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Feedback Stabilized Minimum Distance Maintenance
for Convex Parametric Surfaces

Volkan Patoglu and R. Brent Gillespie

Abstract—A new minimum distance tracking algorittm is  phase which involves a coarse global search for potentially
presented for moving convex bodies represented using tiled- interacting surfaces and marrow phase, which is initialized

together parametric surface patches. The algorithm is formulatd o 0 hoard phase and is usually based on a fast local opti-
by differentiating the geometric minimization problem with

respect to time. This produces a hybrid dynamical system that Mization scheme [1]Local operations, if they can be used to
incorporates dependence on rigid body motion, surface shape, improve a proposed solution by some form of gradient descent
and surface boundary interconnectedness. The minimum distance operation, can be made quite fast. Thus the use of a narrow
between a pair of preViOUSly identified closest features is found phase a|gorithm contributes to efﬁciency' especia”y witiren

by feedback stabilizing the dynamical equations and numerically isance problem is called not just once for a particular pai
solving the resulting closed loop system equations. Maintenance . . . .
of the minimum distance and the associated closest points during O OPJ€cts, but at each time step in ordettrtack the evolution
motion is achieved through the action of a feedforward controller  Of the minimum distance during simulation. Additionally,
and a switching algorithm. The feedforward controller simultane-  restriction toconvex objects or features is often made in the
ously accounts for surface shape and motion while the switching narrow phase, since in such case the distance problem also
controller triggers updates to the extremal feature pair when oo meg convex and admits fast, iterative solution by conve
extremal points on one body cross between Voronoi regions of ¢h A .. .
other body. The algorithm may be implemented within the same OPtimization. In addition to the collision detectors based
framework used for multibody simulation since the minimum broad and narrow phases, there exist single-phase algstith
distance tracking algorithm itself follows as the simulation of a reviewed for example in [2], but not covered here. Among
hybrid dynamical system. In contrast to previously available min-  these H-Collide by Gregory etal.[3], [4] is a specialized
imum distance determination algorithms, attractive properties of - ¢.omevwork for haptic interaction and is based on an extensio
the new algorithm include a means of determining the highest .

gain K that maintains stability under a given discretization of QBBT".e? method;. For ar? overview of_the st.ate of the
scheme and a large and easily characterized basin of attraction art in collision detection algorithms categorized withpest
of the stabilized closest points. These properties may be used toto their geometric representations, see [5]. Our intereshis

achieve higher Cpmputational efﬁCien.Cy. Simulation results are paper lies primar”y in narrow phase algorithms for paramet
presented for various planar and spatial systems composed of agyrfaces

body and point or composed of two bodies.

Index Terms— Minimum Distance Tracking, Collision Detec- Most narrow phase collision detection algo.rithms avadabl
tion, Closest Point Determination, Parametric Surfaces, Haptic [0 date are applicable only to polyhedral objects or polyhe-
Rendering. dral approximations of continuously defined objects, chlle

polygonal meshes. State of the art algorithms for convex
polyhedra are based on the algorithm by Gilbert, Johnson and
. INTRODUCTION Keerthi (GJK) [6] [7] and the algorithm of Lin and Canny
OLLISION detection is an essential technology in manf8]. The GJK algorithm makes use of Minkowski difference
applications, including virtual environments, computeand simplex-based convex optimization techniques to geaer
animation, and robot simulation. A collision detector finde a sequence of ever improving intermediate stepin the
points in time at which geometric objects first make contapblyhedra to converge to the minimum distance solution. The
with one another and might be called upon to report thagorithm of Lin and Canny makes use of Voronoi regions
minimum distance between a set of objects and to produged temporal/spatial coherence between successive gierie
the corresponding pair of closest points. Desirable ptagser navigatealong the boundaries of the polyhedra in the direction
of a collision detector include computational efficiengse of of decreasing distance. Extensions to the Lin-Canny dlyuri
implementation, and broad applicability. Computationz@ed include V-Clip by Mirtich [9] and SWIFT by Ehmann et.al.
is critical, as a collision detector generally shares caw@pu [10], [11], which is based on Voronoi marching.

