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Feedback Stabilized Minimum Distance Maintenance
for Convex Parametric Surfaces

Volkan Patoglu and R. Brent Gillespie

Abstract— A new minimum distance tracking algorithm is
presented for moving convex bodies represented using tiled-
together parametric surface patches. The algorithm is formulated
by differentiating the geometric minimization problem with
respect to time. This produces a hybrid dynamical system that
incorporates dependence on rigid body motion, surface shape,
and surface boundary interconnectedness. The minimum distance
between a pair of previously identified closest features is found
by feedback stabilizing the dynamical equations and numerically
solving the resulting closed loop system equations. Maintenance
of the minimum distance and the associated closest points during
motion is achieved through the action of a feedforward controller
and a switching algorithm. The feedforward controller simultane-
ously accounts for surface shape and motion while the switching
controller triggers updates to the extremal feature pair when
extremal points on one body cross between Voronoi regions of the
other body. The algorithm may be implemented within the same
framework used for multibody simulation since the minimum
distance tracking algorithm itself follows as the simulation of a
hybrid dynamical system. In contrast to previously available min-
imum distance determination algorithms, attractive properties of
the new algorithm include a means of determining the highest
gain K that maintains stability under a given discretization
scheme and a large and easily characterized basin of attraction
of the stabilized closest points. These properties may be used to
achieve higher computational efficiency. Simulation results are
presented for various planar and spatial systems composed of a
body and point or composed of two bodies.

Index Terms— Minimum Distance Tracking, Collision Detec-
tion, Closest Point Determination, Parametric Surfaces, Haptic
Rendering.

I. I NTRODUCTION

COLLISION detection is an essential technology in many
applications, including virtual environments, computer

animation, and robot simulation. A collision detector findsthe
points in time at which geometric objects first make contact
with one another and might be called upon to report the
minimum distance between a set of objects and to produce
the corresponding pair of closest points. Desirable properties
of a collision detector include computational efficiency, ease of
implementation, and broad applicability. Computational speed
is critical, as a collision detector generally shares computa-
tional resources with dynamic simulation, collision response,
and graphic or haptic rendering algorithms. Computational
efficiency is at a particular premium in virtual environments
with haptic rendering, where collisions must be found and
the entire dynamic response computed in real-time at rates in
excess of 1 kHz.

To increase computational efficiency, it is very common to
handle the collision detection problem in two parts: abroad
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phase which involves a coarse global search for potentially
interacting surfaces and anarrow phase, which is initialized
by the board phase and is usually based on a fast local opti-
mization scheme [1].Local operations, if they can be used to
improve a proposed solution by some form of gradient descent
operation, can be made quite fast. Thus the use of a narrow
phase algorithm contributes to efficiency, especially whenthe
distance problem is called not just once for a particular pair
of objects, but at each time step in order totrack the evolution
of the minimum distance during simulation. Additionally,
restriction toconvex objects or features is often made in the
narrow phase, since in such case the distance problem also
becomes convex and admits fast, iterative solution by convex
optimization. In addition to the collision detectors basedon
broad and narrow phases, there exist single-phase algorithms,
reviewed for example in [2], but not covered here. Among
these H-Collide by Gregory et.al. [3], [4] is a specialized
framework for haptic interaction and is based on an extension
of OBBTree methods. For an overview of the state of the
art in collision detection algorithms categorized with respect
to their geometric representations, see [5]. Our interest in this
paper lies primarily in narrow phase algorithms for parametric
surfaces.

Most narrow phase collision detection algorithms available
to date are applicable only to polyhedral objects or polyhe-
dral approximations of continuously defined objects, called
polygonal meshes. State of the art algorithms for convex
polyhedra are based on the algorithm by Gilbert, Johnson and
Keerthi (GJK) [6] [7] and the algorithm of Lin and Canny
[8]. The GJK algorithm makes use of Minkowski difference
and simplex-based convex optimization techniques to generate
a sequence of ever improving intermediate stepswithin the
polyhedra to converge to the minimum distance solution. The
algorithm of Lin and Canny makes use of Voronoi regions
and temporal/spatial coherence between successive queries to
navigatealong the boundaries of the polyhedra in the direction
of decreasing distance. Extensions to the Lin-Canny algorithm
include V-Clip by Mirtich [9] and SWIFT by Ehmann et.al.
[10], [11], which is based on Voronoi marching.

Less well developed are collision detection algorithms
that operate directly on objects modeled with parametric
surfaces. Parametric surfaces are used in Computer Aided
Design (CAD) and Computer Aided Engineering (CAE) tools,
where the surface representation must provide smoothness
and continuity independent of the resolution of a particular
rendering. One important type of parametric surface is the non-
uniform rational B-spline (NURBS), which has the advantages
of compact representation, high order continuity, and easily
computable surface derivatives and normals [12]. Although
polygonal meshes and other indirect methods [13], [14] can
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be successfully used to convert a parametric model into a
polyhedral model for some applications, there also exist cases
in which the polyhedral approximations grow very large in the
number of polygons or the intermediate representations fail to
approximate surfaces with high curvature.

Methods directly applicable to parametric models include
extensions of the GJK algorithm to general convex objects
by Gilbert et.al. [15] and to convex objects modeled using
NURBS by Turnbull [16]. Similarly, the Lin-Canny algorithm
for polyhedra has been extended to models composed of spline
or algebraic surfaces by Lin and Manocha [17], [18]. Also
worth noting are the subdivision techniques implemented by
Duff [19] and Von Herzen [20] and further extended by Snyder
[21]. In these algorithms, collision detection is modeled as a
constrained minimization problem and solved using interval
Newton methods.

