koditscheck and B�uhler in [17]

and [16] to investigate the existence and stability of limit cycles in Raibert's hopping robots and in

juggling robots in their own lab. Using some reasonable assumptions regarding the map relating the

strike time and strike velocity from one hop to the next can be shown to be one-dimensional. The

fact that the map is one dimensional is in fact quite fortuitous| many graphical techniques and

related theorems may then be applied. Unfortunately the maps we shall encounter in this chapter

having to do with sustained oscillations fed by intersample threshold crossing are two-dimensional

and extremely complicated. We shall be making several simplifying assumptions.
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Holmes and x have treated the dynamics of a bouncing ball in [47]. Also documented in the

popular book by [37]. Their system involved a ball bouncing with a coe�cient of restitution on a

table which vibrates vertically with a sinusoidal motion. Whether the ball strikes the table in its

upward or downward motion is a function of the time spent in the air (an undamped gravity �eld)

which in turn is a function of the last strike time and velocity. As it turns out, this two-dimensional

map also reduces to a one-dimensional map. Its dynamics are quite complex, however. Holmes

shows the existence of a cascade of period-doubling bifurcations of the limit cycle leading to chaos

as the parameters are varied.

Budd and Dux treat a similar system in [15]. But rather than a ball bouncing on a vibrat-

ing table, they treat a sprung mass striking a stationary wall where the spring anchor is driven

sinusoidally. Theirs is primarily a numerical study.

6.3 E�ects of the Sample and Hold

In this section I will develop a measure for the destabilizing in
uence of the sample and hold operator

in our system. The next section will treat the e�ects of intersample-threshold crossing.

We are interested in sizing an inherent damper within the manipulandum which will guarantee

stability when a particular impedance (the human) is coupled, and the virtual wall is simply a spring.

We will answer this question with a treatment in the discrete domain. Speci�cally, a zero-order hold

equivalent will be found for the model of the manipulandum together with the human and a linear

discrete stability analysis will reveal the damping coe�cients.

6.3.1 Uncoupled Stability

Before beginning with the coupled stability analysis, we look at uncoupled stability, in part to outline

the procedure.

Our model for the manipulandum is:

G(s) =
1

s2(ms+ b)
=

1

b

a

s2(s+ a)
(6.1)

where

a = b=m (6.2)

The zero-hold equivalent is readily found using a table of Z-transforms, for example, from [31]:

Gzoh(z) =
1

b

z � 1

z
Z
�
G(s)

s

�
=

1

b

(aT � 1 + e�aT )z + (1� e�aT � aTe�aT )

a(z � 1)(z � e�aT )
(6.3)
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Parameter Values for Figure 6.2

Parameter Value Units

m = 0.30 kg
k = 500 N/m

In feedback connection with a controller H(z) = K, as in Figure 6.1, our closed loop character-

istic equation becomes:

H(z) 

Gzoh(z) 
- 

Figure 6.1: Feedback connection between manipulandum and controller, no human impedance coupled

z2 +

�
K

ab
aT � (

K

ab
+ 1) + (

K

ab
� 1)e�aT

�
z +

�
K

ab
� (

K

ab
� 1)e�aT � K

ab
aTe�aT

�
= 0 (6.4)

We seek the values of b which place the roots of the characteristic equation on the unit circle.

These may be found by setting the last term of the previous equation equal to unity.

This produces the equation:

e�bT=m
�
1� KT=b

(1�mK=b2)

�
= 1 (6.5)

The damping coe�cients which produce marginal stability may be found numerically and plotted

as a function of the sampling period, as in Figure 6.2. Values have been assumed for each of the

parameters in producing this plot, as shown in Table 6.3.1

The results for uncoupled stability may be presented in non-dimensional parameters as suggested
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Figure 6.2: Stabilizing Damping versus Sampling Period

by Colgate (See [24]):

� = bT=m � = kT=b (6.6)

Equation 6.5 reads, in non-dimensionalized parameters:

e1=� = 1� �

1� ��
(6.7)

We may plot this alongside the passivity region derived by Colgate in a graph of � versus � ,

which has been done in Figure 6.3. Note that the parameter space for uncoupled stability is larger

than that for passivity.

