
Software Review

Does the Package Matter? A Comparison of Five
Common Multilevel Modeling Software Packages

D. Betsy McCoach

Graham G. Rifenbark

Sarah D. Newton

Xiaoran Li

University of Connecticut

Janice Kooken

Kooken Research and Consulting, LLC

Dani Yomtov

Anthony J. Gambino

Aarti Bellara

University of Connecticut

This study compared five common multilevel software packages via Monte

Carlo simulation: HLM 7, Mplus 7.4, R (lme4 V1.1-12), Stata 14.1, and SAS 9.4

to determine how the programs differ in estimation accuracy and speed, as well

as convergence, when modeling multiple randomly varying slopes of different

magnitudes. Simulated data included population variance estimates, which

were zero or near zero for two of the five random slopes. Generally, when

yielding admissible solutions, all five software packages produced comparable

and reasonably unbiased parameter estimates. However, noticeable differences

among the five packages arose in terms of speed, convergence rates, and the

production of standard errors for random effects, especially when the variances

of these effects were zero in the population. The results of this study suggest that

applied researchers should carefully consider which random effects they wish to

include in their models. In addition, nonconvergence rates vary across packa-

ges, and models that fail to converge in one package may converge in another.
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As accessibility to data in the educational and social sciences has

improved and the burden of statistical computation has diminished, research-

ers have increasingly adopted multilevel modeling techniques to analyze

clustered or dependent data. Many statistical software packages are available

for multilevel modeling, and they differ in terms of ease of use, cost, speed,

and comprehensiveness.
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Although some literature discusses multilevel packages in isolation (i.e.,

Bates et al., 2016), the literature provides very little guidance on selecting a

software package. Palardy’s (2011) review of HLM 7 implicitly noted differ-

ences across software programs when he commented that HLM exhibited better

rates of convergence, as compared to other (unnamed) multilevel programs. He

observed that in some (unidentified) programs, “non-convergence is not

uncommon when working with models that have a complex error structure

(e.g., cross-classified model), little variance on one or more random effect, or

linear dependence among random effects” (Palardy, 2011, p. 516).

The most comprehensive research study comparing the performance of

multilevel software (Kreft, deLeeuw, & van der Leeden, 1994) evaluated five

multilevel software packages. However, more than 20 years have elapsed since

the publication of their work, and the landscape of multilevel software packages

is vastly different today. In fact, only two of the packages from the original 1994

review have survived in some format: HLM and MLwiN (previously ML3).

Moreover, the HLM software package uses a different estimation algorithm than

it did in 1994, rendering much of the information in the article obsolete.

Several more-recent, nonpublished technical guides compare certain features,

output, and results of various multilevel modeling packages. For instance,

Albright and Marinova (2010) released an unpublished tutorial online for running

multilevel models in SPSS, Stata, SAS, and R, using examples from the High

School and Beyond (HSB) data set referenced in Raudenbush, Bryk, Cheong, and

Congdon (2004). Albright and Marinova include background information regard-

ing the terminology, notation, and general logic of multilevel analysis, and they

present syntax and results from each software package for running unconditional,

random-intercepts, and random-slopes models. However, their manuscript does

not provide explicit comparisons of computational speed or efficiency across the

four packages nor does it systematically compare the multilevel packages using

multiple data sets.

Similarly, the Division of Statistics and Scientific Computation at the

University of Texas at Austin (UT Austin, 2012) compared the results and

estimation procedures of multilevel analyses conducted in SAS, Stata, HLM,

R, SPSS, and Mplus, using the popular.csv data set from chapter 2 of Hox’s

(2010) textbook. This article provided syntax and results for six models, which

ranged in complexity from an unconditional model to one with a random inter-

cept and slope with a cross-level interaction between Level-1 and Level-2 fac-

tors. SAS did not produce standard errors or p values for variance components

that were very close to zero. In addition, both Stata and SPSS were unable to

estimate the most complex model, which included two cross-level interactions

(UT Austin, 2012).

These two unpublished manuscripts (Albright & Marinova, 2010; UT Austin,

2012) contributed important insights regarding differences across software in

terms of input/syntax, output/results, production of standard errors and p values,
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convergence of complex models, and so on. However, both papers fit models

using only one empirical data set. Hence, the idiosyncratic features of the chosen

data set may have influenced their findings, which diminishes the generalizabil-

ity of their results. Also, use of a single data set precluded the authors from

assessing and comparing parameter estimation accuracy across software pro-

grams. Because they did not know the true parameter values underlying the data,

they could not identify the degree of discrepancy between the model estimates

and their corresponding true values. Further, neither manuscript explicitly com-

pared the speed or efficiency of the various multilevel packages.

In contrast, Austin (2010) conducted a series of Monte Carlo simulations to

compare the performance of various estimation procedures for fitting multilevel

logistic regression models as a function of the number of clusters and the size of

the clusters. Austin (2010) did not address software computational speed but

focused on estimation accuracy, revealing that multilevel packages did perform

differently from one another when estimating multilevel logistic models. How-

ever, the estimation algorithms used to fit multilevel logistic models are quite

different from those used for multilevel linear models (MLMs).