In the field of CAD and geometric modeling, Kriezis et.al.
[22], Barnhill et.al. [23] and Bajaj et.al. [24] propose to model
parametric surface intersections using differential equations
whose solution may be interpreted as a tracing/marching
method. Although the goal of these approaches is only to
calculate surface intersections, the manner in which the prob-
lem is modeled and points are traced is closely related to our
proposed collision detection algorithm.

Thompson et.al. also contribute a tracking type closest point
algorithm for non-polyhedral models. Their narrow-phase al-
gorithm is based on Newton’s method. After initializing the
algorithm with the closest point, it maintains or “tracks” the
closest point on the body surface. In [25], it is called a
“tracking” algorithm. Extensions to this work include [26],
which handles a moving surface and [27], which makes use
of higher order derivatives and tangent plane projections at
singularities. Finally in [28] this approach is generalized to
surface-to-surface interactions and combined with the “ve-
locity formulation”, which keeps track of the exact extremal
distance during contact and penetration as surfaces move,
given exact initial conditions.

In this paper, we present an efficient algorithm suitable for
collision detection between objects modeled with parametric
surfaces. Our algorithm makes direct use of the parametric
surface representations and thus eliminates the need for polyg-
onal meshes. Its efficiency derives from its full use of spatial
and temporal coherence. It maintains two points on a pair
of convex parametric surface patches, taking into account the
motion of the bodies to which those surface patches belong.
The motion of each closest point is found as a function of the
motion of both bodies and the shape of both surfaces.

Our algorithm is based on the formulation of a control
problem which is then solved with the design of a feedback
stabilizing controller. We differentiate the geometric mini-
mization problem to form the differential kinematics, then
find and track the minimum distance by driving to zero the
projections of a candidate minimum distance vector onto the
surface tangents at the pair of candidate closest points (witness
points). The witness points are moved using a control signal
comprising a feedforward term that embodies the effects of
object motion and object shape and a feedback term containing
the projection errors. Thanks to the feedback term in the
controller, our algorithm has a large basin of attraction, that

is, it does not require exact initial conditions as requiredby
other tracking methods.

We have presented a feedback stabilized minimum distance
tracking algorithm for general convex parametric surfacesbut
not surface patches in [29]. In this paper, we extend those
results into a hybrid dynamical control system so that we can
handle parametric convex surfaces built from tiled-together
convex surface pathes. Consideration of parametric surfaces
by themselves is not quite sufficient, since within a parametric
modeling environment, objects are generally modeled using
collections of tiled-together surfacepatches. Each surface
patch is bordered by curve segments formed at the intersection
of two adjacent surface patches and each curve segment is
bordered in turn by points formed at the intersection of three
or more adjacent surface patches. These surface patches, curve
segments, and points of parametric objects may be termed
faces, edges, andvertices, respectively or generally:features.
They correspond to planar surface patches, line segments, and
points of polyhedral objects. For a parametric object formed
using tiled-together surface patches, a Voronoi diagram also
exists [30] [31]. Note that determination of Voronoi regions
for curved objects can be computationally expensive; however,
Voronoi diagrams are generally computed numerically before
the simulation is initiated. Consequently, this step does not
affect the real time performance of Voronoi based algorithms.

In this paper we treat bodies described by a collection of
tiled together surface patches. We restrict the surface patches
to be convex and for now, we also require the bodies to be
convex1. That is, the convex surface patches shall be oriented
and joined together at their boundaries in such a way that
a line joining any two points in the interior of the compact
body will be wholly contained in that body. While defining
convexity for a body is straightforward even when it is a tiled
body, defining convexity for a surface patch requires special
consideration. Like the definition for a convex space curve
[32], we have defined a convex surface patch asany patch cut
from a compact convex body. Convexity of the surface patch
depends on convexity of the body from which it is cut, and
not on the curvature of the bounding curves that lie in the
surface.

Now, if each of the two surface patches in question are
both convex and the closest points lie within the Voronoi
regions of each opposing surface, then there exists a unique
minimum distance whose endpoints (closest points) lie within
the surface patches [9] [8]. Under our algorithm, this unique
minimum solution enjoys a large basin of attraction. Thus
large initialization errors are tolerated. A local guarantee
follows from the asymptotic stability of the system formed
by wrapping the minimum distance tracking problem with
a stabilizing feedback controller. Stability of this dynamical
control system may be preserved through discretization, even
when explicit integration routines are used. Once convergence
to the unique minimum distance between convex surfaces is
achieved, the algorithm tracks the minimum distance making
primary use of the feedforward term.

1Later, after a means of tracking thefurthest points on two intersecting
convex surface patches has been developed, the restrictionof convexity on the
tiled-together bodies can be lifted. These topics will be addressed in future
papers.
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If not only all surface patches comprising an object are
convex, but the objects taken pairwise into consideration are
also convex (each volume forms a convex set of points,) then
the uniqueness of the minimum distance can be extended to
the object pairs. If in addition any two surface normals taken
from a single surface patch never span more than 180 degrees,
then the Voronoi diagram can be used to further advantage
to create efficient algorithms to find the unique minimum
distance between object pairs. The 180 degree restriction is
equivalent to requiring that the Gauss map of the surface patch
can be fit into an open hemisphere [33]. This stipulates that
even the sphere and ellipse are to be tiled into at least two
surface patches. Virtually without modification, the Lin-Canny
algorithm, based on the Voronoi diagrams, may be applied
to convex parametric objects to find the closest features.
Computational efficiency follows from the incorporation ofthe
Lin-Canny closest feature algorithm since now pairs of whole
objects may be considered rather than all possible pairs of
surface patches. In this paper, we present a discrete switching
algorithm based on Lin-Canny that extends the applicability
of our narrow phase to whole convex objects. We show how
the discrete switching controller acting on features and the
continuous controller acting on witness points within surface
patches may be combined into a hybrid dynamical system
to effectively extend the basin of attraction of the unique
minimum distance.

