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Abstract 

A new extremal distance tracking algorithm is presented 
for parametric curves and surfaces undergoing rigid body 
motion. The essentially geometric extremization problem 
is transformed into a dynamical control problem by dif- 
ferentiating with respect to time. Extremization is then 
solved with the design of a stabilizing controller. We use 
a feedback linearizing controller. The controller simulta- 
neously accounts for the surface shape and motion while 
asymptotically achieving (and maintaining) the extremal 
pair. Thus collision detection takes place in a framework 
fully analogous to the framework used for the simulation 
of dynamical response. 

1 Introduction 

To trigger the appropriate impact response that gener- 
ally accompanies a collision between objects in the phys- 
ical world, there exists the matter that makes up those 
objects and occupies space. In simulation, however, an 
algorithm must be put in place to detect collisions be- 
tween objects which have no matter. A collision detec- 
tor must trigger the computation of interaction forces or 
impulses that act, in simulation, to prevent interpenetra- 
tion. In virtual environments and simulations of robots 
interacting with their environment, collision detection is 
an important technology. In this paper, we present an 
algorithm suitable for collision detection between objects 
whose boundaries are represented with parametric sur- 
faces. 

The extremal distance E is defined as the minimum dis- 
tance between two surfaces when they are disjoint, the 
local maximum penetration depth when they are inter- 
penetrated and zero during tangential contacts [l]. We 
present an algorithm that maintains the two extremal 
points on a pair of parametric surfaces as those surfaces 
move. The motion of each extremal point is found as a 
function of the motion and shape of both surfaces. Addi- 
tionally, initialization errors are tolerated and driven to 
zero. Although the algorithm handles only local extrema 
on convex shapes, with an extension involving global 
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bounding box comparisons and surface transitions, gen- 
eral complex surface shapes can be handled. 

Parametric surfaces are used in Computer Aided Design 
(CAD) and Computer Aided Engineering (CAE) tools, 
where the surface representation must provide smooth- 
ness and continuity independent of the resolution of a 
particular rendering. Parametric surfaces such as non- 
uniform rational B-splines (NURBS) have the advantages 
of compact representation, higher order continuity and 
cost effective computation of surface derivatives and nor- 
mals. Thus our algorithm is relevant to interactive simu- 
lation of models created using CAD and CAE packages, 
since it eliminates the need for intermediate representa- 
tions such as polygonal meshes or faceted surfaces. 

The new algorithm is especially useful when a human in- 
teracts with a model through a haptic interface. It may 
be used to efficiently track the maximum penetration dis- 
tance and the appropriate common normal between the 
model and an image of the user’s finger in the virtual en- 
vironment. The penetration distance and normal vector 
may then be used to produce a reaction force through 
the haptic interface. The algorithm allows direct haptic 
rendering of the CAD surface rather than rendering of 
an intermediary surface. Another powerful property of 
the algorithm is its dynamic nature, which takes the mo- 
tion of the surfaces into account. This dynamic structure 
makes it possible to easily combine extremal point track- 
ing with physics-based simulation. Although the present 
work is developed for collision detection, it is based on 
our previous work in cobot control [2] and related work 
in path following for mobile robots [3]. 

In section 2, we review the previous work in collision de- 
tection. The proposed dynamic model is derived in sec- 
tion 3. Controller design and analysis takes place in sec- 
tion 4. In section 5, simulation results are presented and 
finally, section 6 concludes the paper. 

2 Background 

This section reviews extremal point algorithms by clas- 
sifying them according to the geometric model represen- 
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tations they can handle. Two main categories presented 
are the polygonal models and the nonpolygonal models. 

2.1 Polygonal Models 
Previous work in collision detection has widely concen- 
trated on computing the distance between convex poly- 
hedral objects. Polyhedral models are extensively stud- 
ied because they are easier to deal with than more general 
models, are almost always compatible with 3-D modelling 
systems, and their resolution is sufficient for many tasks. 
State of the art algorithms for computing the distance 
between convex polyhedra are the algorithm by Gilbert, 
Johnson and Keerthi (GJK) [4], [5] and the algorithm of 
Lin and Canny [6], [7]. 