Anecdotally, we had also observed differences across various multilevel soft-

ware packages, in terms of program speed and convergence rates, especially when

fitting random coefficient models with one or more near-zero random slope var-

iances. Given that no recently published papers provide a comprehensive, detailed

comparison of the different software packages with respect to their performance in

difficult modeling contexts, Palardy’s (2011) assertions and our experiences with

multilevel software programs motivated us to systematically compare the perfor-

mance of five common multilevel software packages. We were especially inter-

ested in comparing their performance when fitting multilevel models when one or

more of the randomly varying slopes has a population variance of 0.

From Data to Inferences

Generally speaking, observations that are clustered tend to exhibit some

degree of interdependence: Observations that are nested within one cluster tend

to be more similar to each other in terms of an outcome variable than two

observations that are drawn from two different clusters. This interdependence,

which is a result of the sampling design (the nesting of observations within

clusters), affects the variance of the outcome, which in turn affects the estimates

of the standard errors. In such a scenario, making the assumption of indepen-

dence produces incorrect standard errors: The estimates of the standard errors are

smaller than they should be. Therefore, the Type I error rate is inflated for all

inferential statistical tests that make the assumption of independence. Multilevel

analyses explicitly estimate and model the degree of relatedness of observations

within the same cluster, thereby correctly estimating the standard errors and

eliminating the problem of inflated Type I error rates.
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When modeling multilevel data, it is crucial to select (a) the appropriate

statistical model that captures the nature of the data, (b) a suitable estimation

theory or strategy that allows us to make appropriate inferences about our data,

and (c) the computational algorithm, which implements the estimation theory

in practice (Raudenbush & Bryk, 2002). The distinction between the estimation

theory (e.g., full maximum likelihood [FML]) and the computational algorithm

is critical: It explains why two software packages that fit the same models using

the same estimation strategy (FML) could perform differently. Different

packages may use the same default estimation strategy (maximum likelihood

[ML] or restricted maximum likelihood [RML]) but may employ different

computational algorithms and/or starting values (Garson, 2013; Raudenbush

& Bryk, 2002).

Statistical Model

Statistical models are made up of a system of equations that connect the

response (i.e., dependent) variable to the explanatory (i.e., independent) vari-

able(s). The MLM provides an avenue to partition the variance of the dependent

variable into within and between cluster components. The simplest MLM model,

the random effects analysis of variance, allows the intercept to randomly vary

across clusters: This between-cluster variance component is represented by t00.

The system of equations representing this model is

Yij ¼ b0j þ eij; eij * Nð0;s2Þ;

b0j ¼ g00 þ u0j; u0j * Nð0; t00Þ:

Here, b0j is a random coefficient and is comprised of a fixed and a random

component (i.e., b0j * N[g00, t00]). For instance, the estimated mean for cluster j

is a linear combination of the expected score g00 (i.e., the fixed component) and

organization j’s deviation, u0j (i.e., the random component), from the expected

score. t00 represents the between-cluster variability around g00. Partitioning the

variance into within-cluster variance and between-cluster variance enables more

appropriate computation of the standard errors. Within-cluster predictors may

explain within-cluster variance, thereby reducing s2, whereas between-cluster

variables may reduce t00. The latter of the two corresponds to an intercept-as-

outcomes model (Raudenbush & Bryk, 2002).

When additional within-cluster predictors are included in the model, the

effects of these variables can randomly vary across clusters. To do so requires

an additional random coefficient, b1j, which allows the effect of the predictor

(X1) on the dependent variable to randomly vary in the population (i.e., across

observed clusters). The average effect of X1 on Y is g10 (i.e., the fixed

component) and cluster j’s deviation from this average is u1j (i.e., the

random component). This level-specific equation is represented by
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b1j ¼ g10 � X 1þ u1j; u1j * Nð0; t11Þ. The slopes-as-outcomes model

includes contextual effects (i.e., W1, cluster-level covariates) to explain the

between-cluster variability of Level-1 slopes (i.e., explaining t11; Raudenbush

& Bryk, 2002). This level-specific equation is b1j ¼ g10 � X 1þ g11 �W 1þ
u1j; u1j * Nð0; t11Þ.

A model with p explanatory effects is stored in a column vector, G (Gamma),

with pþ 1 rows; whereas the variance components at the cluster level are stored

in a square matrix, T (Tau), whose dimension is determined by the number of

random effects, r. When only the diagonal elements are estimated (i.e.,

t00: trr), this corresponds to a variance components model in which all

between-cluster random effects are assumed to be uncorrelated, and T is a

diagonal matrix. When the off-diagonal elements are also estimated

(t10 ¼ t01), T is said to be unstructured, and T contains r unique variances

and [(r � r þ 1)/2 � r] unique covariances. The assumption of homogeneous

within-cluster variances is typically utilized in organizational MLM models

resulting in the estimation of a sole within-cluster variance component, s2.

However, this assumption can be relaxed, and Hedeker has extended the stan-

dard mixed model to allow for the within-cluster variance component to ran-

domly vary across clusters (Hedeker & Nordgren, 2013). However, models that

allow for heterogeneous Level-1 variances are beyond the scope of the study at

hand. All models in the current study estimated an unstructured T and a sole

within-cluster variance component, s2.