tional resources with dynamic simulation, collision resg®, | ess well developed are collision detection algorithms
and graphic or haptic rendering algorithms. Computation@{at operate directly on objects modeled with parametric
efficiency is at a particular premium in virtual environnm®@ntgrfaces. Parametric surfaces are used in Computer Aided
with haptic rendering, where collisions must be found ar]gesign (CAD) and Computer Aided Engineering (CAE) tools,
the entire dynamic response computed in real-time at rateSyjhere the surface representation must provide smoothness
excess of 1 kHz. and continuity independent of the resolution of a particula
To increase computational efficiency, it is very common tendering. One important type of parametric surface is tire n
handle the collision detection problem in two partsbraad  (niform rational B-spline (NURBS), which has the advantage
Volkan Patoglu and R. Brent Gillespie (corresponding agthee with the of compact representatlpn, 'hlgh order continuity, andlgasi
Department of Mechanical Engineering, University of Micig Ann Arbor, ComPUtable surface derivatives and normals [12]' AIthoth
MI 48109, USA. (e-mail: vpatoglu@umich.edu and brentg@ureith) polygonal meshes and other indirect methods [13], [14] can
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be successfully used to convert a parametric model intoisa it does not require exact initial conditions as requibsd
polyhedral model for some applications, there also exiséga other tracking methods.
in which the polyhedral approximations grow very large ia th We have presented a feedback stabilized minimum distance
number of polygons or the intermediate representatiohs$dai tracking algorithm for general convex parametric surfamets
approximate surfaces with high curvature. not surface patches in [29]. In this paper, we extend those
Methods directly applicable to parametric models includesults into a hybrid dynamical control system so that we can
extensions of the GJK algorithm to general convex objedisndle parametric convex surfaces built from tiled-togeth
by Gilbert etal.[15] and to convex objects modeled usingpnvex surface pathes. Consideration of parametric ®sfac
NURBS by Turnbull [16]. Similarly, the Lin-Canny algorithm by themselves is not quite sufficient, since within a paraimet
for polyhedra has been extended to models composed of spinedeling environment, objects are generally modeled using
or algebraic surfaces by Lin and Manocha [17], [18]. Alscollections of tiled-together surfacpatches. Each surface
worth noting are the subdivision techniques implemented Ipatch is bordered by curve segments formed at the inteosecti
Duff [19] and Von Herzen [20] and further extended by Snydexf two adjacent surface patches and each curve segment is
[21]. In these algorithms, collision detection is modeledaa bordered in turn by points formed at the intersection oféhre
constrained minimization problem and solved using intervar more adjacent surface patches. These surface patches, cu
Newton methods. segments, and points of parametric objects may be termed
In the field of CAD and geometric modeling, Kriezis et.alfaces, edges, and vertices, respectively or generallyfeatures.
[22], Barnhill et.al.[23] and Bajaj et.al. [24] propose tadel They correspond to planar surface patches, line segmerts, a
parametric surface intersections using differential éigna points of polyhedral objects. For a parametric object fatme
whose solution may be interpreted as a tracing/marchinging tiled-together surface patches, a Voronoi diagraso al
method. Although the goal of these approaches is only xists [30] [31]. Note that determination of Voronoi regson
calculate surface intersections, the manner in which tbbe-pr for curved objects can be computationally expensive; hewev
lem is modeled and points are traced is closely related to ddrronoi diagrams are generally computed numerically teefor
proposed collision detection algorithm. the simulation is initiated. Consequently, this step doet n
Thompson et.al. also contribute a tracking type closesitpogffect the real time performance of Voronoi based algor¢hm
algorithm for non-polyhedral models. Their narrow-phake a In this paper we treat bodies described by a collection of
gorithm is based on Newton’s method. After initializing thdiled together surface patches. We restrict the surfacehpat
algorithm with the closest point, it maintains or “tracksiet to be convex and for now, we also require the bodies to be
closest point on the body surface. In [25], it is called @onvex®. That is, the convex surface patches shall be oriented
“tracking” algorithm. Extensions to this work include [26] and joined together at their boundaries in such a way that
which handles a moving surface and [27], which makes ugeline joining any two points in the interior of the compact
of higher order derivatives and tangent plane projectians kzody will be wholly contained in that body. While defining
singularities. Finally in [28] this approach is generatize convexity for a body is straightforward even when it is adile
surface-to-surface interactions and combined with the- “vbody, defining convexity for a surface patch requires specia
locity formulation”, which keeps track of the exact extrdmaconsideration. Like the definition for a convex space curve
distance during contact and penetration as surfaces mo2], we have defined a convex surface patctamspatch cut
given exact initial conditions. from a compact convex body. Convexity of the surface patch
In this paper, we present an efficient algorithm suitable félepends on convexity of the body from which it is cut, and
collision detection between objects modeled with paraimetnot on the curvature of the bounding curves that lie in the
surfaces. Our algorithm makes direct use of the parametgidgrface.
surface representations and thus eliminates the needfigg-po  Now, if each of the two surface patches in question are
onal meshes. Its efficiency derives from its full use of spatiboth convex and the closest points lie within the Voronoi
and temporal coherence. It maintains two points on a p#@gions of each opposing surface, then there exists a unique
of convex parametric surface patches, taking into accdwt tminimum distance whose endpoints (closest points) lieiwith
motion of the bodies to which those surface patches belorige surface patches [9] [8]. Under our algorithm, this ueiqu
The motion of each closest point is found as a function of thainimum solution enjoys a large basin of attraction. Thus
motion of both bodies and the shape of both surfaces. large initialization errors are tolerated. A local guaesnt
Our algorithm is based on the formulation of a contrdpllows from the asymptotic stability of the system formed
problem which is then solved with the design of a feedbadly wrapping the minimum distance tracking problem with
stabilizing controller. We differentiate the geometricnini @ stabilizing feedback controller. Stability of this dyniasd
mization problem to form the differential kinematics, thegontrol system may be preserved through discretizatioen ev
find and track the minimum distance by driving to zero the@hen explicit integration routines are used. Once converge
projections of a candidate minimum distance vector onto ti@ the unique minimum distance between convex surfaces is
surface tangents at the pair of candidate closest pointageg achieved, the algorithm tracks the minimum distance making
points). The witness points are moved using a control sigrigimary use of the feedforward term.
comprising a feedforward term that embodies the effects of
object motion and object shape and a feedback term Cor'[j;aininll-ater' after a means of tracking tHerthest points Qn_two in_tersecting
.. . convex surface patches has been developed, the restidtaamvexity on the
the projection errors. Thanks to the feedback term in ﬂa%d-together bodies can be lifted. These topics will beradsed in future
controller, our algorithm has a large basin of attractidvatt papers.