The GJK algorithm makes use of Minkowski difference 
and convex optimization techniques to calculate the min- 
imum distance. The iterative algorithm generates a se- 
quence of ever improving intermediate steps within the 
polyhedra to converge to the true solution. The algo- 
rithm of Lin and Canny makes use of Voronoi regions and 
temporal/spatial coherence between successive queries to 
navigate along the boundaries of the polyhedra in the 
direction of decreasing distance. 

Many of the existing polyhedral collision detection al- 
gorithms also utilize scheduling and spatial partitioning 
techniques to speed up the solution process. Since con- 
vex optimization techniques are used in these methods, 
non-convex polygonal shapes must be handled by divid- 
ing them into convex parts. 

2.2 Nonpolygonal Models 
Most of the available closest point algorithms for non- 
polygonal models address the problem indirectly. One 
such indirect method uses adaptively refined meshes to 
convert the problem into a polyhedral one. Another in- 
direct approach proposed by Adachi [8] and Stewart [9] 
uses intermediate tangent representations. 

Although these indirect methods can be successfully im- 
plemented for some applications, there also exist cases 
when they are not sufficient. Intermediate representa- 
tions fail to approximate surfaces with high curvature, 
and polyhedral approximations to complex models can 
grow very large in the number of polygons. 

Less literature exists on direct methods for nonpolygo- 
nal models. Gilbert et. al. extended their algorithm 
to general convex objects in [lo]. In a related paper [ll], 
Turnbull modifies the widely used GJK algorithm to han- 
dle convex shapes defined using NURBS. Similarly, in [12] 
Lin and Manocha present an algorithm for curved mod- 
els composed of spline or algebraic surfaces by extending 
their earlier algorithm for polyhedra. 

Also worth noting are the subdivision techniques imple- 
mented by Duff [13] and Herzen [14]. Snyder improves 

these methods by modelling the collision detection be- 
tween time dependent surfaces as a constrained minimiza- 
tion problem and solves it using interval Newton methods 
1151. 

In the field of computer graphics, Kriezis [16] and Bajaj 
[ 171 propose modelling parametric surface intersections 
by differential equations and using tracing/marching 
methods to calculate them. Although the goal of these 
approaches is only to calculate surface intersections, the 
way the problem is modelled and appropriate points are 
traced are closely related to our extremal pair tracking 
algorithm. 

Thompson et. al. contribute a different kind of closest 
point algorithm: rather than finding the closest point at 
each iteration, their algorithm continually updates the 
closest point based on the motion of the “end-effector” 
point and the curve or surface shape. After initializing 
the algorithm with the closest point, it maintains the 
closest point or “tracks” the end-effector. In [18], it is 
called a “tracking” algorithm. Extensions to this work in- 
clude [ 191, which handles a moving surface and [20], which 
makes use of higher order derivatives and tangent plane 
projections at singularities. Finally in [21] this approach 
is generalized to surface to surface interactions and com- 
bined with the “velocity formulation”, which keeps track 
of the exact extremal distance during contact and pene- 
tration as surfaces move, given exact initial conditions. 

Note that in the final surface-to-surface tracking algo- 
rithm of [21], motion of the surfaces and extremal point 
tracking are performed in a decoupled manner. Succes- 
sive approximations are performed by multi-dimensional 
Newton’s method to obtain a static solution before the 
surfaces are allowed to move for the next update. The 
combined velocity formulation is an approach to handle 
motion of the surfaces and extremal tracking simultane- 
ously, but it only works for the contact case and needs 
exact initial conditions. 

Our algorithm is also a tracking algorithm. However, it 
is based on a dynamic formulation of the motion of the 
extremal points and their dependence on both surface 
motion and surface shape. To continually solve the re- 
lationship between point inotion and surface shape and 
motion, a feedback control problem is formulated and 
combined with the dynamic simulation. The controller 
output is precisely the motion of each of the extremal 
points, and may be used to  update the parameter values 
that locate the points themselves. The speeds along the 
tangent curves are produced by the controller as functions 
of the surface motions and surface shapes. These speeds 
may be integrated to arrive at the closest points, where 
integration is the essential process of “maintenance”. Be- 
cause of its dynamic formulation, the tracking algorithm 
can be neatly combined with the dynamic simulation pro- 
cess. 
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3 Modeling 

Figure 1: A parametric surface 

Let there exist a parametric representation for the sur- 
face shown in Figure 1. Note that all surfaces described 
by algebraic implicit equations have parametric represen- 
tations. We use f to denote a position vector to a point 
on the surface. And we use f(u, U )  to refer to the mapping 
from 8' to B3 that generates the Cartesian coordinates 
[ ~ ( u ,  w) y(u, w) z(u, w)]' from the independent parame- 
ters U and U. 

