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Abstract

It seems likely that humans build internal models of ob-
jects that they explore haptically, and that the complexity of
an internal model is not necessarily associated with com-
plex exploratory procedures or the existence of visual in-
put. Can a robot build a model of an object it touches or
presses, and if so, can that model be used to render the
object through a haptic interface? Or even simpler, can
a robot estimate parameter values for a model already pro-
vided using data produced only by haptic exploration? This
paper addresses the problem of parameter identification of
hybrid dynamical systems, a class which contains systems
of objects which make and break contact with one another.
We propose the use of a hybrid sensitivity model as a basis
for the construction of parameter identification algorithms.
We distinguish between two components of a hybrid sensi-
tivity model: sensitivity of states and sensitivity of switch-
ing instants to parameter variation, and we present two al-
gorithms, one essentially based on each type of sensitivity.
Simulation results demonstrating each algorithm are also
presented.

1 Introduction

The ultimate test of fidelity for a haptically rendered vir-
tual object is a side-by-side comparison of the rendered ob-
ject and the real thing, where comparison involves haptic
exploration by a human user. Given a sufficiently faithful
rendering, the user could presumably not tell the difference
between the rendered and real object. Internal models of
the rendered and real objects, constructed in the mind of the
user by observing responses to applied mechanical excita-
tion, would match. Or would they? Perhaps a rendering that
is sufficiently faithful for one user would nevertheless admit
detectable differences for another user.

Imagine instead a mechanized haptic explorer, a ma-
chine that can haptically probe a real or rendered object and

make quantitative comparisons. We wish to acknowledge
the work of MacLean [9], who called this envisioned de-
vice the haptic camera. Although our aims are virtually the
same, we call our device the haptic probe to emphasize its
reliance on mechanical excitation and to limit its association
with the visual sense, which is typically less [inter]active
than haptic exploration.

If a haptic probe were to actually exist, it could be used
not only to compare rendered to real objects (verify), but
also to help realize the rendered object in the first place (au-
tomated modeling). We are in fact primarily interested in
the use of the haptic probe for automatic generation of the
virtual environment. The model that the haptic probe con-
structs through mechanized haptic exploration of an object
could be used as a kind of executable specification: it could
be rendered through real-time simulation to re-create that
object through a haptic interface. Mathematically, the me-
chanical impedance of an object could be characterized us-
ing a haptic probe, then that impedance model could be used
as the essential algorithm during haptic rendering. When
the impedance of the object in question is linear (perhaps
because of limitations imposed on the types of haptic ex-
ploration available) then the problem is relatively simple.
When, however, the impedance is nonlinear, as will be the
case if the object in question is in fact a system of ob-
jects that may undergo changing contact conditions, then
the matter of constructing the model from observed behav-
ior under known excitation is a bit more complicated. Given
the ubiquity of changing contact conditions in the phys-
ical world as regularly manipulated and explored by hu-
mans, the inclusion of nonlinear impedance models within
the abilities of a haptic probe is highly desirable.

The haptic probe idea is by no means new. MacLean [8]
[9] developed an apparatus and method that measured force-
displacement data from a toggle switch, created a model,
and then rendered that model for a user to feel. A piece-wise
linear fit to the recorded force/displacement curve allowed
parameters of a piece-wise continuous impedance to be esti-
mated. Howe et.al. [6] and Schulteis et.al. [16] present var-



ious algorithms that process sensory information collected
during a human-directed telemanipulation task to automati-
cally identify certain properties of the remote environment.
Data processing involves segmentation, automatic identifi-
cation of subtasks and states, and identification of object
properties. Okamura [14] has also addressed the construc-
tion of geometric and surface property models of the envi-
ronment from interaction data, but by placing the produc-
tion of that data (haptic exploration) under automatic con-
trol. In another work, Miller and Colgate [12] adapted a
nonlinear system identification technique, called a wavelet
network, to provide a tool that is capable of identifying en-
vironments with static 1-D nonlinear features.