If not only all surface patches comprising an object are The following development relies on the existence of swfac
convex, but the objects taken pairwise into considerati@n gpatch continuity through at least two differentiations. #Wgso
also convex (each volume forms a convex set of points,) thesquire that both surface patches be convex.
the uniqueness of the minimum distance can be extended tdet f,(u, v) andf, (u,v) denote the first partial derivatives
the object pairs. If in addition any two surface normals takewith respect tou and v of the parametric surface patch at
from a single surface patch never span more than 180 degrdbs, point f(u,v). Similarly, let f,,(u,v) denote the partial
then the Voronoi diagram can be used to further advantaderivative with respect ta, of f, and so on. Note that the
to create efficient algorithms to find the unique minimurfirst partials are tangent to the isoparametric curves ahd
distance between object pairs. The 180 degree restrictionvirespectively.
equivalent to requiring that the Gauss map of the surfacghpat
can be fit into an open hemisphere [33]. This stipulates that
even the sphere and ellipse are to be tiled into at least two
surface patches. Virtually without modification, the Limu@y
algorithm, based on the Voronoi diagrams, may be applied
to convex parametric objects to find the closest features.
Computational efficiency follows from the incorporationtbé
Lin-Canny closest feature algorithm since now pairs of whol
objects may be considered rather than all possible pairs of
surface patches. In this paper, we present a discrete smgtch
algorithm based on Lin-Canny that extends the applicgbilit
of our narrow phase to whole convex objects. We show how
the discrete switching controller acting on features aral th
continuous controller acting on witness points within aaef
patches may be combined into a hybrid dynamical system

to effectively extend the basin of attraction of the unique _ _
minimum distance. Fig. 2. Two parametric surface patchesbelonging to bodyA and h

L . . belonging to bodyB, with a position vectorAR between two arbitrar
The body of the paper begins in section Il with the presepointsg 9 Y P Y

tation of the proposed dynamic model. Controller design and

analysis takes place in section Ill. The switching alganth Two parametric surface patches are plotted in Figure 2 with
which generalizes the method to a collision detector that meheir corresponding isoparametric curves. On these pstche
be used on objects composed of convex surface patches wilb arbitrary pointsf(u,v) and h(r, s) and surface tangents
be presented in section IV. In section V, simulation resaitts evaluated at these points are shown using notation singilar t

presented and finally, section VI concludes the paper. that used in Figure 1AR(u, v, r, s) iS a vector between these
arbitrary points.
Il. MODELING Note that when the difference vectakR is normal to

both convex surface patches, the requirements of the unique
minimum distance solution are satisfied. In such case the
values, denoted*, v*, r* ands*, of the parameters, v, r, and

s locate the closest pafi(u*, v*) andh(r*, s*). The minimum
distance is then equal to the Euclidian normaR.

Define scalarsl*, U* as the projections of the difference
vector AR onto the tangentf, andf, of surface patci; and
similarly defineWw” ¥* as the projections of the difference
vector AR onto the tangenth, andh, of surface patcth as

follows. ~
7“2 AR -f, 1)
7" 2 AR -f, )
7" 2 AR - h, (3)
7 2 AR - h, 4

Fig. 1. A parametric surface patch showing isometric curvepémameters ~ When the projection errors are all zero, the conditions
w andv and surface tangents at poifitu, v) for the closest pair are met: the difference vecthiR is
perpendicular to both convex surface patchet@tdh. Note

Let there exist a parametric representation for the surfattet it is possible to define the minimum distance condition
patch shown in Figure 1. Us& to denote a position vector by an alternate set of equations as presented in [28]. This
to a point on the surface patch. And ub@:, v) to refer to alternative formulation makes use of surface tangents ef on
the mapping from”? to %3 that generates the Cartesiarsurface patch and normals of both surface patches. Although
coordinates|z(u,v) y(u,v) z(u,v)]* from the independent we use the set (1) - (4) in our further derivation in this paper
parameters: andv. very similar results can be achieved using the alternate set



fu-fut AR-fuu fu-futAR-fuy —hy-fa —hg-f, —(*w® x h) - £,

V= |fafot AR fuy foofo+ AR o “hyfy “hofy y_ | —(wPxh) g
o fu'hr fv'hr _hr'hr+AR'hrr _hs'hr+AR'hrs ’ o (BwA X f) . hr
fu‘hs fv‘hs 7hr‘hs+AR'hrs 7hs'hs+AR‘h55 (B(.L)A X f) : hs

Given the set of equations (1) - (4), one way to findnd rearrange into matrix form to produce the following
the closest pair is to search for the solution, v*,r*,s* differential equations for the projection errors
that minimizes the projection errors using a gradient daisce
algorithm. This procedure would require the computation of

a Jacobian for use in Newton lIteration. This is the approach = Mw+b ©)
undertaken in [28]. In the present work, rather than obtagjni T o= w (10)
the Jacobian of the system of equations (1) through (4) Yy = x (12)
with respect to the independent parameters, » and s, we
differentiate them with respect to time. The differentati Where
operation causes the motion of the surface patches and the NG du
time rates of change of the parameteis/dt, dv/dt, dr/dt v dv
and ds/dt, called the parametric velocities, to appear in the U= o | W= 1 g
expression for the projection error derivatives. TS jz

Note that one must effectively freeze time (and consequent! dt

the motion of the bodies) while using a gradient desceghd A/ andb are shown at the top of the page.