A simulation may be used to check marginal stability of a borderline damping coe�cient. Selec-

tion of the point circled in Figures 6.2 and 6.3, for example, produces marginal stability as expected:

See Figure 6.4.
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Figure 6.4: Veri�cation of marginal stability by simulation
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6.3.2 Coupled Stability

To treat stability when the manipulandum is coupled to a particular impedance, we may follow the

same basic procedure after making a reasonable assumption about the manner in which the human

impedance is coupled to the manipulandum. We shall assume that the mechanical coupling between

the e�ective mass of a human �nger and the mass of the manipulandum is direct, as shown in Figure

6.5. We neglect the compliance of the �ngertip skin in making this assumption. These assumptions

are consistent, however, with experimental measures of the �nger impedance as in the work of Hajian

and Howe [39]. Thus the human impedance does not increase the order of our system, and therefore

analysis is almost as simple as in the uncoupled case. A block-diagram interpretation of the assumed

human impedance/ manipulandum coupling is shown in Figure 6.6

m* 

m f 

k* 

b* 

b 

Figure 6.5: Assumed mechanical coupling between modeled human impedance and manipulandum

We assume a second order linear impedance to model the human:

Zo(s) = m�s2 + b�s+ k� (6.8)

Coupling between the human and manipulandum produces the following expression for the

composite impedance:

G�(s) =
1

(m+m�)s2 + (b+ b�)s+ k�
(6.9)
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s(ms+b) 

m*s2+b*s+k* 

- 1 

Figure 6.6: Block diagram interpretation of assumed human-manipulandum mechanical coupling

The zero order hold equivalent of G�(s) is:

G�

zoh(z) =
1

k�
z � 1

z
Z
�
G�(s)

s

�
=

1

k�
Az +B

z2 � 2e�aT (cosbT )z + e�2aT
(6.10)

where

A
�
= 1� e�aT cosbT � a

b
e�aT sinbT

B
�
= e�2aT + a

b
e�aT sinbT � eaT cosbT

(6.11)

A feedback connection between this transfer function and the simple controller H(z) = K

produces the closed-loop characteristic equation:

z2 +

�
K

k�
A� 2e�aT (cosbT )

�
z +

�
K

k�
B + e�2aT

�
= 0 (6.12)

To set the modulus of the roots equal to unity, we set the last term to unity, or, with substitution

of the de�nition of B,

K

k�

�
e�aT +

a

b
e�aT sinbT � eaT cosbT

�
+ e�2aT = 1 (6.13)

Roots may be found analytically and plotted versus various parameters. In Figure 6.7 we show

the dependence of b on the sampling period T , along with the dependence of the stabilizing damping
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Parameter Values for Figure 6.7

Parameter Value Units

m = 0.30 kg
k = 5000 N/m

m* = 0.02 kg
b* = 3.75 N/m/s
k* = 257 N/m

coe�cient in the uncoupled case, from Figure 6.2. Particular values have been chosen for each of

the parameters, including the parameters for the assumed human impedance for this plot, as shown

in Table 6.3.2. Note that the positive damping b� contributed by the human impedance provides for

the possibilty of adding negative damping for low sampling periods.

Unfortunately, these data do not lend themselves to presentation in non-dimensionalized vari-

ables.
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Figure 6.7: Stabilizing Damping versus Sampling Period
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6.4 E�ects of the intersample threshold crossing

In this section, we will evaluate the negative impacts of the intersample threshold crossing upon the

stability of a virtual wall-rendering manipulandum coupled to a particular human. From Chapter 5,

we have a controller design in hand which, with deadbeat control techniques, is able to eliminate the

e�ects of intersample threshold crossing, even while working within the constraints of a sampled data

controller. But before we bother to implement this special control technique, we would like to know

what we will be gaining and thus undertake a bit of analysis of a controller which does not use this

technique. We will be treating the destabilizing e�ects of the intersample threshold crossing (ITC)

independently of the zero order hold (ZOH) and will thus produce a separate stabilizing damping

coe�cient. An appropriate use for this ITC-e�ect balancing damper would be as a safety margin in

damping to add to a system which uses ZOH compensation but not ITC compensation.