The body of the paper begins in section II with the presen-
tation of the proposed dynamic model. Controller design and
analysis takes place in section III. The switching algorithm
which generalizes the method to a collision detector that may
be used on objects composed of convex surface patches will
be presented in section IV. In section V, simulation resultsare
presented and finally, section VI concludes the paper.

II. M ODELING
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f(u, v)
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Fig. 1. A parametric surface patch showing isometric curves for parameters
u andv and surface tangents at pointf(u, v)

Let there exist a parametric representation for the surface
patch shown in Figure 1. Usef to denote a position vector
to a point on the surface patch. And usef(u, v) to refer to
the mapping fromℜ2 to ℜ3 that generates the Cartesian
coordinates[x(u, v) y(u, v) z(u, v)]T from the independent
parametersu andv.

The following development relies on the existence of surface
patch continuity through at least two differentiations. Wealso
require that both surface patches be convex.

Let fu(u, v) and fv(u, v) denote the first partial derivatives
with respect tou and v of the parametric surface patch at
the point f(u, v). Similarly, let fuu(u, v) denote the partial
derivative with respect tou of fu and so on. Note that the
first partials are tangent to the isoparametric curves ofu and
v respectively.
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Fig. 2. Two parametric surface patches,f belonging to bodyA and h

belonging to bodyB, with a position vector∆R between two arbitrary
points

Two parametric surface patches are plotted in Figure 2 with
their corresponding isoparametric curves. On these patches,
two arbitrary pointsf(u, v) and h(r, s) and surface tangents
evaluated at these points are shown using notation similar to
that used in Figure 1.∆R(u, v, r, s) is a vector between these
arbitrary points.

Note that when the difference vector∆R is normal to
both convex surface patches, the requirements of the unique
minimum distance solution are satisfied. In such case the
values, denotedu⋆, v⋆, r⋆ ands⋆, of the parametersu, v, r, and
s locate the closest pairf(u⋆, v⋆) andh(r⋆, s⋆). The minimum
distance is then equal to the Euclidian norm of∆R.

Define scalarsΨu,Ψv as the projections of the difference
vector∆R onto the tangentsfu andfv of surface patchf ; and
similarly defineΨr, Ψs as the projections of the difference
vector∆R onto the tangentshs andhr of surface patchh as
follows.

Ψu △

= ∆R · fu (1)

Ψv △

= ∆R · fv (2)

Ψr △

= ∆R · hr (3)

Ψs △

= ∆R · hs (4)

When the projection errors are all zero, the conditions
for the closest pair are met: the difference vector∆R is
perpendicular to both convex surface patches atf andh. Note
that it is possible to define the minimum distance condition
by an alternate set of equations as presented in [28]. This
alternative formulation makes use of surface tangents of one
surface patch and normals of both surface patches. Although
we use the set (1) - (4) in our further derivation in this paper,
very similar results can be achieved using the alternate set.
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M =







fu ·fu+∆R·fuu fv ·fu+∆R·fuv −hr ·fu −hs ·fu
fu ·fv+∆R·fuv fv ·fv+∆R·fvv −hr ·fv −hs ·fv

fu ·hr fv ·hr −hr ·hr+∆R·hrr −hs ·hr+∆R·hrs

fu ·hs fv ·hs −hr ·hs+∆R·hrs −hs ·hs+∆R·hss







, b =







−(AωωωωωωωωωωωωωB
× h) · fu

−(AωωωωωωωωωωωωωB
× h) · fv

(BωωωωωωωωωωωωωA
× f) · hr

(BωωωωωωωωωωωωωA
× f) · hs







Given the set of equations (1) - (4), one way to find
the closest pair is to search for the solutionu⋆, v⋆, r⋆, s⋆

that minimizes the projection errors using a gradient descent
algorithm. This procedure would require the computation of
a Jacobian for use in Newton Iteration. This is the approach
undertaken in [28]. In the present work, rather than obtaining
the Jacobian of the system of equations (1) through (4)
with respect to the independent parametersu, v, r and s, we
differentiate them with respect to time. The differentiation
operation causes the motion of the surface patches and the
time rates of change of the parametersdu/dt, dv/dt, dr/dt
and ds/dt, called the parametric velocities, to appear in the
expression for the projection error derivatives.

Note that one must effectively freeze time (and consequently
the motion of the bodies) while using a gradient descent
algorithm to find the closest pair. In contrast, taking the time
derivative of equations (1) through (4) produces a dynamic
expression where the time rates of change of the projection
errors are expressed in terms of the shapeand motion of the
surface patches.

Although we use vector expressions throughout the paper,
we are careful to express each vector consistently in a single
reference frame before interpreting the operations as matrix
operations. Where dot products and cross products appear,
we use boldface notation to indicate operations which may
be performed in a basis-independent fashion. Once suitably
expressed in a reference frame, standard matrix operations
may be used, and we indicate this using normal typeface. Note
also that since the right hand sides of equations (1) through
(4) are basis-independent vector expressions, it is important to
specify a frame in which differentiation is to be performed.
We choose to express the vectors in equations (1) and (2) in
the body frameA and the vectors in (3) and (4) in the body
frameB (see Figure 2). This choice results in simpler matrix
expressions.

Consider the case where each surface patch is attached to
a rigid body in motion. In Figure 2 these bodies are named
A and B. Assume that the configuration of bodiesA and B
with respect to a reference frameN is known. Then the relative
motion of these bodies with respect each other will be specified
by the vectorAωωωωωωωωωωωωωB.