algorithm to find the closest pair. In contrast, taking theeti  |n this state space realization, the projection errdrare

derivative of equations (1) through (4) produces a dynamigken to be the state variables. The inputgre time deriva-

expression where the time rates of change of the projectiges of surface parameters whereas the system outputsedeno

errors are expressed in terms of the shape motion of the py 4 are the estimates = [u,v,7,s]T of the parametric

surface patches. valuesu*, v*,r* and s* that locate the closest points on each
Although we use vector expressions throughout the papsurface patch at every instant of time. These estimates €an b

we are careful to express each vector consistently in aesinghlculated as a by-product of the control effort that retpda

reference frame before interpreting the operations asixmatthe projection errors to zero. Details of this procedure are

operations. Where dot products and cross products appe&&bwn in the next section.

we use boldface notation to indicate operations which may

be performed in a basis-independent fashion. Once suitably 1. CONTROL

expressed in a reference frame, standard matrix operationg

S ) . guations (9)-(11) define a nonlinear dynamic model to
may be used, and we indicate this using normal typeface. Note ", - ; .
nhalntam the closest pair on two surface patches undergoing

also that since the right hand sides of equations (1) througgld body motion. It characterizes the projection errorivie

(4) are basis-independent vector expressions, it is irapbtd . . - .
. ; . . T ives in state space form and formulates the minimum digtanc
specify a frame in which differentiation is to be performedt.

We choose to express the vectors in equations (1) and (Z)p{r?rblem as a nonlinear control problem,
the body frameA and the vectors in (3) and (4) in the body he control input vectotv is composed of time derivatives

. . . M of surface parameters, i.e. the elementsuadre speeds along
frame B3 (see Figure 2). This choice results in simpler matr%e parametric curves. The objective of the controller is to

EXpressions. ontinually update these speeds to regulate the projection

Qqn3|der the case Where.each surface patgh IS attaCheir%rs to zero while staying within the patches, that is, to
a rigid body in motion. In Figure 2 these bodies are nam?ﬁaintain the closest pair on the surface patches.

A. ind B. Assume fthat thefconfiguliation o_]l‘_r?odiﬁsamlj B With the model (9)-(11) in hand, the closest pair on the sur-
wit _respect toare Erence frameis known. enF ere at'V(_a.faces can be dynamically tracked making use of a control loop
motion of these bodies with respect each other will be sgetifi, i o -t feedback linearization. Exact feedback liresion

A, B
by the vector®w®. is feasible since the plant is implemented in the computdr an

Using the notationz?(.) to indicate dlﬁerentlat|g£1 in ref- 4t any instant of time the specific valuesiafandb are exactly

erence framed, and noting that, for any vectd, 5(8) = known. Note that feedback linearization is fundamentaify d
—4(B) +“w® x B, we take time derivatives of Equations (1)ferent than Jacobian linearization in that feedback lizesion
(4) as follows is achieved by exact state transformation and feedbadierrat
. Ad than by linear approximations of the dynamics over a small
o= dt [(f —h)-£] ®) range of operation [34]. Since feedback linearization $ake
. Ad higher order terms into account, it results in a large ba$in o
o= dt [(f —h)-£.] (6) attraction for the controller.
. Bd First, in order to feedback linearize the model, an inner
o= dt [(f —h) - h,] (") feedback loop is designed. Assuming the malrixs positive
By definite in the range of operation, we define the control input

e = — [(f=h) - h] (8)  vectorw in terms of a new input vectqu as



. witness point on the current patch. Therefore, we requiee th
w=M"(n-0) 12) surface parameters remain within the surface patch boigsdar

and apply this control input to (9). Then the nonlinear mod&itil a discrete transition is triggered.

for the projection errors is algebraically transformediman

. . 1 (A, B
equivalent linear model motion (*w®)

U=pu 13) Mol =M (= 0) ] [ wodt ] @ = () Y
Second, an outer loop linear controller is used to impose Y
the desired linear dynamics to the system of equation (b3). | x T

this paper, a full state linear feedback

p=—KVle

p=-KU (14)

is utilized to stabilize the closed |OOp dynamics and to eahi Fig. 4. Control block diagram showing an alternative impletagan

desired performance: to keep projection errors small. Note

that, it is possible to synthesize different outer loop colfgrs X . . X
to satisfy various design objectives input vectorw to perform all integrations in a single op-

Asymptotic stability of the overall closed loop system jgration. In fact, even a simpler implementation is possible

guaranteed. This observation follows from the facts thateh as demonstrated in Figure 4. Since the .projection erdors
are no internal dynamics associated with this input-oulipeit can be directly calculated through equations (1) to (4), the

earization and positive definiteness/af results in monotonic d|fferen_t|ated kmer_natlc model can be replaced _by this set
convergence of the surface parameters. Note that the maffhonlinear equations. Note that although the differ¢atla
M has a structured form as the first fundamental matrix pidffiematic model is replaced, the controller design remains
minimum distance times the second fundamental matrix ngchanged.
when evaluated at the closest points. Positive definiteakss

M is guaranteed for a neighborhood of the closest points if

In practice, the state vectow is augmented with the

both of the surface patches are convex. 7 HUMAN
h
motion (*w®) motion (“w®)
l '
v Haptic Device o
; w Muw+1b >
a »w=M"(u—Db) > f { v } dt z > (Impedance Controlled

w N F
Y
-

p=—KVUle Virtual Coupler

Fig. 3. Control block diagram showing an inner feedbackdimation loop
and an outer linear control loop

Figure 3 shows the block diagram of the completed con- — f [ by } dt ?
troller design. Recognizable here is the inner loop thatlees ™ M(O)TH(F () — C(6,0) + N (0,0)) p
the projection error equations linear from inputo outputz.