We are interested in characterizing the mechanical
impedance of objects that are manipulated strictly by push-
ing or turning. That is, we restrict ourselves to objects
whose feel can be rendered on a single axis haptic inter-
face. Our prototypical problem is the characterization of
the feel of single keys on keyboards, including typewriter,
computer, piano, and synthesizer keyboards. These are all
objects that are generally just pressed or pushed, but nev-
ertheless posses behaviors that strongly influence human-
machine interaction. The mechanical response generated by
a key-press on a typewriter or computer keyboard has been
implicated as an influence on forces used by typists which
in turn influences the occurrence of repetitive stress injury
[11]. Also, the mechanical response of a musical keyboard
determines the availability of certain types of musical ex-
pression [3]. Figure 1 shows a haptic probe in use to char-
acterize the feel of a piano key.

We do allow, however, changing contact conditions, ei-
ther between human finger and key (haptic interface end-
effector) or between elements internal to a system of ob-
jects. Changing contact conditions among elements of the
piano action and strong nonlinearities arising from buck-
ling membranes in computer keyboards are examples of the
kinds of phenomena we are interested in capturing. These
are the phenomena that generate the interesting (and of-
ten most easily perceived) details that influence human-
machine interaction. These phenomena support the devel-
opment and the multiplicity of technique on the part of the
human user. Thus the models that we use whose parameters
are to be identified are hybrid dynamical models: models
incorporating both discrete and continuous variables.

The literature in hybrid dynamical systems is rich and
varied. While parameter identification has been addressed
in some detail for certain classes of systems [1] [5], a
method for the identification of hybrid models representing
simple interacting rigid bodies that make and break con-
tact with one another is not yet available. In this paper,
we present a method for identifying the parameters of a
hybrid dynamical model using data collected with a hap-
tic probe (force and motion data alone, where the force and

Figure 1. On the right a motorized instru-
mented probe presses on a piano key. In the
foreground a prototype force reflecting syn-
thesizer keyboard is visible.

motion are power-conjugates or their ratio expresses a driv-
ing point impedance). Our canonical identification problem
is the bouncing ball: we will attempt to characterize the
elastic, dissipative, and inertial properties of a ball bounc-
ing on a paddle under the control of the haptic probe from
force and motion sensors resident on the paddle itself. Ac-
cess to the ball position is not available: only the paddle
position and interaction force are given. From these data,
the mass, stiffness, and damping parameter values are to be
extracted. The hybrid dynamical model comprises contact
and flight phases. We are particularly interested in devel-
oping a parameter identification technique which is based
on adaptive feedback control. We presume that a feedback
technique will be more extensible to models for which ana-
lytical solutions do not exist.

The bouncing ball is actually inspired by the piano ac-
tion. A grossly simplified piano action model is analogous
to the bouncing ball, with the hammer resting or bouncing
on a lever-like paddle. A key-press accelerates the ham-
mer toward the string and the appropriately placed keybed
causes a launch (release, or transition into free-flight) of the
hammer before hammer/string impact begins. After ham-
mer/string interaction, the hammer lands back on the key.
The effects of release and re-capture of the hammer on the
key are haptically perceptible to the player, such that a con-
sistent loudness can be produced (corresponding to a stable
juggle), and this without any view of the hammer.

We have investigated two approaches to the problem of
parameter identification for hybrid systems.Both of these
approaches make use of sensitivities obtained from a sen-
sitivity model. A sensitivity model may be derived from



the original system model by taking partial derivatives with
respect to the parameters. When a model is hybrid, a full
hybrid sensitivity model comprises two types of sensitivi-
ties: the sensitivity of the state values, and the sensitivity
of the switching instants to parameter variations, as further
reviewed below. One of the two approaches we have devel-
oped borrows from a paper by Hiskens [4], and essentially
makes use of sensitivities of the states to parameters with
an extension utilizing sensitivities of switching instants to
improve the results. Incidentally, we demonstrate this ap-
proach below not using a parameter identification problem,
but rather using a reconstruction problem. The second ap-
proach to parameter identification presented below concen-
trates on the underlying discrete dynamics of the hybrid sys-
tem and uses only the sensitivities at the switching instants.
The two parameter identification approaches are presented
in turn in the body of this paper. We also briefly describe an
envisioned method, a true hybrid approach, that is based on
a combination of these two basic approaches.

