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Book Review

CARLOS A. COELHO' AND ABEL M. RODRIGUES?

'Departamento de Matemadtica and Centro de Matemdtica e Aplicagdes,
Faculdade de Ciéncias e Tecnologia, Universidade Nova de Lisboa, Caparica,
Portugal

2Instituto Nacional dos Recursos Biolégicos, Unidade de Silvicultura e Produtos
Florestais (INRB/USPF), Oeiras, Portugal

Brady T. West, Kathleen B. Welch, and Andrzej T. Gatecki, Linear Mixed Models:
A Practical Guide Using Statistical Software, Chapmann & Hall/CRC Press (2006)

The main purpose of this book is to provide an in-depth and detailed treatment of sev-
eral examples of statistical modeling of different data sets, to which linear mixed models
(LMMs) may be adequately fitted. Moreover, all this is done on a quite sound theoretical
basis.

The data sets are chosen in such a way that they may illustrate several typical cases
with different levels of complexity (two-level clustering, three-level clustering, repeated
measures, random coefficients, and clustered longitudinal data) and as such provide a good
general overview of the main types of data to which LMMSs may be fitted, thus providing a
good overview of the main types or variants of LMMs available. Furthermore, the book also
gives a very well-balanced treatment to five mainstream software packages (SAS, SPSS, R,
STATA, and HLM), used to fit the LMMs used in each example.

The treatment of the examples is done in a rather thorough way, very useful for prac-
titioners. This book is thus, beyond any doubt, highly recommended to all those who are
mainly interested in learning how to fit a specific LMM to their data or willing to learn what
kinds of data and for what kind of situations LMMs may be fit and adequate. It may also
be a very good starting point for those willing to get a more in-depth knowledge of LMMs
(see the Appendix for a very brief introduction to LMMs).

The first chapter of the book, the Introduction, adequately states the aim of the book
and establishes the terminology used throughout the book regarding LMM:s.

Chapter 2 is an extended summary on LMMs, which gives a rather brief but also rather
sharp and quite thorough overview of LMMs in their many facets. The exposition of the
material is done with an admirable brevity and logical organization, addressing issues like
matrix formulation, estimation and computational issues, model building, and model selec-
tion strategies. Yet issues not commonly found in other books, like the use of several model
diagnostics and the issue of marginal versus subject-specific models, may also be found in
this chapter of the book.

Address correspondence to: Prof. Carlos A. Coelho, Mathematics Department and Centro de
Matemadtica e Aplicacdes, Faculdade de ciencas e Tecnologia, Quinta da Torre, Caparica 2829-516,
Portugal. Email: cmac @fct.unl.pt
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Although this overview in Chapter 2 is, as already said, quite thorough, owing to the
brevity of the exposition, the reader not only needs to be previously familiar with some of
the terminology commonly used in modeling (we refer to terms like “covariate,” “factor,”
“level,” “subject,” “unit of measurement,” “cluster,” “repeated measure,” “longitudinal
data”) but also may find useful some previous knowledge on issues related to general
linear models, variance components, or even some further details on LMMs, which may
be acquired from books like the ones by Searle (1971), Searle, Casella, and McCulloch
(1992), McCulloch and Searle (2001), McCulloch, Searle, and Neuhaus (2008), or Verbeke
and Molenberghs (2000). Some further attention should, however, have been given to some
details like the issues raised around the treatment of model matrices, which are not indeed
full rank.

Then, each of the five following chapters, chapters 3 through 7, features the application
of a specific LMM to a data set, highlighting the use of a different software package for the
fit of the model, teaching both the basics as well as some details related to the fitting of the
specific LMM model being considered. Each chapter is prefaced by an introduction to the
specific LMM being applied, and while specific attention is given to one of the software
packages, the same model is fitted using all five software packages.

In general there is an invigorating agreement among the estimates obtained using the
different software packages for the parameters related to both the fixed and random effects.
Only for the examples in chapters 6 and 7 were some convergence problems found, and
these were possible to easily overcome.

Chapter 3 deals with a model for two-level clustered data. The data reports on weights
of rat pups nested into litters, subjected to three doses (high, low, and control) of an
experimental compound. Each litter was randomly assigned to a treatment level, being
the pups nested in the corresponding litter. The fixed effects are the ones corresponding
to the treatments, sex, and corresponding interactions. The random effects parameters in
the model are the ones corresponding to each litter. A top-down approach was taken for
model selection, starting with the complete model, where the hypotheses of nullity of the
interaction between treatment and sex, nullity of the variance of the random effects associ-
ated with each litter, and homogeneity of the variances of the errors were tested. The chosen
final model has all the fixed effects, without interaction and the random parameters for each
litter. This final model also has a covariance matrix for the errors where the variances asso-
ciated with the high- and low-dose treatments are equal but different from the variances for
the control treatment.