Using the notation
Ad

dt
(.) to indicate differentiation in ref-

erence frameA, and noting that, for any vectorβββββββββββββ,
Ad

dt
(βββββββββββββ) =

Bd

dt
(βββββββββββββ)+ AωωωωωωωωωωωωωB ×βββββββββββββ, we take time derivatives of Equations (1)-

(4) as follows

Ψ̇u =
Ad

dt
[(f − h) · fu] (5)

Ψ̇v =
Ad

dt
[(f − h) · fv] (6)

Ψ̇r =
Bd

dt
[(f − h) · hr] (7)

Ψ̇s =
Bd

dt
[(f − h) · hs] (8)

and rearrange into matrix form to produce the following
differential equations for the projection errors

Ψ̇ = M w + b (9)

ẋ = w (10)

y = x (11)

where

Ψ =









Ψu

Ψv

Ψr

Ψs









, w =













du

dt

dv

dt

dr

dt

ds

dt













andM andb are shown at the top of the page.
In this state space realization, the projection errorsΨ are

taken to be the state variables. The inputsw are time deriva-
tives of surface parameters whereas the system outputs denoted
by y are the estimatesx = [u, v, r, s]T of the parametric
valuesu∗, v∗, r∗ ands∗ that locate the closest points on each
surface patch at every instant of time. These estimates can be
calculated as a by-product of the control effort that regulates
the projection errors to zero. Details of this procedure are
shown in the next section.

III. C ONTROL

Equations (9)-(11) define a nonlinear dynamic model to
maintain the closest pair on two surface patches undergoing
rigid body motion. It characterizes the projection error deriva-
tives in state space form and formulates the minimum distance
problem as a nonlinear control problem.

The control input vectorw is composed of time derivatives
of surface parameters, i.e. the elements ofw are speeds along
the parametric curves. The objective of the controller is to
continually update these speeds to regulate the projection
errors to zero while staying within the patches, that is, to
maintain the closest pair on the surface patches.

With the model (9)-(11) in hand, the closest pair on the sur-
faces can be dynamically tracked making use of a control loop
with exact feedback linearization. Exact feedback linearization
is feasible since the plant is implemented in the computer and
at any instant of time the specific values ofM andb are exactly
known. Note that feedback linearization is fundamentally dif-
ferent than Jacobian linearization in that feedback linearization
is achieved by exact state transformation and feedback, rather
than by linear approximations of the dynamics over a small
range of operation [34]. Since feedback linearization takes the
higher order terms into account, it results in a large basin of
attraction for the controller.

First, in order to feedback linearize the model, an inner
feedback loop is designed. Assuming the matrixM is positive
definite in the range of operation, we define the control input
vectorw in terms of a new input vectorµ as
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w = M−1 (µ − b) (12)

and apply this control input to (9). Then the nonlinear model
for the projection errors is algebraically transformed into an
equivalent linear model

Ψ̇ = µ (13)

Second, an outer loop linear controller is used to impose
the desired linear dynamics to the system of equation (13). In
this paper, a full state linear feedback

µ = −K Ψ (14)

is utilized to stabilize the closed loop dynamics and to achieve
desired performance: to keep projection errors small. Note
that, it is possible to synthesize different outer loop controllers
to satisfy various design objectives.

Asymptotic stability of the overall closed loop system is
guaranteed. This observation follows from the facts that there
are no internal dynamics associated with this input-outputlin-
earization and positive definiteness ofM results in monotonic
convergence of the surface parameters. Note that the matrix
M has a structured form as the first fundamental matrix plus
minimum distance times the second fundamental matrix [35]
when evaluated at the closest points. Positive definitenessof
M is guaranteed for a neighborhood of the closest points if
both of the surface patches are convex.

w = M−1(µ − b)

µ = −K Ψ

∫

[

M w + b

w

]

dt

motion (AωωωωωωωωωωωωωB)motion (AωωωωωωωωωωωωωB)

Ψ

x

x
µ w

Fig. 3. Control block diagram showing an inner feedback linearization loop
and an outer linear control loop

Figure 3 shows the block diagram of the completed con-
troller design. Recognizable here is the inner loop that renders
the projection error equations linear from inputµ to outputx.
The outer loop achieves the desired dynamics via full state
feedback with gainK.

Furthermore, the desired outputs, i.e. the parametric values
of the witness points, are continually maintained using the
control input vectorw. This is achieved by integrating the
input vectorw with initial conditions extracted from the start-
ing points. To guarantee that the surface parameters remain
within the surface patch boundaries, asaturated version of the
control input vector is utilized when a witness point lies onthe
boundary of a surface patch. This is implemented simply by
setting the components of the input vector that are infeasible
(point out of the surface patch) to zero. Note that, as will be
presented in the next section, switching from one surface patch
to another is dictated by the Voronoi diagram of the current
surface patch and the witness point on the opposing surface
patch and is decoupled from the continuous dynamics of the

witness point on the current patch. Therefore, we require the
surface parameters remain within the surface patch boundaries
until a discrete transition is triggered.