The paper is organized as follows. In section 2 we re-
view important concepts in sensitivities of hybrid systems.
We describe the first approach to parameter identification
using a reconstruction problem in section 3. Section 4 con-
centrates on the second approach, namely estimation in dis-
crete time. For discrete time estimation, Newton observers
are used which are briefly reviewed in subsection 4.1. In
section 5, preliminary simulation results are presented. Fi-
nally, section 6 concludes the paper and discusses exten-
sions of this work.

2 Sensitivities

Parametric sensitivity of a dynamic system, which fol-
lows from the Taylor series expansion of its flow, provides a
first order approximation of the change in its nominal trajec-
tory due to parameter changes. Parametric sensitivity anal-
ysis defines a way of quantifying the changes in the flow
of a model due to (small) changes in parameters and initial
conditions.

Problems of parametric sensitivity of a dynamic system
can be classified into two groups: direct problems that aim
to calculate changes in the nominal trajectory given param-
eter variations and inverse problems that aim to estimate
change in parameter values given differences between nom-
inal and perturbed trajectories. The gradient-type informa-
tion contained in the parametric sensitivity trajectories can
be used to guide the search in the inverse problems. Param-
eter estimation is an inverse problem and trajectory sensitiv-
ities are very useful since they can be directly used in many
gradient based estimation methods.

Hybrid systems exhibit both discrete state and contin-
uous state dynamics. In these systems, continuous and
discrete dynamics not only coexist, but interact. That is,

changes occur both in response to discrete, instantaneous
events and in response to dynamics as described by differ-
ential or difference equations in time.

In this paper, we’ll adapt a model for hybrid systems that
is suitable for development of trajectory sensitivity analysis.
We’ll describe our hybrid system with a model of the form

ẋi = Fi(xi, t, α) (1)
x+

i = φi(x
−

i , ti, α) (2)
0 = fi(x

−

i , ti, α) (3)
t0 = t0(α) (4)

x+(t0) = x+(t0, α) (5)

In this model, i represents discrete states (modes) and Fi

governs continuous dynamics in each mode. Switchings
from one mode to another (events) occur when the switch-
ing conditions fi are satisfied. Whenever an event occurs,
states in the new mode are updated using the reset condi-
tions φi. Finally, x represents continuous states, ti repre-
sents switching instants, α represents model parameters. x0

is the initial conditions and t0 is the initial time. The nota-
tions ()+, ()− signify just before and just after the events,
respectively.

Analysis of hybrid systems is relatively difficult. The
significant feature that makes their analysis complex is their
nonlinear non-smooth time-dependent dynamics. For this
reason although parametric sensitivity analysis for continu-
ous systems has been extensively studied, sensitivity anal-
ysis for hybrid systems has only recently been established
[2]. However, the first work in the area dates back to 1967
when Rozenvasser [15] applied sensitivity analysis to dy-
namic models containing discontinuities.

Since hybrid system models are characterized by the in-
teraction between continuous and discrete event dynamics,
in general, sensitivity models extracted from these systems
also have a hybrid nature. Changes in parameters of a hy-
brid system affect not only the continuous dynamics, but
also the discrete event dynamics. As pointed out in [4],
while calculating sensitivity trajectories of a hybrid system,
evaluating sensitivity of switching instants with respect to
parameters is as important as correctly detecting and locat-
ing discrete events in the hybrid model itself. Hybrid sen-
sitivity models have discrete event dynamics similar to the
system model and they include jumps in sensitivity values
when event transitions occur. Jumps occur according to re-
set conditions which are highly influenced by the difference
between instants when the nominal and perturbed trajecto-
ries reach the event triggering hypersurface, i.e. sensitivity
of switching instants with respect to parameters.

Defining sensitivity of continuous states with respect to
parameters as λ and sensitivity of switching instants with
respect to parameters as λt, the sensitivity trajectories for
a hybrid system can be calculated by the hybrid sensitivity



model

λ
4
=

∂x

∂α
(6)

λt
4
=

dti

dα
(7)

λ̇ =
∂Fi
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∂α
(8)
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−
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i +
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−

i
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(14)

In this hybrid sensitivity model the reset conditions at events
ensure that the sensitivities accurately reflect trajectory per-
turbations at and beyond the perturbed event time. Over the
intervening time interval when nominal and perturbed mod-
els are in different modes, the sensitivities cannot directly
represent perturbations.