Estimation Theory

Estimation theory guides the estimation of parameters using data. Generally,

fixed effects at Level-2 are estimated using generalized least squares. Packages

typically estimate randomly varying Level-1 coefficients with empirical Bayes,

which uses a weighted combination of OLS and predicted Level-2 values

(Woltman, Feldstain, MacKay, & Rocchi, 2012). The most common estimation

techniques for estimating variance components are FML and RML. The goal of

ML estimation is to find the parameter values that maximize the likelihood of

observing the data. FML chooses estimates of G, T, and s2 “that maximize the

joint likelihood of these parameters for a fixed value of the sample data, Y”

(Raudenbush & Bryk, 2002, p. 52). In contrast, RML maximizes the joint like-

lihood of T and s2 given the observed sample data, Y. Thus, when estimating the

variance components, RML takes the uncertainty due to loss of degrees of free-

dom from estimating fixed parameters into account, while FML does not (Rau-

denbush & Bryk, 2002; Snijders & Bosker, 2011). Therefore, FML tends to

underestimate variance components, particularly with small numbers of clusters.

However, to compare models using the RML deviance, the fixed effects struc-

tures must be identical; model comparisons with differing fixed and random
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effects should utilize the deviance provided by FML (McCoach & Black, 2008;

Snijders & Bosker, 2011).

Computational Algorithms

In multilevel models involving random coefficients, closed-form solutions are

generally not available. Therefore, to approximate the solution, parameter esti-

mates are updated iteratively, and they converge upon a solution when the

change in the log-likelihood is smaller than some threshold (i.e., convergence

criterion) using a specific computational method or algorithm. Both FML and

RML may use one of the several iterative computational algorithms, each differs

in terms of the speed and reliability of convergence (Raudenbush & Bryk, 2002).

Some of the most common computational procedures for executing ML

approaches in a multilevel framework include expectation maximization (EM),

Newton–Raphson (NR), and Fisher scoring (Raudenbush & Bryk, 2002; Swami-

nathan & Rogers, 2008; West, Welch, & Galecki, 2015). It is differences in these

computational algorithms across packages that lead to differences in the perfor-

mance of different multilevel packages. For instance, the default estimation

technique in both HLM and SAS is RML; however, differences emerge with

respect to the computational algorithms that they employ by default. Specifically,

HLM uses the EM algorithm and Fisher scoring in combination, whereas SAS

uses ridge-stabilized NR and Fisher scoring (Garson, 2013; West et al., 2015).

Hence, software packages may produce discrepant results, even when using the

same estimation technique (i.e., RML or FML) due to their use of different

computational algorithms. The differences are most likely to manifest them-

selves when estimating challenging models (Hox, 2010; Raudenbush & Bryk,

2002, p. 437). Common estimation methods can be broken into three categories:

(a) brute-force methods such as the EM algorithm, (b) gradient-based methods

such as NR and Fisher scoring, and (c) Quasi-Newton methods such as bound

optimization by quadratic approximation (BOBYQA; Powell, 2009), where dif-

ferences surface with respect to the second derivative of the log-likelihood of the

model, the Hessian Matrix (Skrondal & Rabe-Hesketh, 2004).

Brute Force

EM. The EM algorithm views estimation as a missing data problem. In an

iterative fashion, the algorithm alternates between an expectation (E) step, in

which the statistical package evaluates the log-likelihood of the model using

current parameter estimates, followed by a maximization (M) step, in which the

program updates the estimates to values that maximize the log-likelihood. The

model converges when the change in log-likelihood between the current and

previous iteration is smaller than some predefined criterion and guarantees the

solution is at some local maximum. However, because the estimated information

matrix is not inherently available, the sampling distribution of the ML estimates
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is not known (i.e., standard errors are not asymptotic). Many modeling packages

utilize the EM algorithm because its computations are fairly easy and generally

converge on an admissible solution (Raudenbush & Bryk, 2002). However, EM

is not always the fastest choice and can converge slowly, especially “when the

likelihood is flat, meaning that there exists substantial uncertainty about the

parameters given the data” (Raudenbush & Bryk, 2002, p. 444).

Gradient

Gradient-based methods require the partial second derivatives (i.e., the

Hessian) to be solved in some manner; therefore, these methods are more com-

putationally demanding relative to the EM algorithm. Although more computa-

tionally demanding per iteration, these methods can converge in fewer iterations

than EM, especially given good starting values. If the system to be solved is

quadratic, it is possible for these methods to converge in a single iteration. A

benefit to these methods is that asymptotic standard errors of the solution are

available. However, these methods do rely on good starting values.

NR. The NR algorithm is one of the most commonly used techniques for deter-

mining MLM solutions (West et al., 2015). Initially, a first-order Taylor series is

expanded at the models current parameter estimates and solves both the gradient

and the Hessian matrices such that the solution equals zero, thus producing

updated parameter estimates. Therefore, this method inherently utilizes the

observed Hessian matrix. It is for this reason the NR method can converge in

a single iteration. However, if the system to be solved is ill conditioned (i.e., log-

likelihood is not concave), computation time for each iteration will increase

without providing a substantially better solution. If the variance–covariance

matrix is semipositive-definite, the solution for variance component might be

outside the acceptable range (i.e., producing negative variances, representing

Heywood cases).

