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Abstract

Skilled keyboardists enjoy very fine control over musical sounds at the piano but must make do
without that fine control at the synthesizer keyboard. In contrast to the piano action, the typical
synthesizer action is not subject to changing kinematic constraints and is therefore missing transient
features in its mechanical impedance (touch-response). Keyboardists rely on such haptic features to
develop and execute the aforementioned fine control. To remedy the inferior utility of synthesizer
keyboards, this thesis develops and applies haptic interface technology. Each synthesizer key is
motorized and a multibody, variable structure dynamical model of the piano action is simulated
in real-time in a human-in-the-loop scheme to re-create the response and the varying mechanical
impedance of the piano action. A combined simulation and experimental apparatus comprising a
seven key motorized keyboard is described. For use as a haptic interface control engine, a detailed
dynamical model of the piano action is developed using Kane’s method. Computationally efficient
submodels are constructed for the piano action in each of its constraint conditions. Simulation
schemes based on a finite state machine are developed so that the submodels may be interactively
sequenced together.

Limitations to the fidelity of haptic rendering invariably arise when the simulator is implemented
as a sampled data controller. Restrictions must be placed on the mechanical impedance of the vir-
tual object or exceptional computational power must be demanded of the interface controller lest
meddlesome chatter arise between user and virtual object. This work notes that the destabilizing
effects of sampled-data and computational delays can be fully compensated out if the entire coupled
dynamical system is modeled: interface device and human limb. Such methods are fully explored
for the virtual wall, the simplest virtual object subject to changing constraints. New algorithms
are presented for the virtual wall which address the destabilizing effects of discrete control and
discontinuous control, yet account for the coupled-in dynamics of the human. Specifically, the dele-
terious effects of the sample and hold operator and the asynchrony of constraint threshold crossings
with sampling times are eliminated. Model-based prediction, digital control design techniques, and

deadbeat control are employed.
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