The following development relies on the existence of sur- 
face continuity through at least two differentiations. We 
also require that both surfaces be strictly convex. How- 
ever, the method can be generalized to piecewise contin- 
uous surfaces and non-convex surfaces using an appropri- 
ate switching method. 

Let fu(u, U )  and fv(u, U )  denote the first partial derivatives 
with respect to U and v of the parametric surface at  the 
point f(u, U ) .  Similarly, let fuu(u, w) denote the partial 
derivative with respect to U off,, and so on. Note that 
the first partials are tangent to the isoparametric curves 
of U and w respectively. 

Two parametric surfaces are plotted in Figure 2 with their 
corresponding isoparametric curves. On these surfaces, 
two arbitrary points, f ( U ,  U ) ,  h(r, s) and surface tangents 
evaluated at  these points are shown using notation sim- 
ilar to that used in Figure 1. AR(u,v,r,s) is a vector 
between these arbitrary points. Note that when the error 
vector AR is normal to both surfaces, the requirements 
of the extremal distance defined in section 1 are satisfied. 
In such case the values, denoted U*,  U * ,  r* and s*, of the 
parameters U ,  U, r, and s locate the extremal pair f(u*, U") 
and h(T*,  s*). The extremal distance is then equal to the 
Euclidian norm of AR. 

We define scalars 9", 9" as the projections of the error 
vector AR onto the tangents f,, and f, of surface f;  and 
similarly we define V, and W as the projections of the 
error vector AR onto the tangents h, and h, of surface 
h as follows. 

Figure 2: Two parametric surfaces with a position vector 
AR between two arbitrary points 

When the projection errors are all zero, the conditions 
for the extremal pair are met: the error vector AR is 
perpendicular to both surfaces at f and h. 

Note that it is possible to define the extremal distance 
condition by: an alternative set of equations as presented 
in [21]. This alternative formulation makes use of surface 
tangents and a normal of each surface. Although we use 
the set (1) - (4) in our further derivation in this paper, 
very similar results can be achieved using the alternative 
set. 

Given a set of equations, one way to find the extremal pair 
is to search for the solution U*,  U * ,  r*, s* that minimizes 
the projection errors using a gradient descent algorithm. 
This procedure would require the computation of a Ja- 
cobian for use in Newton Iteration. This is the approach 
undertaken in [21]. 

In the present work, rather than taking the Jacobian of 
the system of equations (1) through (4) with respect to 
the independent parameters U ,  U ,  r and s, we differentiate 
them with respect to time. The differentiation operation 
causes the motion of the surfaces and the time rates of 
change of the parameters duldt, dvldt, drldt and dsldt, 
called the parametric velocities, to show up in the differ- 
ential equations for the projection errors. 

Note that one must effectively freeze time (and conse- 
quently the motion of the bodies) while using a gradient 
descent algorithm to find the extremal pair. In contrast, 
taking the time derivative of equations (1) through (4) 
produces a dynamic expression where the time rates of 
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change of the projection errors are expressed in terms of 
the motion and shape of the surfaces. 

It is worth mentioning that although we use vector ex- 
pressions throughout the paper, one needs to express each 
vector consistently in a single reference frame before in- 
terpreting the operations as matrix operations. Where 
dot products and cross products appear, we use bold- 
face notation to  indicate operations which may be per- 
formed in a basis-independent fashion. Once suitably ex- 
pressed in a reference frame, standard matrix operations 
may be used, and we indicate this using normal typeface. 
Note also that since the right hand sides of equations (1) 
through (4) are basis-independent vector expressions, it 
is important to specify a frame in which differentiation 
is to be performed. We choose to  express the vectors in 
the first two equations, (1) and (2), in the body frame 
A and the vectors in last two equations, (3) and (4), in 
the body frame B (see Figure 2). This choice results in 
simpler matrix expressions. 