Fisher scoring. Similar to the NR method, a first-order Taylor series is expanded

at the current parameter estimate values; however, instead of solving the Hessian

matrix, it is estimated. Specifically, the negative of the expected Hessian

matrix—known as Fisher’s information—is utilized when solving for zero. This

difference is not to be taken lightly, as it eases the computational burden by

eliminating the need to solve the Hessian matrix (deLeeuw & Meier, 2008).

Another benefit to the FS method is that the solution is positive-definite, thus

avoiding Heywood cases.

Quasi-Newton

These methods are characterized by the fact that only the first-order deriva-

tives—the gradient—must be solved, whereas the Hessian is approximated in
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some manner. The use of an approximated Hessian matrix greatly reduces the

computational burden.

BOBYQA. The BOBYQA (Powell, 2009) algorithm is a Quasi-Newton approach

to estimation that is implemented in the lme4 package.

Software packages may harness the respective strengths of each of these

algorithms, and most packages use a combination of algorithms to execute ML

techniques. The EM algorithm often begins the estimation process to generate

starting values, given the relative computational ease of the algorithm. Then

packages may switch from EM to gradient-based methods once they have gen-

erated good starting values for the parameter estimates.

Statistical Software Packages

In this study, we compared five common software packages for multilevel

modeling: HLM 7 (hlm2.exe), Mplus 7.4 (mplus.exe), R (lme4 V1.1-12; lmer),

Stata 14.1 (mixed command), and SAS 9.4 (PROC MIXED). When choosing a

software program, important considerations are (a) ease of use (i.e., reading data

in and specifying models), (b) flexibility with respect to estimation techniques

and methods, (c) how model convergence issues are handled, (d) ease at which

the Level-2 deviates (i.e., u0j) can be accessed, and (e) the degree of difficulty to

run simulations and save output over replications. With respect to the latter,

interested readers can consult Online Appendix for detailed information on how

to run simulations for each of these programs.

Table 1 contains an overview of the default estimation techniques and meth-

ods utilized by each statistical software, as well as the default treatment of T, the

variance–covariance matrix of random effects (e.g., between cluster variance

components).

HLM 7

HLM by Scientific Software International (Version 7; Raudenbush, Bryk,

Cheong, Congdon, & Du Toit, 2011; Scientific Software International, 2014)

has been commercially available since 1991. HLM 7 was released in 2011

(Palardy, 2011) and HLM 7.01 in 2013.

Ease of use. HLM allows users to read data, specify models, and estimate these

models, all within a user-friendly graphical user interface (GUI). To estimate

MLM models, it is necessary to create a multivariate data matrix file, in which

Level-1 and Level-2 identification variables are selected, as are level-specific

variables. Using the GUI, users select the dependent variable, within-level pre-

dictors, and select which of these effects randomly vary across Level-2 units. All

independent variables can be automatically centered with respect to the grand

mean or the group mean, prior to estimating the model. As effects are modeled,
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the reduced form equation is populated in the GUI. By default, T is an unstruc-

tured matrix; therefore, all off-diagonal parameters are estimated.

Estimation options. HLM provides several different estimation techniques for the

variance–covariance components, including RML (the default for two-level

models) and FML. In terms of estimation methods, HLM uses a combination

of the EM algorithm and Fisher scoring to compute the estimates (Raudenbush &

Bryk, 2002). By default, Fisher scoring is utilized every fifth iteration but repeats

the iteration using EM if it does not meet the predetermined criteria. With regard

to estimating the fixed effects, HLM uses empirical Bayes to compute an opti-

mally weighted estimate using OLS for Level-1 coefficients and a generalized

least squared estimate for Level-2 coefficients (Raudenbush & Bryk, 2002; Wolt-

man et al., 2012).

By default, HLM uses a total of 100 iterations and determines convergence

using a criterion of 10�6; however, the user can easily change within the GUI.

Convergence issues. By default, HLM performs an “automatic fix-up” strategy

when the solution for T is inadmissible, specifically, the correlations between

errors to their expected parameter space to improve convergence (Palardy, 2011);

thus, in an ad hoc fashion, a bounded strategy on the parameter space is con-

ducted and no estimation warnings are issued to the user.

Random effects. HLM is capable of producing the empirical Bayes estimates for

all randomly varying effects (e.g., u0j). These values are written out to a text file.

This is not done by default.

Simulating. Estimating replicated data sets in HLM is not a user-friendly task, as

it requires knowledge of programming (i.e., Windows Batch Language). This is

because HLM provides no built in capability of doing so. More details on simu-

lating in HLM can be found in Online Appendix.

Mplus 7.4

Mplus is a general latent variable modeling software program capable of

estimating a variety of multilevel and latent variable models “within a fully

integrated general latent variable modeling framework” (Muthén & Muthén,

2015).