In order to treat ITC independently of the ZOH, we will set up the following system for analysis:

a continuous but switching controller (two modes) in which the switching times must fall on integer

multiples of a �xed sampling period T .

ton; toff � fjT j j�Zg (6.14)

The �rst detection of a position beyond the switching line, occurring on a sampling time, will trigger

a switch. Thus the latency in switching can last up to one full sample period T . Once the switch

has been thrown, the controller operates like an analog controller, without sampling and without a

zero-order held controller output.

Standard laws of conservation of energy do not apply to time-varying systems. For example,

discontinuously increasing the sti�ness of a compressed spring will all of a sudden increase that

spring's stored energy. The kinetic energy of a moving mass will abruptly increase at time t if the

mass increases at time t. Discontinuously changing the sti�ness of an uncompressed spring, or the

mass of an unmoving object, however, cannot add energy. This fact has been used to advantage in the

design of physical models for sound synthesis by Van Duyne and Pierce [99]. An evolving spectrum

can be e�ected in a physically modeled string by using a nonlinear spring for the model of the

bridge. If the spring discontinuously changes spring constants, but does so only when unextended,

it will cause the spectral energy to rise in frequency without a�ecting the damping characteristics.

Evolving spectra are characteristic of some musical instruments, for example the gong. Van Duyne

and Pierce call such model components `passive nonlinearities'.

Our system contains an element which would have been considered a passive nonlinearity, had

it not been for the latency in switching times. Nominally, (if switching times were on threshold
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crossings), the system could not gain energy since the switching would, in that case, occur when the

spring of the virtual wall is uncompressed.

Since we cannot implement our would-be passive nonlinearity in a sampled data setting, we now

ask the following questions:

First, if energy is introduced by switching on a spring in a compressed state (as takes place

at wall entrance), and energy is extracted by only �rst turning o� the spring in a stretched state

(at wall exit), can we say that the energy introduced is balanced by the energy extracted? Or do

there exist pathological cases in which the net energy continually increases, resulting in unbounded

growth of the state variables?

Second, under a worst case assumption, where maximum energy is introduced for every wall

strike, what damping coe�cient must be included in our system to guarantee stability? When the

manipulandum strikes the wall (the threshold is crossed) just at that time between sampling times

which makes for the worst latency, what is the largest discontinuous jump in potential energy in the

spring?

To answer these questions, we make use of Poincar�e maps. Poincar�e maps (also called return

maps) are often used in the �eld of nonlinear dynamics to treat discontinuous (switching) systems.

By expressing the dynamics of a switching system in a return map, the switching dynamic e�ectively

disappears. The switching analog system is transformed into a non-switching discrete system. As a

time-invariant discrete system model, the return map lends itself to analysis by standard tools from

linear discrete systems theory.

To develop a full appreciation for the complexity of our system, especially to point out that the

net amount of energy introduced (or extracted) is a function of both the time and the state at each

strike, I �rst present a full return map, without simplifying assumptions. Thereafter, section 6.4.4

will present a simpli�ed map and its associated assumptions. The full return map will only be useful

for numerical studies, whereas the one-dimensional map will lend itself to analytical treatment.

6.4.1 Full return map

To formulate a return map, we choose the Poincar�e section at y = 0 (the wall threshold) and further

choose, from the two crossings per bounce, only the crossing of this section in the positive y direction

(the wall exit). Thus our return map will be a composite of two maps: F1, which maps the system

state from wall exit to wall entry, and F2 which maps the system state from wall entry to the next

wall exit.