The outer loop achieves the desired dynamics via full state
feedback with gairk. " l 11
Furthermore, the desired outputs, i.e. the parametricegalu — w=M"(u-b) p=-KV < ¥=1V() |-

of the witness points, are continually maintained using the
control input vectorw. This is achieved by integrating theFig. 5. Combining minimum distance tracking with dynamics

input vectorw with initial conditions extracted from the start-

ing points. To guarantee that the surface parameters remaitt is also possible to combine the closest pair tracking
within the surface patch boundariessaturated version of the algorithm with the forward dynamics solution. One such case
control input vector is utilized when a witness point liestba is shown in Figure 5 where a haptic rendering scheme is pre-
boundary of a surface patch. This is implemented simply tsented in block diagram form [36]. The components of Figure
setting the components of the input vector that are inféasitb include the human user, the physical haptic interfaceceevi
(point out of the surface patch) to zero. Note that, as will kbe computationally implemented virtual coupler and fipall
presented in the next section, switching from one surfatehpathe virtual environment. The virtual environment includesh

to another is dictated by the Voronoi diagram of the currettte forward dynamics solver and the minimum distance main-
surface patch and the witness point on the opposing surfdeaance algorithm. Here, motion of the bodies is calculated
patch and is decoupled from the continuous dynamics of teenultaneously with the maintenance of the minimum distanc



in a single operator. In this figure, the equations of motian ftransitions (and likewise th¢’s and ¢'s) with a superscript
the bodies are defined by a second-order differential eguatij and indicate the number of transitions with;, which in
where 6 represents the set of configuration variables. Thyeneral is different for each mode. A subscripindicates
inertia matrix (0) and the Coriolis matriX (6, §) summarize association with theith mode. Membersf/ of the set of
inertial properties of the bodie&:(¢) denotes external control switching functionsJ; trigger transitions out of mods;
forces acting on the bodies whil&'(6, §) includes all other _
frictional and gravitational forces. Ji={fl(x(),0(t) =0, (j=1,...,m)}  (16)
Finally, it is important to mention that the algorithm needl_he time ¢+
not be initialized with the exact closest points. Any irlitia
point within the region of attraction of the designed noeén
controller (a neighborhood of the closest points whéfeis
positive definite) will converge to the closest pair since
controller is asymptotically stable. Moreover the conesrce
rate can be adjusted by tuning the controller gdin as
demonstrated in section V and further discussed in secti

that, together with the state~ = x(¢*) and
specified motiord(¢*), produces a zero of transition function
f/ is called aswitching instant; it triggers the associated tran-
thsi'_cion. Once a transition is triggered, the associated neemb
¢l of the set of resetting function®; is executed to relate
the initial state valuex™ in the new mode to the final state
g{ﬁluesr in the last mode.

VL. P, ={xt =¢i(x",t"), (=1..m)} (A7)
IV. SWITCHING ALGORITHM AND HYBRID SYSTEM A special case of the resetting functions is the initial dbods
FORMULATION for the initial modes;.

To handle changing external features and thereby extend thdo particularize the description of a hybrid system corgéin
local stability to cover a much larger basin of attractiorg win Egs. (15) through (17) for the case of collision detection
have adopted the mathematical language of hybrid dynamibgtween a body and a point, one may remove the argument
systems, in particular the notation in [37], to describdigioh from each switching function in (16). The switching functio
detection between bodies composed of tiled together paggpend only on the specified motion of the body and the
metric surface patches. Hybrid systems contain both discraitness point on the opposing body, not on the motion of
and continuous state variables and exhibit both discrete dhe witness point on the body. In fact, for collision detenti
continuous state dynamics. In certain hybrid systemsyetisc between two bodies, the switching between features on one
and continuous dynamics not only coexist, oteract such body depends only on the motion of the closest point on the
that changes in the discrete and continuous dynamics ocetiter body and the body motion, not the motion of the closest
in response to discrete and/or continuous state variabies.point on its own surface.
the case of collision detection between parametric bodiesEvaluation of the hybrid system can be viewed as a se-
however, the coupling between the discrete and continuagigence of subproblems, each characterized by a continuous
dynamics is limited. When tracking the minimum distancevolution in a mode terminated by an event (i.e. zero crgssin
between a body and a point, the continuous state that describf a switching function), and then evaluation of the resegtti
the motion of the closest point on the body is decouplddnctions to initialize the new mode.
from the discrete state that specifies the relevant featare o A transition from one discrete state to another one is trig-
the body. That is, the switching times do not depend ayered when a discrete state (a feature) encounters a inansit
the continuous states. On the other hand, when tracking ttendition (i.e. an active feature goes out of the Voronoiaeg
minimum distance between two bodies (either in a plane of the other active feature). These discrete transitiores ar
in space) the switching times do in fact depend on certdimndled in a manner similar to the Lin-Canny algorithm. Note
portions of the continuous states. that whenever a transition occurs, not only the discrette sta

In the following, let us develop a hybrid mathematical modelhanges, but also the continuous system model changesend th
to describe the most general case: minimum distance trgcktontinuous states are updated according to the resetoredati
between two bodies. Thereafter, we will show how certaib.
variables may be removed from the argument lists for the The coordinated action of the discrete and continuous
various functions to describe the case of minimum distandgnamics in the hybrid system ensures that witness points
tracking between a body and a point. initialized anywhere on two convex bodies composed of tiled