Ease of use. Mplus requires basic data files that are free of column names. The

input file (e.g., NAMES ARE) in the VARIABLE command specifies the vari-

able names. Such a task can prove to be tedious as the number of variables

increase; however, resources such as the R package MplusAutomation (Hallquist

& Wiley, 2016) ease this task (among others). Within the VARIABLE command,
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users must specify variables that are measured at the within and between level as

well as those that are measured at both levels.

Estimation options. With respect to estimation techniques, Mplus is limited to

FML. For MLM, Mplus uses an accelerated EM algorithm which calls on both

Quasi-Newton and Fisher scoring to optimize the function (Muthén & Muthén,

2012). By default, Mplus produces robust standard errors via a sandwich

estimator.

Convergence issues. In the event, the objective function cannot be optimized

using the Quasi-Newton and Fisher scoring steps, no parameter estimates are

printed; however, if the matrix is not positive definite, a warning is offered. The

TECH8 output (which must be requested) identifies the offending element.

Random effects. At this time, there is no out-of-the box method to request the

empirical Bayes estimates of the randomly varying intercepts and slopes; rather,

one must have a background in latent variable modeling. Specifically, the user

must generate a phantom variable and regress the Level-2 random effects on this

phantom variable and then save the factor scores in a delimited file.

Simulating. Using the MONTECARLO command, users can conduct full-scale

simulations using a single input file. Both internal and external MonteCarlo

simulation studies are available in Mplus.

lme4

The lme4 (for linear mixed effects) package in R (Bates et al., 2016) is

currently on Version 1.1-15. Its primary functions are lmer (for fitting linear

models), glmer (for generalized linear models), and nlmer (for nonlinear models;

Bates, Mächler, Bolker, & Walker, 2015).

Ease of use. To estimate MLM models using the lme4 package, the user must

possess at least a rudimentary understanding of the R language. Models are

specified using a reduced form equation, and interaction terms can be generated

at the time of estimation using the “*” operator. Because R is an object-oriented

language, all model information is stored in a user-named object and can easily

be accessed. Users can do any data preprocessing and postestimation processing

in the R environment.

Estimation options. Both FML and RML (the default) are available in lmer. In

terms of the computational algorithms, lmer utilizes Powell’s (2009) BOBYQA

by default, while offering other optimizers to estimate T.

Convergence issues. The lmer function issues estimation warnings on a regular

basis, thus placing the onus on the user. Due to the nature of BOBYQA,
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estimation is sensitive to the scaling of the parameters. To scale the estimated

gradient at the estimate appropriately, lme4 scales gradients by the inverse

Cholesky factor of the Hessian. The latter approach is used in the current version

of lme4. The disadvantage of this approach is that it requires estimation of the

Hessian (https://cran.r-project.org/web/packages/lme4/lme4.pdf, p. 15). The

lmer community suggests testing alternate estimation methods available such

as the Nelder–Mead simplex algorithm (Nelder & Mead, 1965).

Random effects. The ranef function: uj <- ranef(modObject) stores all empirical

Bayes estimates of the randomly varying coefficients in the object “uj.”

Simulating. Executing replications in R is straightforward for users with knowl-

edge of the R environment and complex data structures (e.g., list objects).

Simulations can be executed using for loops, in which a parameter is incre-

mented by some step value, or more efficiently using the lapply function. A

user can define a function that will execute the model and store the pertinent

information (e.g., parameter estimates, standard errors, and convergence status)

into data objects.

Stata 14 (Version 14.1)

Stata is a general statistics software program (StataCorp, 2015a, 2015c). For

MLMs, the mixed command is available and can handle various types of multi-

level data structures, including two-level, three-level, and cross-classified mod-

els (StataCorp, 2015b). Additionally, Stata contains commands tailored for

generalized linear and nonlinear multilevel models (StataCorp, 2015b).

Ease of use. Multilevel models are specified using a reduced form equation. By

default, Stata assumes a diagonal T matrix for models with randomly varying

slope coefficients (i.e., the random effects are not correlated). However, a variety

of covariance structures can be requested (StataCorp, 2015b).

Estimation options. The default estimation technique is FML; however, RML

estimation is also available. The mixed command uses the EM algorithm to

generate starting values before switching to the NR algorithm for the remainder

of the task. The mixed command also provides Quasi-Newton methods. When

RML is employed, users can request small sample adjustments such as Kenward–

Roger and Sattertherwaite approximation (StataCorp, 2015b).

Convergence issues. In the event the model does not converge, Stata will print

warnings at each iteration indicating the log-likelihood is “not concave” and

encourages users to specify the difficult option; however, this does not guarantee

convergence. Alternatively, users can request to use only the EM algorithm or to

use some combination of algorithms (StataCorp, 2015b).
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Random effects. After estimation, the mixed postestimation command can be

utilized to create new variables corresponding to the empirical Bayes estimates

of the random intercepts and slopes.

Simulating. Replications can be executed with ease using the simulate command

available in Stata. The command requires the user to program their custom

routine in accordance with Stata’s syntax and allows users to specify the number

of replications to be executed and what model information to save over

replications.