F = F1 � F2 (6.15)

Figure 6.8 de�nes the time points and time intervals which will enter into our discussion during
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Figure 6.8: Sampling Points in a Typical 
oor Strike

the construction of F1 and F2. Note that the map F1 and F2 shall both express evolution according

to the wall o� and wall on models, because of the asynchrony between threshold crossings and

switching times and our choice of the threshold as the Poincar�e section. Primarily, however, F1

expresses evolution under the wall on and F2 expresses evolution under the wall o� model.

We shall only need to carry two variables to characterize the switching sequence, namely tj and

vj , since the position yj is zero at each threshold crossing (the chosen Poincar�e section). Thus the

map F is made up of two functions f and g:

F :

8<
: tj+1 = f(tj ; vj)

vj+1 = g(tj ; vj)
(6.16)

To be fully explicit, we show F1 and F2 cast in the same form below.
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F1 :

8<
: tentry = f1(tj ; vj)

ventry = g1(tj ; vj)
(6.17)

F2 :

8<
: tj+1 = texit = f2(tentry; ventry)

vj+1 = vexit = g2(tentry; ventry)
(6.18)

Two models will govern the motion of the ball, the ball being our model of the manipulandum

under the �nger or hand of the human. One will govern during the wall on periods of motion, to be

known as Model I, and another will govern during the wall o� periods, known as Model II. Various

model types may be used for Model I (including a ball falling freely or with damping in a gravity �eld

or a lightly-sprung mass with or without damping and gravity), so long as the ball, moving according

to such model, will return to the wall in �nite time. Note that the gravity �eld represents a constant

bias force from the hand of the human operator. Model II will generally take the form of a sprung

mass, with or without damping and gravity, wherein the spring represents the virtual wall sti�ness.

The following development will assume that explicit solutions exist to both Model I and Model II.

But before assuming particular models, I will construct the full return map F without reference to

particular models. Models will be assumed just before introducing the numerical studies.

We will require the following four functions, constructed from the solutions of Model I and

Model II.

First, function yi : <2 � < ! <2 returns the state x, (where x = [y; v]0) which results from

evolution according to Model I from the initial condition x0:

x = yi(x0; t) (6.19)

Second, we will require a function ti : <2 ! < which returns the time remaining to wall strike

employing Model I given an initial condition:

�t1 = ti(x0) (6.20)

Third, function yii : <2 �< ! <2 is used to evolve the state according to Model II:

x = yii(x0; t) (6.21)

Finally, a function tii : <2 ! < will return the time remaining to wall strike employing Model II

given an initial condition:

�t2 = tii(x0) (6.22)
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We begin with the construction of F1.

Although the ball has just passed the threshold, exiting the wall at tj , it continues to travel according

to Model II (wall on) to the end of the sample period containing tj . The time toff at which Model

I takes over from Model II is given by:

toff = T (1 + floor

�
tj

T

�
) (6.23)

where the 
oor[] function returns the largest integer less than its argument.

We use Model II to evolve the state from xj = [0; vj ]
0 at tj to xoff at toff .

xoff = yii(xj ; toff � tj) (6.24)

The time to wall strike is found from the state xoff using function ti:

�t1 = ti(xj) (6.25)

We already have the two components of F1, f1 and g1:

8<
: tentry = toff +�t1

xentry = yi(xoff ;�t1)
(6.26)

The position component of xentry will be zero, only ventry is required for the map.

Now for the construction of F2.

The time at which Model II takes over from Model I, ton occurs on the �rst sampling time after

tentry, and is found with:

ton = T (1 + floor

�
tentry

T

�
) (6.27)

The state at ton is available using function yi:

xon = yi(xentry ; ton � tentry) (6.28)

To bring the state to time tj+1 = texit, we require the time spent in Model II:

�t2 = tii(xon) (6.29)
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We now may express the time and state at tj+1:

8<
: tj+1 = ton +�t2

xj+1 = yii(xon;�t2)
(6.30)

The position yj+1 will be zero. The threshold crossing sequence requires only vj and tj .