Consider the case where each surface is attached to a rigid 
body in motion. In Figure 2 these bodies are named A 
and B. Assume that the configuration of bodies A and 
B with respect to a reference frame N is known. Then 
motion of these bodies with respect to the reference frame 
N will be specified by the vectors N ~ A ,  N ~ B ,  N ~ A o  and 
%Bo. 

9" = (f - h) . fu  ( 5 )  
QU = ( f -h )* f ,  (6) 
\k' = (f -h ) .h ,  (7) 
9' = (f - h).h, (8) 

Taking time derivatives of equations (5) to  (8), and rear- 
ranging, one can present an expression for the projection 
error derivatives as 

4 = M U + b  (9) 
x = u  (10) 
y = 9  (11) 

where 

and M and b are shown at the top of the next page. 

In this state space realization the state variables, P, are 
taken to be the projection errors. The inputs U are time 
derivatives of surface parameters whereas the system out- 
puts are denoted by y. The desired outputs from the 
algorithm are the estimates z = [U, o, T,  .IT of the para- 
metric values of extremal points on each surface, U*, of,  T* 

and s', at every instant of time and these estimates can 
be calculated as a by-product of the control effort that 
regulates the projection errors to zero. Details of this 
procedure is shown in the next section. 

4 Control 

Equation (9) defines a nonlinear dynamic model to  main- 
tain the extremal pair on two surfaces undergoing rigid 
body motion. It characterizes the projection error deriva- 
tives in state space form and formulates the extremal dis- 
tance problem as a standard nonlinear control problem. 

The control input vector U is composed of time deriva- 
tives of surface parameters, i.e. the elements of U are 
speeds along the tangent curves. The objective of the 
controller is to continually update these speeds to regu- 
late the projection errors to  zero, i.e. to maintain the 
extremal pair on the surfaces. 

With the model (9)-(11) in hand, the extremal pair on 
the surfaces can be dynamically tracked making use of 
a control loop with exact feedback linearization. Exact 
feedback linearization is feasible since the plant is imple- 
mented in the computer and at any instant of time the 
specific values of M and 6 can be exactly calculated. 

Note that feedback linearization is fundamentally differ- 
ent than Jacobian linearization in that feedback lineariza- 
tion is achieved by exact state transformation and feed- 
back, rather than by linear approximations of the dynam- 
ics for a small range of operation [22]. 

First, in order to feedback linearize the model, an inner 
feedback loop is designed. Assuming the matrix M is not 
singular in the range of operation, we define the control 
input vector U in terms of a new input vector ,U as 

U = J4-l (,U - b) (12) 

and apply this control input to (9). Then the nonlin- 
ear model is algebraically transformed into an equivalent 
linear model 

Second, an outer loop linear controller is used to  impose 
the desired linear dynamics to equation (13). In this pa- 
per, a full state linear feedback 

@ = , U  (13) 

p = - K @  (14) 

is utilized to  stabilize the closed loop dynamics and to 
achieve desired performance: to  keep projection errors 
small. However, it is possible to synthesize different outer 
loop controllers to  satisfy various design objectives. 

Exponential stability of the overall controller is guaran- 
teed since there are no internal dynamics associated with 
this input-output linearization. This observation follows 
from the fact that the relative degree of the system is the 
same as its order and input-output linearization leads to  
input-state linearization [22]. 

Figure 3 shows the block diagram of the completed con- 
troller design. Here again, the inner loop renders the sys- 
tem as a linear model utilizing the input vector ,U whereas 
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M =  

Figure 3: Control block diagram showing an inner feedback 
linearization loop and an outer linear control loop 

the outer loop achieves desired dynamics of the linear 
system via full state feedback with gain matrix K .  In 
practice, the values of the gain matrix K axe chosen to 
produce a rate of convergence that outruns any potential 
disturbance due to motion and shape. 