SAS (Version 9.4)

SAS is a general purpose statistical program, capable of estimating both linear

and nonlinear random effect models (SAS Institute Inc., 2013). The present study

utilized the mixed procedure (PROC MIXED), which is the most common

method for fitting linear random effect models (i.e., MLM) in SAS.

Ease of use. Preprocessing such as data manipulation and recoding (e.g., group/

grand mean centering) can be done via a DATA step. MLM models are specified

using a reduced form equation and automatically model an intercept; however,

all randomly varying effects must be specified in the random command, includ-

ing the intercept.

Estimation options. SAS offers a variety of estimation techniques such as FML,

RML, and minimum variance quadratic unbiased estimators (MIVQUE0, Good-

night, 1978) for model estimation. When FML or RML is invoked, MIVQUE0 is

used to determine the starting values. To carry out estimation, MIXED employs a

ridge-stabilized NR algorithm to arrive at a solution set. MIXED also allows

adjustments such as Kenward–Roger correction and/or Satterthwaite approxi-

mated degrees of freedom. However, this option is not available if an asymptotic

method for estimating the variance–covariance matrix of the fixed effects is

utilized (e.g., sandwich estimator). When utilizing this option, all standard errors

are approximated based on the expected Hessian matrix (SAS Institute Inc.,

2009).

Convergence issues. In the event the model does not converge, it is recom-

mended to utilize the SCORING option that invokes Fisher scoring along with

the default ridge-stabilized NR algorithm.

Random effects. Level-2 deviates (e.g., u0j) can be requested using the output

delivery system (ODS) option by specifying the appropriate ODS table name

(e.g., SolutionR). All model details (e.g., parameter estimates and estimation

details) can be stored in this manner.
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Simulating. Analysts can utilize either the interactive matrix language (PROC

IML) or SAS macros for simulations. The benefit of utilizing PROC IML lies in

its ability to utilize an incremental parameter (i.e., the same estimation routine

can be executed on hundreds of replicated data sets in a few short lines; however,

when programming in PROC IML, the same routines (e.g., PROC MIXED) are

not readily available, rather such an estimation routine must be user-

programmed. On the other hand, utilizing macros affords all of the computational

capabilities of SAS procedures; however, it is not as straightforward to increment

a routine through simulated data sets. Model estimates are saved into a temporary

file and ultimately are appended to a permanent data set via PROC APPEND.

The Current Study

Prior benchmarking studies have compared the computational speed and effi-

ciency of statistical packages to help researchers make informed decisions about

choosing software that suits their needs (e.g., Keeling & Pavur, 2007; Li &

Lomax, 2011; Odeh, Featherstone, & Bergtold, 2010). However, no current

studies include systematic investigations of whether and how various multilevel

modeling packages differ with respect to accuracy, efficiency, and convergence

when estimating MLMs. To address this gap in the statistical software literature,

the current study compares the performance of five of the most commonly

utilized software options for multilevel modeling: HLM, Mplus, R (lme4), Stata,

and SAS. Specifically, we examined differences across packages in terms of

speed, rates of convergence/admissibility, and parameter estimate recovery.

Furthermore, we examined whether these differences vary as a function of the

magnitude of the unique elements of T (i.e., t44 and t55), corresponding to

variances in the Level-2 slopes for b4 and b5 across clusters, with a particular

focus on how the software packages performed when the population values of

selected variance components were zero.

We did not expect to see differences across programs in terms of fixed effect

estimates. However, based on our prior multilevel modeling experiences, we

hypothesized that more generalized statistical packages (i.e., Stata) might have

difficulty estimating models that include multiple randomly varying slopes,

especially as the variance(s) for one or more of the slopes approach zero. Spe-

cifically, smaller variances produce flatter log-likelihood functions that are less

able to differentiate the most likely parameter estimates (Enders, 2010). Conse-

quently, statistical packages may run for a long time or fail to converge on a

solution when estimating models with small variance components (Kenny,

Kashy, & Cook, 2006). Given that EM can be especially slow to converge when

the likelihood is flat (Raudenbush & Bryk, 2002), packages that rely more

heavily on EM might be slower under such conditions. In NR, the calculation

of the Hessian matrix is likely to become unstable when there is a ridge in the

likelihood function and/or when the model contains a variance component that is
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near 0 (Stata, 2017). Therefore, we expected packages that rely more heavily on

NR techniques to produce more nonconvergent solutions. In addition, in terms of

estimation time, we expected to see differences across the software packages, and

we hypothesized that more specialized modeling programs (i.e., HLM, Mplus)

might be more time efficient.

Method

Simulation Model

The statistical model of interest was a two-level organizational hierarchical

linear model containing a randomly varying intercept, along with five randomly

varying slopes. The equations representing this statistical model appear below:

Factors fixed across all simulation conditions included the estimation model,

the majority of the model parameter population values, the Level-1 and Level-2

sample sizes, the estimation technique (FML), and the covariance structure of T,

which was always specified to be unstructured, regardless of the program’s

default. Varying simulation conditions included the magnitudes of two of the

five slope variances and the software program. The simulation contained 15

models in which we varied the magnitudes of the variance components for the

randomly varying slopes. We estimated those 15 conditions across all five soft-

ware packages, for a total of 75 different conditions.