6.4.2 Substitution of models

Unfortunately, the full return map does not yield itself to further analysis since it includes the

non-analytic 
oor function. The 
oor function serves to place the switching times properly on the

sampling times, always choosing the next sampling time after a threshold crossing. But the presence

of the 
oor function is not the only property which makes this map di�cult to analyze. The other

property is the coupling between the two component functions f and g. The latency in switching

between models has an e�ect on the ensuing threshold crossing velocity. Thus the exit velocity vj+1

is a function (denoted g) of both tj and vj . Likewise, the time period for which the ball remains

in the wall is a function of the velocity at wall strike, and thus tj+1 is a function (denoted f) of vj

as well as tj . Thus we have a two-dimensional map, for which far fewer tools are available than for

one-dimensional maps.

The utility of this full return map lies in e�cient numerical studies. To demonstrate one such

numerical study, and thereby further highlight the interesting complexity of our system, I will assume

two simple undamped models for Model I and Model II and use them to run numerical simulations.

Model I will take the form of a ball falling freely in a gravity �eld. Function yi (Equation 6.19)

thus reads:

y = v0t� 1
2gt

2

v = v0 � gt
(6.31)

Function ti (Equation 6.20) using the freely falling ball model reads:

�t1 =
�v0 +

p
v20 + 2gy0

g
(6.32)

Function yii (Equation 6.21) using a model of a sprung mass without damping reads:

y = Acos!t+Bsin!t� g=!2

v = �(!y0 + g=!)sin!tjv0cos!t
(6.33)

where ! =
p
k=m, A = (y0 + g=!2) and B = v0=!.
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Finally, the function tii (Equation 6.22) reads:

�t2 =
1

!

�
� + atan2(A;�B) + asin

�
g=!2p
A2 +B2

��
(6.34)

The return map de�ned above, used with these function de�nitions, yields a very e�cient means

of computing the sequence of threshold crossings.

The map is simply too complicated to make any analytical deductions regarding the balance

of energy gain with energy loss. However, we may use it to conduct numerical studies into these

questions. Intuitively, we may expect that as the samping period decreases, the amount of energy

gained because of intersample threshold crossing will decrease. We have tested this hypothesis as

follows. The map was used to compute the exit velocity for 40 strikes of the wall, using various

sampling periods. The maximum strike velocity of those 40 is ploted versus the sampling period in

Figure 6.9 The sampling period was varied in increments of .0001 from 0.01 to 0.3 seconds.
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Figure 6.9: Maximum exit velocity of 40 strikes versus sampling period

We observe that the maximum velocity attained does seem to decrease with decreasing sampling
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period. But perhaps more interesting is just how non-predicatable the situation really is.

6.4.3 Simulations and Checks on the Return Map

I will brie
y describe the manner in which we have veri�ed the return map against simulations

and evaluations of model solutions. This section will provide a transition to the next, in which

simplifying assumptions render the return map analytically tractable.

Model simulations may be run according to algorithms which account for the sampled data

implementation such as those introduced in Chapter 5. Alternatively, since we have assumed models

which posess solutions, it is only necessary to evaulate the solutions according to an appropriate

switching algorithm to produce time histories of the system. As a further check, we have found

expressions for the kinetic energy, potential energy and dissipated energy as a function of state and

history for various models. Highlighting our veri�cation procedure here, and taking this opportunity

to present plots of the kinetic, potential, and dissipated energy will further exemplify the coupled

and complex nature of this nonlinear system.

Figure 6.10a) shows the Kinetic Energy KE, Potential Energy PE and cumulative dissipated

energy Ed in a time chart above the position and velocity trajectories of Figure 6.10b). These plots

pertain to the full sampled data simulation containing the floor function. Note that the potential

energy (stored in the spring and gravity �eld) jump discontinuously at wall entry and exit. Energy

is gained at wall entry and lost at wall exit, to di�ering degrees. The energy dissipated may never

catch up to the total energy. The ball may not stop bouncing, despite the presence of dissipation in

this model.