Consider a system described by a state sgaeel J;' , S;, convex surface patches will converge to the unique closest
where the state: within each modeS; evolves according to points. The discrete switching algorithm finds the appateri
the differential equation closest features and then the continuous controller handle

SN final convergence to the closest points. Once initializatio

x(t) = Fi(x(?), 0(t), (15) errors are suppressed, the hybrid system continues to track
where d(¢) is an exogenous input representing the specifighe closest points as the bodies move and new portions of
motion of the bodies. Note that the state vecatdras the same the bodies’ shape are brought into play. The feedforwarmd ter
dimension in all modes, a property that can be accommodat&dthe controller accounts for the motion and shape of the
by setting unused elements to zero. Associated with eacle madrface patches as the feedback term rejects disturbandes a
S, is a set of transitions to other modes. And associated witbntinually drives the witness points toward the closesttso
each transition in that set is a switching functignand a When witness points cross Voronoi boundaries of the opposing
resetting functionp. Let us index the members of the set ofurface patch, discrete switching among features occurs as



dictated by the hybrid system dynamics. Between convex bod- o
ies, the inter-feature distance cannot increase at thetswi
instants [9], so convergence properties are maintained.

To extend our algorithm to handle non-convex bodies com-
posed of convex surface patches, it is only necessary tofynodi
the switching algorithm. Extensions to handle interpeat&in
are also relatively straightforward, which we are explgrin
current and future research.
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V. SIMULATION RESULTS
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We have developed a suite of computer simulations to K =100 K

check the dynamic formulation and the hybrid control al-

gorithm discussed in the previous sections. Our simulation B v e v

are implemented in Matlab/Simulink and sample results are number of steps

presented below. Not presented here, but worth mentioaieg, _ ,

demonstrations o a real-{me operating system that festuf5, L LSS & e of 100 o e feecack convo o exponent

haptic display. See [38] for a description of our hardware. sieps. As shown in the figure inset, the convergence rate eaighificantly
increased by increasing the gaifi.

A. Convex Qurface Patch and a Point
error and converge to the steady state. However, under the

> same conditions convergence can be achieved in 10 steps if
the gain is set taK' = 1000. In the tracking phase, i.e. in
steady state after the initialization errors are compeusaach

Q 200 Vﬁ;ﬁ% A update takes only one time step.
”%%%m%%\\ In the discrete time implementation, the admissible values
;;f)%g%lnmm%\ \ of K have an upper limit due to discretization of the algorithm.
//Z%%ﬁ#!mh‘%\“\ \\QQ\\\\(\\\&\\\\ This limit depends on the integration scheme used and tpe ste
)~<h 41]”‘}6‘“%\\\\\\\%\\\\\\\%\\\\\\\\ size chosen. There exist techniques whereby the convergenc
‘h’(‘(‘\‘\‘\\\\%\\\ rate (determined by gaii’) and step size may be traded off

““‘\“\\\\ against one another while maintaining stability. For examp
(»(‘(\v in [39] and [40], standard discrete time controller desigcht
(‘@ nigues are utilized to obtain relationship between colarol
gain K and integration step size. With these techniques, the
_ o _ , _ upper limit for K can be chosen such that the stability of the
Fig. 6. The initial convergence of a witness point to the esisgpoint on . . . o
surface patctt is followed by smooth tracking as poi@ moves according algorithm is guaranteed even after discretization.
to a pre-specified trajectory. There also exists a lower limit o which is dictated
by the shape and motion of the bodies and the initialization
Figure 6 shows a simulation that produces the trackirggror of the witness points. This lower limit ofd is required
behavior of a witness point on the convex surface paichto guarantee that the convergence rate of the algorithm is
as a pointQ traces out a pre-specified path.ines connect faster than the disturbance due to motion of the bodies. The
the pair of witness points in each of the snapshots shown. lawer limit on K can be computed online or pre-set before
startup, the witness point afl has a large initialization error. simulation if the motion bounds are known before simulation
One can observe that the algorithm quickly converges to thime.
correct answer as indicated by the first three snapshots. Note that, for multibody dynamics simulation the lower
Figure 7 demonstrates asymptotic convergence of the tliimit on K is significantly (orders of magnitude) smaller
normalized projection erroré“ and U*, where each projec- than the upper limit dictated by discretization and does not
tion error is normalized using the length of the differenceonstitute a concern since choosing a gain close to the upper
vector AR and the appropriate tangent vector. From thigmit is desired for fast convergence. For example, in this
figure, it is evident that the algorithm quickly convergesnfr particular simulation using a fixed-step second order eipli
a poor initialization value to the closest points and theRunge-Kutta integration scheme running at 1 KHz, stable
maintains the closest points as the surfaces move. values of K’ range from0.5 to 1500.
The inset in Figure 7 shows how the convergence rate
may be adjusted by tuning the linear feedback ghinIn B A Convex Planar Body of Three Convex Curves and a Point
the simulation shown, a very non-aggressive feedback dain o . I
. . ) . . Figure 8 shows a convex planar bodyformed by joining
K = 100 is used with a fixed-step integrator running at ﬁq :
kHz and it takes 75 steps to recover from the initializatio ree convex cu.rvesljl,CQ, and C; at_ve_rncesVa,Vb, and
P/C. Also shown in Figure 8 are the six lines that bound the
2For haptic rendering a forward dynamics solver would prodheanotion. external Voronoi regions ofl and the three lines, calletedial
Here we are only testing the minimum distance tracking algorit axes that bound the internal Voronoi regions df The medial
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Fig. 10. The minimum distance is shown betweémnd a point tracing out
a spiral that begins inside and ends outsitleSimulated transition times are
indicated.