Simulation Conditions

Fixed conditions

Estimation model. The estimation model as well as the fixed-component popu-

lation values remained constant across all simulation conditions. The reduced form

of the simulation model appears below, with the fixed population parameters in bold:

Yij ¼ :013� g00 þ u0j þ ð�:037Þ � g10X 1ij þ u1jX 1ij þ :016� g20X 2ij þ u2jX 2ij

þ :695� g30X 3ij þ u3jX 3ij þ :185� g40X 4ij þ u4jX 4ij þ :012� g50X 5ij

þ u5jX 5ij þ rij:

Level 1: Level 2:

Yij ¼ b0j þ b1jX 1ij

þ b2jX 2ij þ b3jX 3ij

þ b4jX 4ij þ b5jX 5ij

þ rij;

rij* Nð0; s2Þ

b0j ¼ g00 þ u0j

b1j ¼ g10 þ u1j

b2j ¼ g20 þ u2j

b3j ¼ g30 þ u3j

b4j ¼ g40 þ u4j

b5j ¼ g50 þ u5j

u0j

. . .
u5j

2
4

3
5* N

0

. . .
0

0
@

1
A;

t00 � � � t05

..

. . .
. ..

.

t50 � � � t55

2
64

3
75

2
64

3
75

2
64

3
75:
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We generated the random components from a normal distribution with means

equal to 0. At the student level, rij * Nð0; s2
r ¼ :046Þ, whereas the population

values for diagonal elements of T were u0j * Nð0; t00 ¼ :0801Þ, u1j *
Nð0; t11 ¼ :040Þ, u2j * Nð0; t22 ¼ :040Þ, and u3j * Nð0; t33 ¼ :040Þ,
whereas the population values for t44 and t55 varied across our 15 simulation

conditions and are reported below.

Across simulation conditions, the population value for s2 and t00 were on

average .71 and .08, respectively, when estimating the random effects analysis of

variance model, leading to an ICC of .101.

Sample size. The sample size was fixed; all conditions contained 50 clusters,

each with 200 Level-1 responses, resulting in a total sample size of 10,000. The

large sample sizes at each level ensured adequate power to detect between-cluster

variability, conditioning on a sufficient amount of within-cluster information

(Maas & Hox, 2005). The selected Level-1 and Level-2 sample sizes also exceeded

recommendations specified in a recently published simulation study (Schoeneber-

ger, 2016), investigating the impact of sample size and other design factors on

nonpositive definite matrices, model convergence, Type I error rates, statistical

power, relative bias in parameter estimates, and confidence interval widths and

coverage in multilevel models with dichotomous outcomes. In Schoeneberger’s

(2016) study, Level-1 and Level-2 sample sizes of at least 100 and 40, respectively,

were sufficient to overcome the issue of nonpositive definite random effect covar-

iance matrices. Therefore, by exceeding these recommendations, we hoped to

minimize the impact of sample size on model nonconvergence rates.

Estimation technique. Due to Mplus’s inability to estimate multilevel models

using RML, we estimated all models (across all programs) using FML. RML

and FML estimation techniques yield nearly identical results with a large num-

ber of clusters. Given our explicit interest in measuring the divergence of the

resulting parameter estimates from the specified true parameter values, it was

important for the estimation method to remain consistent across statistical

packages. For specific settings/syntax utilized for each of the five software

programs, see Table 2.

Computing. Because time was one of the major outcomes of interest, we

executed all replications within each program on the same desktop computer.

Therefore, all of the computer’s specifications were equivalent across programs,

which was essential for our time comparisons.

Variable conditions

Statistical software. The statistical software packages used in this study

included HLM 7, Mplus 7.4, R (lme4 1.1-5), Stata 14.1, and SAS 9.4. See Table

2 for statistical software options/arguments utilized in the simulation.
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Variance component magnitude. We simulated the two slope variance com-

ponents that varied over simulation conditions (e.g., t44 and t55) to be as small as

zero and as large as .04 (shown in Table 3), where the latter matches the pop-

ulation values for t11 through t33.

The magnitude of these randomly varying population values was taken as the

proportion of variance relative to the total variance estimated (e.g., s2
r þ t00)

from the random effect analysis of variance model, reported earlier. Therefore,

population values of .04 corresponded to estimating a variance that was 95%
smaller than the total estimated variance, .02 was 97.5% smaller, .01 was 98.8%
smaller, .001 was 99.9% smaller, and .000 was 100% smaller. When considered

as a proportion of the between-cluster variance in the intercept (t00Þ; t11 through

t33 were approximately half the size of t00, t44, or t55 of .02 is 75% smaller than

t00, t44, or t55 of .01 is 87.5% smaller than t00 or t55, and .001 is 99% smaller

than t00.

A variance component with a population parameter of zero represents the case

in which a researcher specifies a slope as randomly varying, but the slope is

essentially equal across the clusters in the population. We surmise that this is a

fairly common occurrence.

Table 3 presents the 15 distinct simulation conditions that represent the com-

binations of these five possible variance component magnitudes for t44 and t55.