In Chapter 4 a model for three-level clustered data is fitted to a problem that tries to
analyze student performance in mathematics. Data were collected at three hierarchical lev-
els, which are the student, nested into the class, itself nested into the school. The covariates
used were covariates associated with the school neighborhood poverty level, the teacher’s
class mathematical preparation, students socio-economic status, scores in math for kinder-
garten, and sex. In this chapter the model-building strategy used was, opposite to the other
four middle chapters, a step-up procedure, starting with the model with only the fixed inter-
cept and the random parameters for school and class, nested into school. This model was
then augmented with fixed effects corresponding to several of the mentioned covariates.
However, as the authors say, likelihood ratio tests for some fixed effects associated with
classroom covariates could not be implemented owing to the existence of missing values
for those covariates.

In Chapter 5 LMMs are used for repeated-measures analysis, where multiple measure-
ments are made on the same subject under different conditions. The data set used refers to a
study on three brain regions of five rats, where the optical density of the tissue is measured
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for two treatments (carbachol and saline solution) administered in each of the three brain
regions. Brain region and treatment were considered as fixed effects at the within-subject
level. However, the results show distinct variation patterns among animals and a greater
variability of response for the carbachol treatment. For this reason, besides the fixed effect
for treatment in the model, a random coefficient is added at the animal or between-subject
level. Also a random intercept is used at this level. The joint distribution of the random
effects is assumed to be bivariate-normal. The final selected model assumes homoscedas-
ticity for the errors, having the brain regions, the treatments, and their interactions as
fixed effects and as random parameters the ones associated with the random intercepts
and coefficients for the treatment with carbachol versus saline solution, for each rat.

Chapter 6 addresses the longitudinal repeated-measures case, that is, repeated mea-
sures taken on the subjects over time, using a data set relating to a study on socialization
capabilities of children with autism. A previous study of the data has shown that although
at the age of two years there was not much variability in the socialization capabilities
of children, at the age of 13 years, there were large variations among children, concern-
ing their socialization capabilities, as measured by the VSAE (Vineland Socialization Age
Equivalent). This pattern of variability led to the consideration of random intercepts and the
use of random coefficients associated to age and its square, by child. For this model there
were some problems with the estimation of the variance—covariance matrix for the random
parameters by child, given that some of these matrices were not positive-definite, since
some of the variance components estimates were negative. This way the random intercept
terms by child were excluded from subsequent models.

Finally, in Chapter 7 a study of LMMs for clustered longitudinal data is proposed.
These are models in which units of analysis are nested into clusters and measurements
on the units of analysis are made across time. Each cluster of units may be formed by a
different number of units, and also the time instants of measurement may be different. The
example presented encompasses three levels of analysis, with level 1 being the ensemble
of longitudinal measurements made across time, level 2 the units of analysis (the teeth),
and level 3 the clusters of units. This kind of model includes random effects associated
with either or both the clusters and the units of analysis. If, as is the case in the example
presented in Chapter 7, the measurements on the units of analysis are made at the same time
points, then the time factor may be crossed with the random effects. The problem analyzed
consists of a study on the consequences of dental veneer applications upon gingival health,
with data collected by researchers at the University of Michigan Dental School. Gingival
health was evaluated by measurements of GCF (gingival crevicular fluid) at two time points
(3 and 6 months) for each tooth, with teeth clustered within patients. Graphical analysis
showed that the GCF values for all teeth of a given patient tend to follow the same time
trend. On the other hand, the temporal evolution of GCF was distinct for different patients.
Furthermore, GCF values were different among individuals as well as among teeth for
the same individual. This way, the model to be used should include random coefficient
associated with time and intercept terms associated with patients and teeth within patients.
Using a top-down approach, the interaction terms of time with other fixed effects were
excluded from the final model. The authors also test several structures for the residual
variance—covariance matrices. Some estimation problems, consisting in too high values for
the standard errors of some variance—covariance estimates, were found in the search for an
adequate structure for these matrices. This way the authors choose to use diagonal error
variance—covariance matrices with possible different variances for the errors relative to the
two measurements in each tooth, although after testing for equality they do not reject this
hypothesis.
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These chapters would, however, have benefited from a final summary with some rec-
ommendations from the authors concerning what they would find to be the most adequate
software and fitting techniques for each model under analysis, or otherwise a final chapter
with some authoritative views and recommendations from the authors concerning the ade-
quacy of softwares for a specific LMM would be useful. This is surely an issue that may be
taken into consideration in future editions of the book.