1 E 1
\u:i
0.8 B
Fig. 9. The automaton used to govern the motion of the witness po 06 J
body A of Figure 8. Switching times for the simulation shown in Figl@ Uy U
are also indicated. & ua
0.4 4
us3
axes are each the locus of points equidistant to two curves | |
of A. The automaton that describes the hybrid dynamics of
a witness point lying on the boundary of is shown in
0+ 4

Figure 9. The three large ellipses in Figure 9 each describe a
mode in which the witness point lies on a particular curve.
The continuous dynamics within a particular mode govern 4 s 10 o oo s 13 175 179 200
the motion of the witness point so long as it lies on the — I/ mnitial Convergence  gimylation Time seconds
correspondingly labelled curve. The three smaller cirelash _
describe the (tvial) dynamics of the witness point whilis £ 2%, The raectoy and seduence of paamelatas vy on curves
on the correspondingly labelled vertex. The arrows indithé indicated.
transition functions that switch between modes. The tweout
circular loops indicate transitions from one external Vaio
region to another, while the two inner triangular loops (NQfgsses the medial axis and tracking ©njumps to tracking
involving vertices) indicate transitions across mediasaftom g, C,. At t = 67 seconds,P crosses the boundary of,
one internal Voronoi region to another. but tracking continues ofi;. At t = 87 seconds, the witness
Figure 10 shows a simulation that produces the trackipgint anchors ori/, and att = 92 seconds it continues off
behavior of a witness point ol as a pointP (the other again. The transition times are also indicated for thisigaler
member of the closest pair) traces out a pre-specified spigghulation in Figure 11, which is a plot of the curve paramgete
path that begins insidel and ends outsided. In all, 100 +, versus time. If all three curve parameters (i = 1,2,3)
snapshots of the simulation are shown, or 100 minimugte varied frond to 1, then the entire body is traced out. The
distances connecting the witness points. To begin, theeadtn particular sequence and trajectory of values shown in Eigur
point is initialized with the wrong value and the algorithmi1 pertains to the evolution of the witness point shown in
quickly converges to the correct answer as indicated by tF&yure 10. Also visible in Figure 11 is the convergence of
dotted lines and sweeping arrow. Thereafter, one end of #rtup error at the very beginning of the simulation. As in
minimum distance is either perpendicular to a curvedobr all the simulations presented here, a very low controllén ga
anchored on a vertex ofl. The times at which transitions K is utilized in this simulation to render initial convergenc
between modes occur are shown both in Figure 10 and on tigticeable in the figures.
automaton in Figure 9. For example, fat= 34 seconds,P
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C. Two Planar Bodies

Fig. 12. Planar convex bodie$ and B and their Voronoi regions.

Fig. 13. The automaton (not enumerated) used to govern the motithe

witness points on bodied and B of Figure 12.
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Fig. 15. The trajectory and sequence of parametgrsus,us on curves
C1,C92,C3 andrq, 1y, e ON CcUrvesC,, Cy, C. for the simulation shown in
Figure 14. Transition times are indicated.

Figure 14 shows the simulation results of the minimal
distance tracking problem whiled remains fixed andB
undergoes a motion in which it spins around its own center
which in turn traces out an inward spiral centered 4n
Twelve snapshots taken at irregular but indicated timevate
are shown arrayed and numbered 1 through 12 in Figure 14.
The active curves or vertices, which correspond to sinyilarl

Figure 12 shows two convex bodies each bounded by thleégelled modes in the automata not shown, are also indicated
convex curves. The exterior and interior Voronoi regions ain Figure 14. Figure 15 shows the curve parametgrsof
also indicated. The hybrid dynamics of the minimum distancé andr; of B. The sequencing and evolution of both curve
tracking problem is again governed by an automaton, a sifparameters;; andr; that locate the closest points ghand B
plified version of which is shown in Figure 13. In this simcan be seen. The snapshot times are also indicated in Figure
plified version all three possible feature pairs (vertexese 15 as are the transition times.
vertex-curve, and curve-curve) are indicated but they ate n
enumerated by feature name for each possible combinatiof, Spatial Body and a Point

t=12.3 t=128 t=13.2

t=14.0

Fig. 14. The minimum distance between planar bodiegnd B as A
remains fixed andB spins and traces a circle arountd Twelve snapshots
are shown, taken at irregular intervals. The active curvegdices ofA and

B are indicated.
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Fig. 16. The minimum distance is shown between a spatial @dnd a
point tracing out a helix. Body”' is composed of 3 convex surface patches
(only S; and Sy are visible) joined at 3 curves (only, andC, are visible)
and 2 vertices ¥, andVj).

Figure 16 shows the minimum distance between a spatial
body C and a point that traces out a helix. Body is
formed by joining three convex parametric surface patches
at their intersecting curves and vertices. The surfacehpatc
are labelledS,, S,, and S5, the curvesC,, C,, and C, and



Fig. 17. The automaton used to govern the motion of the witnes# pn
body C' of Figure 16. The mode and transitions pertaining to veftgxare
not shown. Switching times for the simulation shown in Figuéeate also
indicated.
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Fig. 18. Changes in curve parameters during tracking for timeilation
shown in Figure 16. Transition times are indicated.