By contrast, Figure 6.11 shows the state evolution and energy evolution in the case where the

switching times are on the threshold crossings. In this �gure, which corresponds to physical behavior,

or the successful implementation of a passive nonlinearity, we see that the total Energy is conserved.

We now turn to an analysis of worst-case scenarios.

Figure 6.12 shows the energy and state evolution of the worst-case system without bias with the

balancing damping bbal.

A phase-plot of the worst-case scenario is also informative as in Figure 6.13. The growth in state

due to delayed switching can be clearly seen. Delayed switching across the threshold (switching in

the �rst quadrant at wall exit and in the third for wall entry) causes the state trajectory to jump

onto paths which are further and further from the origin.
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6.4.4 E�ects of intersample threshold crossing under worst-case assump-

tions and non-existent bias force

The worst case energy gain obtains when our bouncing ball hits the wall (crosses the threshold)

immediately after a sampling time. In this manner, the ball will pierce the wall to a maximum

depth while traveling according to Model I |using an entire sampling period. The minimum energy

loss obtains when the ball is held back by the spring of the wall upon exit for minimum time. Thus

the wall turn-on switching time occurs T seconds after wall entry and the wall turn-o� switch occurs

right on wall exit in the worst-case scenario.

Under this worst case assumption we may seek the damping coe�cient b which will dissipate the

energy gained. This is of course a much simpler problem than that of the previous section, where

the floor function was involved. In the present case, if the strike velocity is the same from one wall

encounter to the next (as will be the case when the balancing damping bbal has been found), then

the energy gain will be the same from one encounter to the next. This was not the case in the full

return map because the energy gained at each bounce had to do with both the strike time and strike

velocity.

The balancing damping coe�cient, however, still may not be found analytically until we make

one further assumption. Unfortunately, no analytical solutions exist to the following deceptively

simple equation:

ea�cos(�) = C (6.35)

The roots of this equation are the intersection of a logarithmic spiral with an o�-axis vertical line. Its

solution is necessary to express the time to exit the wall given the wall entry velocity. The constant

on the right-hand-side arises from the non-zero bias force of gravity bearing down. In full form, we

seek the time �t2 which solves the following equation:

y(�t2) = ea�t2(Acos!�t2 +Bsin!�t2)� g=!20 = 0: (6.36)

Beyond a certain time, the curve of an exponential spiral will no longer intersect an o�-center line.

Thus the solution we seek is not a periodic function.

We therefore make one more simplifying assumption. We set the bias force to zero (g = 0) and

further, to ensure that the ball will return to the wall in �nite time, we use a sprung mass for Model

I. We set the spring constant on Model I, K1, much lower than that on Model II, retaining the wall

switching characteristic.

We may now treat our problem analytically, developing the map as follows:

Function yi, which expresses evolution of Model I (Equation 6.19) takes the form:
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y1(t) = e��t(A1cosw1t+B1sinw1t)

v1(t) = e��t [(B1w1 � A1�)cos!1t� (B1� +A1!)sinw1t]
(6.37)

The initial conditions are used to de�ne A and B:

y1(0) = y10 = 0) A1 = 0

v1(0) = v10 ) B1 = v10=!1
(6.38)

The time spent in Model I (function ti, Equation 6.20) is given simply as:

�t1 = �=!1 (6.39)

The function yii (Equation 6.21) is similar to function yii, but with a larger spring sti�ness K2,

and thus larger natural frequency !2:

y2(t) = e��t(A2cosw2t+B2sinw2t)

v2(t) = e��t [(B2w1 � A2�)cos!2t� (B2� +A2!)sinw2t]
(6.40)

Constants A2 and B2 are evaluated using the initial conditions:

y2(0) = y20 ) A2 = y20

_y2(0) = v20 ) B2 = v20=!2
(6.41)

The time spent in model II is handled by function tii (Equation 6.22), de�ned as follows:

�t2 = (1=!2)atan2(�A2; B2) (6.42)

With the functions yi; ti; yii; and tii in hand, we may develop an explicit expression for the

return map in a manner similar to the development of the full return map above.