In the choice of coefficients, that is, factors and intercepts to be included in the models,
and the choice of the ones to be considered random and fixed, in order to circumvent an
almost infinite number of possible choices, the authors followed a methodology of taking
a previous data analysis in order to obtain an adequate choice. Although this methodology
may be seen as having advantages related with the appropriate model specification, we think
that the model specification, and the choice of the effects and intercepts to be considered
as random or fixed, should be dictated by the way data were collected, the knowledge we
have of the problems and phenomena under study, and the objectives of the study, namely,
in terms of the extrapolation scope we want to achieve.

As a final comment, we would say that taking into account the difficulties of gathering
in a not-so-long book all the topics associated with the complex subject of LMMs, we
consider this book a very useful manual for the application of LMMs, which will contribute
beyond any doubt to the development of work in this and related areas.
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Appendix: Very Brief Introduction to Linear Mixed Models

This short appendix is mostly devoted to those who, although quite familiar with linear
models, may find useful a very brief introduction to linear mixed models. A linear mixed
model (LMM) is a model of the form

Y=XB+Zy+e (1

where vectors appear underlined in bold and where we assume y and ¢ to be uncorrelated
random vectors, both with null expectation. It is thus a model where the response variable
is modeled by two sets of parameters. In Eq. (1) X and Z are the design or model matrices.
X is the design or model matrix for the variables associated with the fixed, that is, non-
random effects and Z is the design or model matrix associated with the random effects;
accordingly, B represents the nonrandom, although unknown, parameter vector associated
with the variables in X and y represents the random parameter vector associated with the
variables in Z. In simple terms, we may say that in the long term, that is, if we would be able
to repeat indefinitely our experiment under exactly the same conditions, we would expect
to see much the same estimates for 8, while the estimates for y would follow the distri-
bution law assumed for y itself. The distribution of the random-effects parameter vector y
is typically assumed to be multivariate normal, while, formally, for the simple LMMs we
should assume for & a multivariate normal distribution, and for the generalized LMMs we
may assume for ¢ any distribution in the exponential family.

Usually, while the parameters in § are estimated through a minimum squares tech-
nique, the parameters in y are estimated through a maximum likelihood, EM, or Newton—
Raphson technique by using an iterative algorithm that alternates between a phase where f8
is taken as fixed and y is estimated and another phase where y is taken as fixed and g is
estimated, until conve?gence is reached. LMMs, compared with the common linear models,
go two steps further in that they not only allow for both nonrandom and random regression
coefficients, instead of just the nonrandom, although unknown, ones in the common lin-
ear models, and they allow as well for the existence of a correlation structure in the errors,
instead of just the uncorrelated errors for the common linear models. LMMs are also known
as multilevel models or hierarchical linear models (see Lee and Nelder 2001; 2006) as they
indeed are used to model different clusters of observations. Therefore, the model in Eq. (1)
may and should be written as

Y, = X; B + Z; y + ¢ (i=1,...,N)

mx1)  uxp) GxD)  mxq @xD (m x 1) @

for the ith cluster of n; observations (i € {1,...,N}), where we assume the g; to be inde-
pendent across clusters and where indeed each cluster may have one only observation, that
is, where we may have n; = 1 for some or all i. In Eq. (2) we assume

v~ Ny (Q’ Zz)
and

& ~ Ny (Q’ Eg;)
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where ¥, is ¢ x g and X, is n; x n; and it depends on i only through its dimension, n; X n;,
but not in terms of number of parameters. The structure for the variances and covariances
for each g; has to be defined from structural assumptions or conventions. In the case of
independent errors we will have e = 021,,/., while in other cases several other different
structures may be more adequate, as for example the ones that originated from AR(1),
MA(1) or ARMA(1,1) models (see, e.g., Chi and Reinsel [1989] or Mansour and Nordheim
[1985]). A typical assumption is, as Gibbons and Hedeker (2000) state, the assumption of
stationarity, or some relaxed form of it, that is, the assumption that for repeated-measures
designs the variance of the errors is constant over time points and that the covariance of
the errors from different time points depends only on the time interval between these time
points and not on the starting time point.

LMMs thus extend the common linear models so that not only both fixed and random
effects are allowed to model the response variable, but also the error terms and the random
effects are allowed to exhibit correlated and nonconstant variability, providing in this way a
great flexibility to model not only the mean of the response variable but also its covariance
structure.