∫

w = M−1(µ − b)

µ = −K Ψ

Ψ = Ψ(x)w dt

motion (AωωωωωωωωωωωωωB)

Ψ

x

x

x

µ w

Fig. 4. Control block diagram showing an alternative implementation

In practice, the state vectorΨ is augmented with the
input vector w to perform all integrations in a single op-
eration. In fact, even a simpler implementation is possible
as demonstrated in Figure 4. Since the projection errorsΨ
can be directly calculated through equations (1) to (4), the
differentiated kinematic model can be replaced by this set
of nonlinear equations. Note that although the differentiated
kinematic model is replaced, the controller design remains
unchanged.

dt
∫ [

w

θ̇

M(θ)−1(F(t) − C(θ, θ̇) + N (θ, θ̇))

]

µ = −K Ψ Ψ = Ψ(x)w = M−1(µ − b)

HUMAN

Haptic Device
(Impedance Controlled)

Virtual Coupler

x

Fm

Fh

xh

F(t)

θ

θm

w

Fig. 5. Combining minimum distance tracking with dynamics

It is also possible to combine the closest pair tracking
algorithm with the forward dynamics solution. One such case
is shown in Figure 5 where a haptic rendering scheme is pre-
sented in block diagram form [36]. The components of Figure
5 include the human user, the physical haptic interface device,
the computationally implemented virtual coupler and finally
the virtual environment. The virtual environment includesboth
the forward dynamics solver and the minimum distance main-
tenance algorithm. Here, motion of the bodies is calculated
simultaneously with the maintenance of the minimum distance
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in a single operator. In this figure, the equations of motion for
the bodies are defined by a second-order differential equation
where θ represents the set of configuration variables. The
inertia matrixM(θ) and the Coriolis matrixC(θ, θ̇) summarize
inertial properties of the bodies.F(t) denotes external control
forces acting on the bodies whileN (θ, θ̇) includes all other
frictional and gravitational forces.

Finally, it is important to mention that the algorithm need
not be initialized with the exact closest points. Any initial
point within the region of attraction of the designed nonlinear
controller (a neighborhood of the closest points whereM is
positive definite) will converge to the closest pair since the
controller is asymptotically stable. Moreover the convergence
rate can be adjusted by tuning the controller gainK as
demonstrated in section V and further discussed in section
VI.

IV. SWITCHING ALGORITHM AND HYBRID SYSTEM

FORMULATION

To handle changing external features and thereby extend the
local stability to cover a much larger basin of attraction, we
have adopted the mathematical language of hybrid dynamical
systems, in particular the notation in [37], to describe collision
detection between bodies composed of tiled together para-
metric surface patches. Hybrid systems contain both discrete
and continuous state variables and exhibit both discrete and
continuous state dynamics. In certain hybrid systems, discrete
and continuous dynamics not only coexist, butinteract such
that changes in the discrete and continuous dynamics occur
in response to discrete and/or continuous state variables.In
the case of collision detection between parametric bodies,
however, the coupling between the discrete and continuous
dynamics is limited. When tracking the minimum distance
between a body and a point, the continuous state that describes
the motion of the closest point on the body is decoupled
from the discrete state that specifies the relevant feature on
the body. That is, the switching times do not depend on
the continuous states. On the other hand, when tracking the
minimum distance between two bodies (either in a plane or
in space) the switching times do in fact depend on certain
portions of the continuous states.

In the following, let us develop a hybrid mathematical model
to describe the most general case: minimum distance tracking
between two bodies. Thereafter, we will show how certain
variables may be removed from the argument lists for the
various functions to describe the case of minimum distance
tracking between a body and a point.

Consider a system described by a state spaceS =
⋃n

i=1
Si,

where the statex within each modeSi evolves according to
the differential equation

ẋ(t) = Fi(x(t), θ(t)), (15)

where θ(t) is an exogenous input representing the specified
motion of the bodies. Note that the state vectorx has the same
dimension in all modes, a property that can be accommodated
by setting unused elements to zero. Associated with each mode
Si is a set of transitions to other modes. And associated with
each transition in that set is a switching functionf and a
resetting functionφ. Let us index the members of the set of

transitions (and likewise thef ’s and φ’s) with a superscript
j and indicate the number of transitions withmi, which in
general is different for each mode. A subscripti indicates
association with theith mode. Membersf j

i of the set of
switching functionsJi trigger transitions out of modeSi

Ji =
{

f j
i (x(t), θ(t)) = 0, (j = 1, ...,mi)

}

(16)

The time t∗ that, together with the statex− = x(t∗) and
specified motionθ(t∗), produces a zero of transition function
f j

i is called aswitching instant; it triggers the associated tran-
sition. Once a transition is triggered, the associated member
φj

i of the set of resetting functionsΦi is executed to relate
the initial state valuesx+ in the new mode to the final state
valuesx− in the last mode.

Φi =
{

x+ = φj
i (x

−, t∗), (j = 1, ...,mi)
}

(17)

A special case of the resetting functions is the initial conditions
for the initial modeS1.

To particularize the description of a hybrid system contained
in Eqs. (15) through (17) for the case of collision detection
between a body and a point, one may remove the argumentx

from each switching function in (16). The switching functions
depend only on the specified motion of the body and the
witness point on the opposing body, not on the motion of
the witness point on the body. In fact, for collision detection
between two bodies, the switching between features on one
body depends only on the motion of the closest point on the
other body and the body motion, not the motion of the closest
point on its own surface.

Evaluation of the hybrid system can be viewed as a se-
quence of subproblems, each characterized by a continuous
evolution in a mode terminated by an event (i.e. zero crossing
of a switching function), and then evaluation of the resetting
functions to initialize the new mode.

A transition from one discrete state to another one is trig-
gered when a discrete state (a feature) encounters a transition
condition (i.e. an active feature goes out of the Voronoi region
of the other active feature). These discrete transitions are
handled in a manner similar to the Lin-Canny algorithm. Note
that whenever a transition occurs, not only the discrete state
changes, but also the continuous system model changes and the
continuous states are updated according to the reset relations
Φ.