3 Reconstruction using Sensitivities and
Continuous Time Estimation

In this section, we explore the first approach to parame-
ter estimation problem by making use of a direct problem,
namely the reconstruction of the trajectory of the same sys-
tem with a different parameter value using sensitivities. In
principle, the parameter estimation problem is the inverse of
the reconstruction problem: Given two trajectories (nom-
inal and perturbed) the aim is to calculate the amount of
perturbation. Therefore one can get valuable insight from
the reconstruction problem to do parameter estimation.

Figure 2 demonstrates a simple hybrid system that we
have used to pose test problems. Physically, this system re-
sembles the model of the temperature in a thermostat con-
trolled room. The mathematical model for this hybrid sys-
tem is given in Table 1. Table 2 contains the parameters
used for the simulations in this section.

In Figure 2, the dashed line represents the nominal tra-
jectory of the system and the solid line represents a per-
turbed trajectory. The dotted line is the reconstruction of
perturbed trajectory from the nominal trajectory using sen-
sitivity of the output to the perturbed parameter. From the
figure it can be clearly observed that the approximated tra-
jectory is in agreement with the perturbed trajectory when

Table 1. Model - First Order Switching System

System Model
IC x0 = 0

Flows F1
4
= ẋ = −τx + u1 F2

4
= ẋ = −τx + u2

Switchings f1
4
= x − s1 = 0 f2

4
= x − s2 = 0

Resets φ1
4
= x+ = x− φ2

4
= x+ = x−

Table 2. Parameter Set
τ τ̂0 u1 u2 s1 s2

0.5 0.6 1.5 -0.5 2 0

both nominal and perturbed systems are in the same mode.
This agrement is ensured by the reset condition in the sen-
sitivity model. However, over the intervening time interval,
sensitivities fail to give a good approximation, since nom-
inal and perturbed systems are in different modes. We can
also observe that it is meaningless to try to approximate af-
ter nominal and perturbed systems completely lose synchro-
nization.
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Figure 2. Reconstruction of perturbed trajec-
tory using λ only

In Figure 3 the same hybrid system is studied as in Figure
2. However, this time sensitivity of switching instants with
respect to the perturbed parameter is taken into account dur-
ing reconstruction. In particular, we make use of a refine-
ment to the reconstruction formula proposed by Hiskens et.
al. [4] and simulate both the nominal system and its sen-
sitivity model without changing the mode for an extended
amount of time, until the estimated switching time for the
perturbed system is reached. The results for such an ap-
proach are given by the dotted lines in Figure 3. It is clear



that use of this extra information allows a better approxima-
tion for the perturbed trajectory.
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Figure 3. Reconstruction of perturbed trajec-
tory using both λ and λt - Extended simulation

It is worth mentioning that, in this section, we have ob-
served that it is possible to gather information about param-
eter perturbation directly using sensitivities when the nom-
inal and perturbed trajectories are both in the same mode;
therefore, we can conclude that as long as the modes of the
nominal and the perturbed systems agree one can use gra-
dient based continuous-time adaptation methods to perform
parameter updates.

4 Discrete-Time Estimation

In the previous section we have considered the parameter
estimation problem using only continuous-time approaches.
However, hybrid systems have interacting continuous and
discrete dynamics. Therefore, basing the adaptation algo-
rithm only on continuous dynamics and neglecting the in-
formation offered by the discrete dynamics is not necessar-
ily the best approach to the parameter estimation problem
of a hybrid system.

The hybrid system model defined in section 2 can be
characterized by a finite number of nonlinear dynamical
models together with a set of rules for switching among
these models. Therefore, this model description naturally
causes a partitioning of the state space into cells. The
boundaries of each cell are in effect switches between dif-
ferent nonlinear systems. In order analyze this type of hy-
brid system, it is natural to investigate the behavior of the
system as it flows from one switching surface to the next
switching surface since one of the most interesting phenom-
ena in the study of hybrid systems is the behavior of the
discontinuities in the dynamics.