Fig. 19.
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Witness points move on bodies and B transitioning between
convex surface patches when necessarasaces a pre-specified trajectory

the visible surface patches are indicated in Figure 19.a8arf
patches of BodyA, with surface parameters and v are
labelledS,,, S4,, andS,, whereas surface patches of Body
B, with surface parametersands are labelledSg,, Sp,, and

Sp

3t

Parameters

the verticesV, andVj;. The visible components are indicated
in Figure 16 and the corresponding modes are shown in the

automaton of Figure 17, except for the mode 1gy. The
mode V; and its transitions look just like those fdf, but

were omitted to make the figure readable. The sequence and

trajectory of the surface parametersandv;, taken pairwise
with (i = 1,2, 3) to locate the witness point off are shown Fig. 20.
in Figure 18. Periods of time in which the witness point lie
on the bounding curves can be recognized as constant valu

of 0 or 1.

E. Two Spatial Bodies

Figure 19 shows 5 snapshots taken at irregular intervals
the minimum distance tracking between two spatial bodies

andB. In this sample simulation, Body is fixed and BodyB

0.2

0 2.67  3.66
—| |— Initial Convergence Sjmulation Time

seconds

o

Changes in surface parameters during initial cgaree and

gacking for the simulation shown in Figure 19. Transitianes are indicated.

e?he sequence and trajectory of the surface paramejers,

r; ands; of both bodies taken pairwise to locate the witness
points on A and B are shown in Figure 20. One can also
recognize that at = 2.67 the witness point on surface patch
f%r‘l reaches its boundary curve and evolves on that boundary
until ¢ = 3.66 when the witness point moves onto the next
surface patchb 4, .

moves around Bodyl in a specified time dependent motion.
As in the previous example, both bodies are formed by joining
three convex parametric surface patches at their inténgect We have contributed a narrow phase collision detection
curves and vertices. The curves and vertices are not matkeddlgorithm with certain attractive properties that followerh its

VI.

DiscussION ANDCONCLUSIONS
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formulation as a dynamic control problem. These propertibybrid dynamical system, wherein the membership of the
include a means of determining the highest gdin that witness point on the opposite body of a particular Voronoi
maintains stability under a given discretization and adargegion controls the switching among features on each body.
and easily characterized basin of attraction of the stadilli Transitions between surface patches are handled in a manner
closest points. that decreases inter-feature distance, according to thgepr
Since the continuous dynamics of the projection errotes of the V-Clip [9] or the Lin-Canny [8] algorithm.
(Egs. (13) and (14)) are linear, stability analysis is sinpl In further support of applying a control theoretic approach
the characteristic equation produced by discretizing iteal to collision detector technology, note that similar feedba
dynamics according to a given numerical method may simpdyabilization techniques have yielded significant adwgeta
be inspected for its pole locations. So long as the polesiremwhen applied to certain problems in robotics and multibody
inside the unit circle and given step sizethe gainK may dynamics. To solve for the inverse kinematics of robot manip
be increased to achieve the highest stable algorithm speltbrs, it is customary to integrate the differential kiragios in
For more detail on the use of discrete time controller designfeedback loop to avoid drift and numerical disturbancd$ [4
techniques for the analysis of convergence rates undesugriBaumgarte [45] introduced the use of feedback to stabilize
integrators, see [41] [42] [43]. Once stability of the combus the solution of a set of differential equations to the mddifo
dynamics Egs. (13) and (14) is established, convergendeeof in which the solution is constrained to lie by the constraint
witness points to the closest points depends on an analfysiquations. Recently, Chiou et.al.[40] and Kurdila et48][
Egs. (12) and (14). A Lyapunov function produced by squarirdgmonstrated the use of input-output feedback lineacizati
the surface parameter errors can be used to show convergdacbniques to stabilize constraint violations in multipaty-
given positive definite matrix(/ and sufficiently large gain namic analysis. In these papers, it is proved that Baumgarte
matrix K. The positive definiteness af/ depends on the stabilization can be recovered from the input-output feettb
surface shape and current surface parameter error, and loagarized system by a particular choice of linear feedback
be used to characterize the basin of attraction of the dlosesentroller (full state feedback). It is also shown that rai&tive
points. feedback choices result in more efficient, stable, and tobus
Our chief contribution, then, is an algorithm whose limitgnethods.
of performance can be exposed using straightforward aisalys In closing, the work reported in this paper and our contin-
Once these are in hand, the algorithm can be driven to itssimiling work is focused on producing narrow phase algorithms
in speed. Note that the determination of stability-preisgyv With properties that can be exploited by a suitable broag@ha
gains K for algorithms based on Newton iteration is a muchlgorithm to produce robust collision detectors for the enor
more complicated affair, since these are discrete andmeanli complicated problems of non-convex bodies and extremal
methods. Also, the basin of attraction of the closest pointéstance between interpenetrating bodies. In the nonesonv
within a Newton iteration approach is a complicated and neases, multiple extrema exist and during switching, theeso
necessarily connected set. points do not necessarily lie within neighboring features.
When it comes to comparing the ultimate computation@@rticular, it is the basin of attraction of closest pointsici
efficiency of our algorithm with that of the previously aaile We strive to extend despite body motion and sharp curvature
methods, our argument relies on noting the close relatipnsi$0 that the broad phase need not initialize close to the globa
between our feedback control method and the Newton iteratigxtrema. A simpler yet robust broad phase and minimum
and gradient methods. We have reported a few results @amber of narrow phase algorithms running in parallel means
the speed of our algorithm in machine-independent fashibigher computational efficiency.
(Figure 7). Our algorithm subsumes all the computational
efficiency features of the Newton and gradient based algo- ACKNOWLEDGMENTS
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