The coordinated action of the discrete and continuous
dynamics in the hybrid system ensures that witness points
initialized anywhere on two convex bodies composed of tiled
convex surface patches will converge to the unique closest
points. The discrete switching algorithm finds the appropriate
closest features and then the continuous controller handles
final convergence to the closest points. Once initialization
errors are suppressed, the hybrid system continues to track
the closest points as the bodies move and new portions of
the bodies’ shape are brought into play. The feedforward term
of the controller accounts for the motion and shape of the
surface patches as the feedback term rejects disturbances and
continually drives the witness points toward the closest points.
When witness points cross Voronoi boundaries of the opposing
surface patch, discrete switching among features occurs as
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dictated by the hybrid system dynamics. Between convex bod-
ies, the inter-feature distance cannot increase at the switching
instants [9], so convergence properties are maintained.

To extend our algorithm to handle non-convex bodies com-
posed of convex surface patches, it is only necessary to modify
the switching algorithm. Extensions to handle interpenetration
are also relatively straightforward, which we are exploring in
current and future research.

V. SIMULATION RESULTS

We have developed a suite of computer simulations to
check the dynamic formulation and the hybrid control al-
gorithm discussed in the previous sections. Our simulations
are implemented in Matlab/Simulink and sample results are
presented below. Not presented here, but worth mentioning,are
demonstrations on a real-time operating system that features
haptic display. See [38] for a description of our hardware.

A. Convex Surface Patch and a Point

Q

S

Fig. 6. The initial convergence of a witness point to the closest point on
surface patchS is followed by smooth tracking as pointQ moves according
to a pre-specified trajectory.

Figure 6 shows a simulation that produces the tracking
behavior of a witness point on the convex surface patchS
as a pointQ traces out a pre-specified path.2 Lines connect
the pair of witness points in each of the snapshots shown. At
startup, the witness point onS has a large initialization error.
One can observe that the algorithm quickly converges to the
correct answer as indicated by the first three snapshots.

Figure 7 demonstrates asymptotic convergence of the two
normalized projection errorsΨu and Ψv, where each projec-
tion error is normalized using the length of the difference
vector ∆R and the appropriate tangent vector. From this
figure, it is evident that the algorithm quickly converges from
a poor initialization value to the closest points and then
maintains the closest points as the surfaces move.

The inset in Figure 7 shows how the convergence rate
may be adjusted by tuning the linear feedback gainK. In
the simulation shown, a very non-aggressive feedback gain of
K = 100 is used with a fixed-step integrator running at 1
kHz and it takes 75 steps to recover from the initialization

2For haptic rendering a forward dynamics solver would producethe motion.
Here we are only testing the minimum distance tracking algorithm.
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Fig. 7. Using a value of 100 for the feedback control gainK, exponential
convergence of the projection errorsΨu andΨv occurs within 75 simulation
steps. As shown in the figure inset, the convergence rate can be significantly
increased by increasing the gainK.

error and converge to the steady state. However, under the
same conditions convergence can be achieved in 10 steps if
the gain is set toK = 1000. In the tracking phase, i.e. in
steady state after the initialization errors are compensated, each
update takes only one time step.

In the discrete time implementation, the admissible values
of K have an upper limit due to discretization of the algorithm.
This limit depends on the integration scheme used and the step
size chosen. There exist techniques whereby the convergence
rate (determined by gainK) and step size may be traded off
against one another while maintaining stability. For example,
in [39] and [40], standard discrete time controller design tech-
niques are utilized to obtain relationship between controller
gain K and integration step size. With these techniques, the
upper limit for K can be chosen such that the stability of the
algorithm is guaranteed even after discretization.

There also exists a lower limit onK which is dictated
by the shape and motion of the bodies and the initialization
error of the witness points. This lower limit onK is required
to guarantee that the convergence rate of the algorithm is
faster than the disturbance due to motion of the bodies. The
lower limit on K can be computed online or pre-set before
simulation if the motion bounds are known before simulation
time.

Note that, for multibody dynamics simulation the lower
limit on K is significantly (orders of magnitude) smaller
than the upper limit dictated by discretization and does not
constitute a concern since choosing a gain close to the upper
limit is desired for fast convergence. For example, in this
particular simulation using a fixed-step second order explicit
Runge-Kutta integration scheme running at 1 KHz, stable
values ofK range from0.5 to 1500.

B. A Convex Planar Body of Three Convex Curves and a Point

Figure 8 shows a convex planar bodyA formed by joining
three convex curvesC1, C2, and C3 at verticesVa, Vb, and
Vc. Also shown in Figure 8 are the six lines that bound the
external Voronoi regions ofA and the three lines, calledmedial
axes that bound the internal Voronoi regions ofA. The medial
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A

C1

C2

C3

Va

Vb

Vc

Fig. 8. A convex planar bodyA composed of curvesC1, C2, C3 joined at
verticesVa, Vb, Vc. Lines indicate boundaries between interior and exterior
Voronoi regions.
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t
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t
=
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t
=

14
3

t =
175 t =

179

Fig. 9. The automaton used to govern the motion of the witness point on
body A of Figure 8. Switching times for the simulation shown in Figure10
are also indicated.

axes are each the locus of points equidistant to two curves
of A. The automaton that describes the hybrid dynamics of
a witness point lying on the boundary ofA is shown in
Figure 9. The three large ellipses in Figure 9 each describe a
mode in which the witness point lies on a particular curve.
The continuous dynamics within a particular mode govern
the motion of the witness point so long as it lies on the
correspondingly labelled curve. The three smaller circleseach
describe the (trivial) dynamics of the witness point while it lies
on the correspondingly labelled vertex. The arrows indicate the
transition functions that switch between modes. The two outer
circular loops indicate transitions from one external Voronoi
region to another, while the two inner triangular loops (not
involving vertices) indicate transitions across medial axes from
one internal Voronoi region to another.