A useful notion that will be used in this paper is that
of an impact map. The notion of an impact map can be
considered a generalization of a Poincaré map. An impact
map is simply a map from one switching surface to the next
switching surface. The impact map of a hybrid dynamical
system defines a discrete-time dynamical system which in
general has very complex dynamics. In many cases, it is
not even possible to have explicit expressions for the impact
maps. However, these maps can be obtained by advancing
the hybrid model through time and sampling at the impact
instants. Similarly, the sensitivities of an impact map can be
obtained by advancing the hybrid sensitivity model in time.

Note that, in general, while constructing the impact map,
the states of the hybrid system are augmented with time so
that switching instants are also included in the impact map.

In this section, we will concentrate on the discrete-time
system defined by the impact maps of a hybrid system and
as our second approach we will study the parameter estima-
tion problem using sensitivities of the impact maps only.

State estimation and parameter estimation are similar
problems. State estimators can be used for simultaneous
parameter estimation by augmenting the state space with
parameters α having (no) dynamics α̇ = 0. Moreover, if
one uses an augmented observer for parameter estimation,
then the identifiability conditions are simply given by the
observability of the parameter augmented system.

The next subsection briefly reviews a very general
discrete-time state estimator, namely a Newton Observer,
developed by Moraal and Grizzle [13]. Newton observers
have proven useful for us to do parameter estimation in the
discrete-time domain using impact map sensitivities.

4.1 Newton Observers

The basic idea behind Newton observers is to formulate
the state estimation problem as one of solving a sequence
of nonlinear inversion problems and to use Newton’s algo-
rithm to result in an asymptotic observer. Under observabil-
ity and smoothness assumptions, Newton’s algorithm can
be shown to have a uniform rate of convergence over the en-
tire sequence of inversion problems, defining a quasi-local,
exponential observer for the discrete-time nonlinear system

xk+1 = F (uk, uk) (15)
yk = h(xk, uk) (16)

where x ∈ Rn, u ∈ Rm and y ∈ Rp.
While defining Newton observers, first, the concept of a

N -lifted system should be introduced. Lifting is performed
to ensure that enough measurements are considered to sat-
isfy the observability rank condition. In particular, the dy-
namics of the N -lifted system is the dynamics of the orig-
inal discrete-time system iterated N -times. Similarly, the



state of the lifted system is the state of the original system
sampled in windows of length N .

For notational simplicity, let F u(x)
4
= F (x, u) and

hu(x)
4
= h(x, u). Also let “ ◦ ” denote composition. Then

the N -lifted system is defined as

xN(j+1) = Φ(xNj , U[N(j−1)+1,Nj]) (17)
Y[N(j−1)+1,Nj] = H(xNj , U[N(j−1)+1,Nj]) (18)

where, the set of N consecutive measurements and controls
are given by

Y[k−N+1,k]
4

=







yk−N+1

...
yk






U[k−N+1,k]

4

=







uk−N+1

...
uk






(19)

Furthermore, the evolution of states from window to win-
dow Φ and the state to measurement map H read as

Φ(xNj , U[k−N+1,k])
4

=F
uN
[k−N+1,k]

◦...◦F
u1
[k−N+1,k](xNj) (20)

H(xNj , U[k−N+1,k])
4

=







h
u1
[k−N+1,k](xNj)

...

h
uN
[k−N+1,k]

◦...◦F
u1
[k−N+1,k](xNj)






(21)

In [13], Moraal and Grizzle present a theorem which in-
terprets Newton’s method as a quasi-local exponential ob-
server for discrete time systems.

In particular, suppose that N has been fixed, and for
notational convenience, let Yk = Y[k−N+1,k] and Uk =
U[k−N+1,k]. Define

ΘYk,Uk(ζ) = ζ +

[

∂H

∂x
(ζ, Uk)

]−1

(Yk − H(ζ, Uk)) (22)

and let (ΘYk,Uk)d(ξ) represent ΘYk,Uk(ξ) composed with
itself d-times. Then the theorem states that

zk+1 = (ΘYk,Uk)d(F (zk, uk−N )) (23)
x̂k = Fuk−1 ◦ Fuk−2 ◦ ... ◦ Fuk−N (zk) (24)

is a quasi-local, exponential observer for the system (15)-
(16).