Furthermore, the desired outputs, i.e. the parametric 
values of the extremal pair, are continually maintained 
with the knowledge of the control input vector U .  This 
is simply achieved by integrating the input vector U with 
initial conditions extracted from the starting points. In 
practice, the state vector ?Tr is augmented with the input 
vector U to perform all integrations in a single operation. 

Figure 4: Control block diagram showing an alternative im- 
plementation 

In fact, even a simpler implementation is possible. Figure 
4 demonstrates this equivalent case. Since the projection 
errors ?Tr can be directly calculated through equations (5) 
to (8), the derived dynamic model can be replaced by 
these set of nonlinear equations. Note that, although the 
derived dynamic model is replaced, the controller design 
stays unchanged. 

It is also possible to combine the extremal pair tracking 
algorithm with dynamics as discussed in section 1. One 
such case is shown in Figure 5. Here, motion of the bodies 
is calculated simultaneously with the maintenance of the 

extremal pair between them. In this figure, the equations 
of motion for the bodies are defined by a second-order 
differential equation where 0 represents the set of con- 
figuration variables. The inertia matrix M(0)  and the 
Coriolis matrix c(e, 4) summarize inertial properties of 
the bodies. 3( t )  denotes Fxternal control forces acting 
on the bodies while N(0,O) includes all other frictional 
and gravitational forces. Decisions about external control 
forces are made by the motion controller. The motion 
controller can be designed to achieve different tasks, for 
example to capture influences of human acting through a 
haptic interface. For this implementation, all integration 
(update and maintenance) operations axe combined in a 
single operator. 

Finally, it is important to mention that the algorithm 
need not be initialized with the exact extremal points. 
Any initial point within the region of attraction of the de- 
signed nonlinear controller will converge to the extremal 
pair since the controller is exponentially stable. More- 
over the convergence rate can be adjusted by tuning the 
controller gain K .  

5 Simulation Results 

We developed a computer simulation to verify the valid- 
ity of the dynamic formulation and the effectiveness of 
the control algorithm discussed in the previous sections. 
Our simulations are implemented in Matlab/Simulink 
and sample results are presented below. 

5 

0 

-5 

xtremal Distance 

Figure 6: Simulation construction: two ellipsoids in rigid 
motion 
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Figure 5: Combining extremal pair tracking with dynamics 

As a sample simulation case, two ellipsoids drawn in an 
isometric view are shown in Figure 6. To indicate the 
extremal distance (found by prior application of the al- 
gorithm) a dashed line is shown. The extremal pair is 
located at the intersection of the dashed line with the 
ellipsoids. 

In our implementation, we initialize the algorithm with 
two points different from the extremal pair. These points 
are marked by stars (*) in Figure 6. The initial error 
vector (denoted by the solid line) AR is also drawn. 

Next, both of the ellipsoids are allowed to move as rigid 
bodies with specified time dependent motion (velocities 
and angular velocities) and the extremal tracking algo- 
rithm is started. Figure 7 demonstrates exponential con- 
vergence of the normalized projection errors, where a pro- 
jection error is normalized by dividing by the norm of the 
current error vector AR and the norm of the appropri- 
ate tangent vector. From Figure 7, we can conclude that 
even though the initialization is not exact, the algorithm 
exponentially converges to the extremal pair and main- 
tains them as the surfaces move. The convergence rate is 
adjustable by tuning the linear feedback gain K .  

6 Conclusions 

We are interested in pursuing a combined simula- 
tion/collision detection approach since it results in an 
algorithm that is easy to implement and that makes max- 
imum use of all the data available to  track the extremal 
points. The proposed algorithm is very suitable for both 
dynamic simulation and haptic rendering due to  the con- 
tinuous availability of surface normals and penetration 
distances that are necessary to calculate the collision re- 
sponse and/or the haptic feedback. 

Our algorithm treats the extremal point problem for ob- 
jects modelled using parametric curves and surfaces in a 
direct manner, without resorting to  polyhedral approx- 
imations. Thus it serves the needs of CAD/CAM and 
virtual environment systems that require smoothness in- 
dependent of rendering. Additionally, our algorithm is 
suited to real-time implementation. Finally, our algo- 
rithm features convenient tuning of convergence proper- 
ties through design ofithe feedback gain K and enjoys 
immunity to start-up errors. 
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