Figure 10 shows a simulation that produces the tracking
behavior of a witness point onA as a pointP (the other
member of the closest pair) traces out a pre-specified spiral
path that begins insideA and ends outsideA. In all, 100
snapshots of the simulation are shown, or 100 minimum
distances connecting the witness points. To begin, the witness
point is initialized with the wrong value and the algorithm
quickly converges to the correct answer as indicated by the
dotted lines and sweeping arrow. Thereafter, one end of the
minimum distance is either perpendicular to a curve ofA or
anchored on a vertex ofA. The times at which transitions
between modes occur are shown both in Figure 10 and on the
automaton in Figure 9. For example, att = 34 seconds,P

A

initial convergence

t = 34

t = 49
t = 87

t = 92

t = 138

t = 143

t = 175

t = 179

t = 67

Fig. 10. The minimum distance is shown betweenA and a point tracing out
a spiral that begins inside and ends outsideA. Simulated transition times are
indicated.
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Fig. 11. The trajectory and sequence of parametersu1, u2, u3 on curves
C1, C2, C3 for the simulation shown in Figure 10. Transition times are also
indicated.

crosses the medial axis and tracking onC1 jumps to tracking
on C2. At t = 67 seconds,P crosses the boundary ofA,
but tracking continues onC3. At t = 87 seconds, the witness
point anchors onVc and att = 92 seconds it continues onC1

again. The transition times are also indicated for this particular
simulation in Figure 11, which is a plot of the curve parameters
ui versus time. If all three curve parametersui, (i = 1, 2, 3)
are varied from0 to 1, then the entire bodyA is traced out. The
particular sequence and trajectory of values shown in Figure
11 pertains to the evolution of the witness point shown in
Figure 10. Also visible in Figure 11 is the convergence of
startup error at the very beginning of the simulation. As in
all the simulations presented here, a very low controller gain
K is utilized in this simulation to render initial convergence
noticeable in the figures.
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C. Two Planar Bodies

A

B

C1

C2

C3
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Vb

Vc

Ca

Cb
Cc

V1

V2

V3

Fig. 12. Planar convex bodiesA andB and their Voronoi regions.

V − V

V − C C − C

Fig. 13. The automaton (not enumerated) used to govern the motion of the
witness points on bodiesA andB of Figure 12.

Figure 12 shows two convex bodies each bounded by three
convex curves. The exterior and interior Voronoi regions are
also indicated. The hybrid dynamics of the minimum distance
tracking problem is again governed by an automaton, a sim-
plified version of which is shown in Figure 13. In this sim-
plified version all three possible feature pairs (vertex-vertex,
vertex-curve, and curve-curve) are indicated but they are not
enumerated by feature name for each possible combination.
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Fig. 14. The minimum distance between planar bodiesA and B as A
remains fixed andB spins and traces a circle aroundA. Twelve snapshots
are shown, taken at irregular intervals. The active curves or vertices ofA and
B are indicated.
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Fig. 15. The trajectory and sequence of parametersu1, u2, u3 on curves
C1, C2, C3 andra, rb, rc on curvesCa, Cb, Cc for the simulation shown in
Figure 14. Transition times are indicated.

Figure 14 shows the simulation results of the minimal
distance tracking problem whileA remains fixed andB
undergoes a motion in which it spins around its own center
which in turn traces out an inward spiral centered onA.
Twelve snapshots taken at irregular but indicated time intervals
are shown arrayed and numbered 1 through 12 in Figure 14.
The active curves or vertices, which correspond to similarly
labelled modes in the automata not shown, are also indicated
in Figure 14. Figure 15 shows the curve parametersui of
A and ri of B. The sequencing and evolution of both curve
parametersui andri that locate the closest points onA andB
can be seen. The snapshot times are also indicated in Figure
15 as are the transition times.

D. Spatial Body and a Point

 

 

 

VA

C

Ca

Vβ

S1

S2 Cb

Cc

Fig. 16. The minimum distance is shown between a spatial bodyC and a
point tracing out a helix. BodyC is composed of 3 convex surface patches
(only S1 andS2 are visible) joined at 3 curves (onlyCa andCb are visible)
and 2 vertices (Vα andVβ ).

Figure 16 shows the minimum distance between a spatial
body C and a point that traces out a helix. BodyC is
formed by joining three convex parametric surface patches
at their intersecting curves and vertices. The surface patches
are labelledS1, S2, and S3, the curvesCa, Cb, and Cc and
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Fig. 17. The automaton used to govern the motion of the witness point on
body C of Figure 16. The mode and transitions pertaining to vertexVβ are
not shown. Switching times for the simulation shown in Figure 16 are also
indicated.
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Fig. 18. Changes in curve parameters during tracking for the simulation
shown in Figure 16. Transition times are indicated.

the verticesVα andVβ. The visible components are indicated
in Figure 16 and the corresponding modes are shown in the
automaton of Figure 17, except for the mode forVβ. The
mode Vβ and its transitions look just like those forVα but
were omitted to make the figure readable. The sequence and
trajectory of the surface parametersui andvi, taken pairwise
with (i = 1, 2, 3) to locate the witness point onC are shown
in Figure 18. Periods of time in which the witness point lies
on the bounding curves can be recognized as constant values
of 0 or 1.