The time spent in Model I is simply one sampling period added onto the time spent outside the

wall:

�t1 = �=!1 + T (6.43)

The state at wall entry may then be found using �t1 in Equation 6.37

y20 = y1(�t1) = e���t1 v10
!1
sin(!1�t1)

v20 = v1(�t1) = e��t1
h
v10cos(!1�t1)� v10

!1
�sin(!1�t1)

i (6.44)
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The time spent inside the wall is given by:

�t2 =
1

!2
tan�1

��A2

B2

�
=

1

!2
tan�1

� �y20
(1=!2)(v20 + y20�)

�
(6.45)

After substituting for y20 and v20 from equation 6.44, this equation simpli�es to:

�t2 =
1

!2
tan�1

�
!2

!1
tan(!1t1)

�
(6.46)

We have, since �t2 is the time to wall threshold,

y2(�t2) = e���t2 [A2cos!2�t2 + B2sin!2�t2] = 0 (6.47)

The velocity at wall exit is expressed using �t2 in Equation 6.40:

v2(�t2) = e��t2 [(B2w1 �A2�)cos!2t2 � (B2� +A2!)sinw2t2] (6.48)

re-arranging, we have:

v2(�t2) = e��t2 [��(A2cos!2t2 +B2sin!2t2) + !2(B2cos!2t2 �A2sin!2t2)] (6.49)

but, from Equation 6.47, the �rst term is zero. So

v2(�t2) = e��t2!2 (B2cos!2t2 �A2sin!2t2) (6.50)

= e��t2!2

�
1

!2
e��t1v10cos(!1t1)cos!2t2)� e��t1

v10

!1
sin(!1t1sin(!2t2)

�
(6.51)

= e��(t1+t2)v10

�
cos(!1t1)cos(!2t2)� !1

!2
sin(!1t1)sin(!2t2)

�
(6.52)

The return map may now be expressed as follows:

tj+1 = tj +�t1 + t1 + t2

vj+1 = e��(t1+t2)vj

h
cos!1t1cos!2t2 � !2

!1
sin!1t1sin!2t2

i (6.53)

where

t1 =
�
!1

+ T

t2 =
1
!2
tan�1

�
!1
!2
tan!1t1

� (6.54)
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Note that our two functions f and g are decoupled:

8<
: tj+1 = f(tj)

vj+1 = g(vj)
(6.55)

We may �nd the Jacobian of the map

J =

2
4 @f

@t
@f
@v

@g
@t

@g
@v

3
5 =

2
4 1 0

0 e��(t1+t2)
�
cos(!1t1)cos(!2t2)� !1

!2
sin(!1t1)sin(!2t2)

�
3
5 (6.56)

Setting the determinant of the Jacobian equal to 1, we �nd the limit cycles (�xed points) are

given by:

� =
1

t1 + t2
ln

�
cos(!1t1)cos(!2t2)� !1

!2
sin(!1t1)sin(!2t2)

�
(6.57)

This equation may be solved numerically for bbal, the balancing damping coe�cient.

Figure 6.14 shows the balancing bbal as a function of the period T under the worst case assum-

pion.

As mentioned above, solutions are not available when g 6= 0, but they may still be found

numerically. Having a semi-analytic result in hand for the case g = 0 allows us to proceed with a

bit more con�dence.

Figure 6.15 shows a three-dimensional plot with the analytical solution highlighted. The bias

force (gravity) increases and is seen to have a increasing in
uence on the damping coe�cient b, but

not as strong as the sampling period T. (Within the range shown).
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6.5 Summary

In this chapter, measures for the destabilizing e�ects of the zero order hold and the intersample

threshold crossing have been found which are useful in determining the worthiness for implementation

of the control techniques introduced in the previous chapter. An analytical solution for the damping

coe�cient which will balance the destabilizing e�ects of intersample threshold crossing under worst-

case and non-existant bias force from the human was presented. Numerical extensions of this result

were made with a Poincar�e map.