Note that when the state to measurement map H is not
square but the observability rank condition is satisfied, then
the set of equations is over-determined. In this case, one
can use a method for solving a nonlinear least squares prob-
lem, in particular, one may utilize a pseudo-inverse in the
Newton observer to result in an exponential observer [13].

5 Simulation Results

As outlined in section 1, our canonical problem is a ball
bouncing on a moving paddle. We treat the bouncing ball
using two paddle/ball contact models: a rigid body model,
and a compliant model. In the rigid body model, the con-
tact takes place in infinitesimal time and the relative velocity
after collision is related to the relative velocity before col-
lision by the simple factor ε, called the coefficient of resti-
tution. In the compliant contact model, interaction occurs
in a period of finite duration and is governed by dynami-
cal equations in which the ball and paddle motions are cou-
pled. Typically a spring/damper coupler is placed between
the ball and paddle during contact. Various compliant con-
tact models are commonly used in engineering applications.
Among these are the linear spring damper model with con-
tact force

Fc = kρ + bρ̇ (25)

and the general nonlinear compliant contact model with
contact force

Fc = k|ρ|n−1ρ + b|ρ|nρ̇ (26)

introduced by Hunt [7]. In both of these models ρ denotes
the relative position of the contacting bodies, while k and b

are spring and damping coefficients, respectively. Parame-
ter n is a shape coefficient that depends on the contact ge-
ometry.

In our analysis, we treat the rigid body model and
the general nonlinear compliant contact model. However,
we do not treat the linear compliant contact model since
this model yields physically inconsistent interaction forces.
Simple simulations using the linear contact model of a ball
bouncing on fixed ground, for example, will produce ten-
sile (sticky) and discontinuous contact forces which cannot
be physically justified [10].

Figures 4 and 5 demonstrate a sample run of the estima-
tion procedure applied to the rigid body contact model.

A Newton observer is used to generate the parameter up-
dates while the bouncing ball is driven open-loop by a si-
nusoidally moving paddle. In Figure 4 time trajectories of
the reference ball and the adjusting model are given. Fig-
ure 5 shows the estimated model parameter as a function
of time. From these two plots we can observe that, as ex-
pected, ball/paddle strike instants synchronize and bounce
heights regularize after a few bounces as the parameter is
updated on the model bouncing ball. The parameter is cor-
rectly estimated.

Similarly, Figures 6 and 7 demonstrate a sample run of
the estimation procedure for the nonlinear complaint bounc-
ing ball problem. In particular, Figure 6 gives time trajecto-
ries of the system to be identified and the adjusting model.
Trajectories initially behave differently but asymptotically
converge as the parameter is correctly identified.
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Figure 7 shows the estimated model parameters k̂ and
b̂ as a function of time. The parameters are correctly esti-
mated.
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Figure 7. Parameter convergence for the non-
linear contact model

6 Conclusions and Future Work

This paper has presented two approaches to the parame-
ter identification of certain hybrid dynamical systems. Both
approaches are based on a feedback control architecture,
and should be extensible to more complex hybrid systems
than the bouncing ball example presented herein. Both ap-
proaches are basically gradient-descent algorithms that use
sensitivity models to generate the gradients. One method
uses sensitivities of the states to parameter variation in con-
tinuous time while the other method uses sensitivities at the
switching instants.

Our future work includes the combination of the two ap-
proaches into a single feedback-control architecture. In par-
ticular, we envision a procedure that makes use of these two



methods to result in an asymptotically stable hybrid estima-
tor. A true hybrid estimator can be achieved by a proper
combination of the continuous time and discrete-time adap-
tation methods. The combination is not trivial and as seen
in the reconstruction problem, special care should be taken
concerning the intervening time intervals when nominal and
perturbed systems are in different modes.

We are also interested in investigating questions of iden-
tifiability, with plans to delineate which parameters can be
identified using which kinds of sensitivities. Other open
topics include excitation persistence and associated plans
for closing the loop on the excitation of the hybrid system:
the excitation could be placed under the direction of the
parameter identification scheme rather than simply running
open-loop as in the present work.
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