E. Two Spatial Bodies

Figure 19 shows 5 snapshots taken at irregular intervals for
the minimum distance tracking between two spatial bodiesA
andB. In this sample simulation, BodyA is fixed and BodyB
moves around BodyA in a specified time dependent motion.
As in the previous example, both bodies are formed by joining
three convex parametric surface patches at their intersecting
curves and vertices. The curves and vertices are not marked but

SA1

SA2

SA3

SB1

SB2

A

B

Fig. 19. Witness points move on bodiesA and B transitioning between
convex surface patches when necessary asB traces a pre-specified trajectory
aroundA.

the visible surface patches are indicated in Figure 19. Surface
patches of BodyA, with surface parametersu and v are
labelledSA1

, SA2
, andSA3

whereas surface patches of Body
B, with surface parametersr ands are labelledSB1

, SB2
, and

SB3
.
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Fig. 20. Changes in surface parameters during initial convergence and
tracking for the simulation shown in Figure 19. Transition times are indicated.

The sequence and trajectory of the surface parametersui, vi,
ri and si of both bodies taken pairwise to locate the witness
points onA and B are shown in Figure 20. One can also
recognize that att = 2.67 the witness point on surface patch
SA1

reaches its boundary curve and evolves on that boundary
until t = 3.66 when the witness point moves onto the next
surface patchSA2

.

VI. D ISCUSSION ANDCONCLUSIONS

We have contributed a narrow phase collision detection
algorithm with certain attractive properties that follow from its
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formulation as a dynamic control problem. These properties
include a means of determining the highest gainK that
maintains stability under a given discretization and a large
and easily characterized basin of attraction of the stabilized
closest points.

Since the continuous dynamics of the projection errors
(Eqs. (13) and (14)) are linear, stability analysis is simple:
the characteristic equation produced by discretizing the linear
dynamics according to a given numerical method may simply
be inspected for its pole locations. So long as the poles remain
inside the unit circle and given step sizeh, the gainK may
be increased to achieve the highest stable algorithm speed.
For more detail on the use of discrete time controller design
techniques for the analysis of convergence rates under various
integrators, see [41] [42] [43]. Once stability of the continuous
dynamics Eqs. (13) and (14) is established, convergence of the
witness points to the closest points depends on an analysis of
Eqs. (12) and (14). A Lyapunov function produced by squaring
the surface parameter errors can be used to show convergence
given positive definite matrixM and sufficiently large gain
matrix K. The positive definiteness ofM depends on the
surface shape and current surface parameter error, and can
be used to characterize the basin of attraction of the closest
points.

Our chief contribution, then, is an algorithm whose limits
of performance can be exposed using straightforward analysis.
Once these are in hand, the algorithm can be driven to its limits
in speed. Note that the determination of stability-preserving
gainsK for algorithms based on Newton iteration is a much
more complicated affair, since these are discrete and nonlinear
methods. Also, the basin of attraction of the closest points
within a Newton iteration approach is a complicated and not
necessarily connected set.

When it comes to comparing the ultimate computational
efficiency of our algorithm with that of the previously available
methods, our argument relies on noting the close relationship
between our feedback control method and the Newton iteration
and gradient methods. We have reported a few results on
the speed of our algorithm in machine-independent fashion
(Figure 7). Our algorithm subsumes all the computational
efficiency features of the Newton and gradient based algo-
rithms. For example, without compensation for the motion of
the bodies and under discretization using Euler’s method, our
method (in particular, as represented in Figure 3) reduces to
that published in [28]. Thus the computational efficiency of
[28] is inherited by our algorithm and can only be improved
upon with a broader choice of numerical method and explicit
limits of performance.

The features discussed so far pertain to the control-based
algorithm that handles the closest points on two convex
parametric surface patches. We presented a sister algorithm
that handles switching among convex surface patches, bound-
ing curves, or vertices that make up each of two convex
bodies. This closest feature algorithm significantly extends
the attractive properties outlined above, for they effectively
increase the basin of attraction of the closest points beyond
the closest features themselves.

We showed how the discrete closest feature and continuous
stabilizing closest point algorithms may be combined in a

hybrid dynamical system, wherein the membership of the
witness point on the opposite body of a particular Voronoi
region controls the switching among features on each body.
Transitions between surface patches are handled in a manner
that decreases inter-feature distance, according to the proper-
ties of the V-Clip [9] or the Lin-Canny [8] algorithm.

In further support of applying a control theoretic approach
to collision detector technology, note that similar feedback
stabilization techniques have yielded significant advantage
when applied to certain problems in robotics and multibody
dynamics. To solve for the inverse kinematics of robot manipu-
lators, it is customary to integrate the differential kinematics in
a feedback loop to avoid drift and numerical disturbances [44].
Baumgarte [45] introduced the use of feedback to stabilize
the solution of a set of differential equations to the manifold
in which the solution is constrained to lie by the constraint
equations. Recently, Chiou et.al. [40] and Kurdila et.al. [46]
demonstrated the use of input-output feedback linearization
techniques to stabilize constraint violations in multibody dy-
namic analysis. In these papers, it is proved that Baumgarte
stabilization can be recovered from the input-output feedback
linearized system by a particular choice of linear feedback
controller (full state feedback). It is also shown that alternative
feedback choices result in more efficient, stable, and robust
methods.

In closing, the work reported in this paper and our contin-
uing work is focused on producing narrow phase algorithms
with properties that can be exploited by a suitable broad phase
algorithm to produce robust collision detectors for the more
complicated problems of non-convex bodies and extremal
distance between interpenetrating bodies. In the non-convex
cases, multiple extrema exist and during switching, the closest
points do not necessarily lie within neighboring features.In
particular, it is the basin of attraction of closest points which
we strive to extend despite body motion and sharp curvature
so that the broad phase need not initialize close to the global
extrema. A simpler yet robust broad phase and minimum
number of narrow phase algorithms running in parallel means
higher computational efficiency.
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