These simulation conditions reflect only unique combinations, such that magni-

tudes of .010 for t44 and .020 for t55 were considered to be the same condition as

.020 for t44 and .010 for t55. We executed 500 replications for each of the

described 15 simulation conditions, across all software programs. Online

TABLE 2.

Estimation Settings for Software Comparison

Software

Program Procedure/Function Technique T

SAS PROC MIXED METHOD ¼ ML TYPE ¼ UN

HLM 7 hlm2.exe Toggle FML in

“estimation

settings”

Default

Mplus ANALYSIS:

TYPE ¼ TWOLEVEL

RANDOM;

ESTIMATOR ¼ ML %BETWEEN%
Y WITH S1 S2 S3 S4 S5;

S1 WITH S2 S3 S4 S5;

S2 WITH S3 S4 S5;

S3 WITH S4 S5;

S4 WITH S5;

Stata Mixed command Default COV(UN)

R flme4g lmer() REML ¼ FALSE Default
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Appendix contains specific details about running simulations in each of the

statistical software programs.

Data Generation

Given the focus of the present study on comparing software programs, data

generation needed to be independent of the programs used for model estimation.

Therefore, we executed all data generation in the R environment (Version 3.3.0;

The R Foundation, 2016) via a user-defined function that conformed to the linear

mixed effects model (Laird & Ware, 1982) using the MASS package (Venables

& Ripley, 2002):

y ¼ Xbþ Zuþ E;

where the X matrix contains a column corresponding to the intercept as well as a

column for each of the observed variables (e.g., X1, X2). These simulated data

were drawn from the standard multivariate normal distribution using the

mvrnorm function, assuming independence. b represents the vector of population

values for the fixed effects, whereas the u matrix corresponds to the covariance

matrix of the random effects and Z is the design matrix for the random effects.

These random effects were assumed to be normally distributed around 0. The u

matrix was generated by translating the covariance matrix into a correlation

matrix, in which all off-diagonal estimates were set to .20, and was pre- and

postmultiplied by the standard deviations of the random effects.

TABLE 3.

Variance Component Sizes for Two Predictors (t44 and t55): .000, .001, .01, .02, and .04

Simulation Condition Number t44 t55

1 .000 .000

2 .000 .001

3 .000 .010

4 .000 .020

5 .000 .040

6 .001 .001

7 .001 .010

8 .001 .020

9 .001 .040

10 .010 .010

11 .010 .020

12 .010 .040

13 .020 .020

14 .020 .040

15 .040 .040
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This afforded us the ability to generate �, as: � * (Γ, T) across Level-2 units.

We then created expected values by premultiplying B by X with respect to Level-2

membership. Within-level error was generated according to its population value, rij

* (0, s2) and was added to the expected values, thus making the level-specific

errors uncorrelated. Finally, we wrote a data frame to a local directory to conform

to the varying data specification requirements per individual software programs.

Simulation Procedures

Automating estimation. For information on how we conducted the simulation

across software programs, please see Online Appendix.

Masterfile creation. We combined all software-specific simulation results in R,

creating a single data set that we indexed with a nominal code corresponding to

the software program. To accomplish this task, we first compiled all results

individually by software program. Afterward, we combined the matrices into

one via the rbind function.

We were most interested in comparing the frequency with which each pack-

age was able to converge on a solution, the bias in parameter estimates and the

analysis time. To address our research questions, we calculated several common

statistics, including bias, relative bias for all parameter estimates (including fixed

effects, variance components, and their standard errors) by condition and soft-

ware package. Bias was computed as the difference between the parameter

estimate of interest and its population, averaged across all replications. Relative

bias expresses the degree of bias in a parameter by dividing the bias by the

population parameter. Relative bias was computed as

Pnr

j¼1
ðŷj�yÞ

y

� �

nr
� 100, where

y is the true value of the parameter, ŷj is the parameter estimate of y for replica-

tion j, and nr is the number of replications (Bandalos & Leite, 2013). Therefore,

relative bias of 5% means that the parameter estimate is 5% larger than its true

population value. Convergence was computed as the percentage of replications

in which the package produced an admissible solution. The proportion of inad-

missible solutions was nr�nc

nr
, where nr represented the number of replications

and nc represented the number of convergent solutions. Time represented the

total number of seconds it took the package to estimate a solution. These

statistics were computed separately for each condition within each software

package. We examined the average time for all replications (both convergent

and nonconvergent) as well as the average amount of time for convergent and

admissible solutions. As would be expected, the analyses with convergence

issues were far slower than the analyses that converged and produced admis-

sible solutions. We excluded all nonconvergent solutions from any analyses

that compared the relative bias of the parameter estimates across software and

conditions.
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Results

Parameter Estimates

In general, when the programs converged and provided admissible solutions,

the five packages provided nearly identical results for the fixed effects (Γ), the

variance components (T and s2), and the standard errors of the fixed effects. By

design, lme4 does not produce standard errors for variance components, and Stata

and SAS often had difficulty producing standard errors for variance components

when the population value for the variance component was zero. However, when

the programs produced standard errors for the variance components, the standard

error estimates were also virtually identical across programs. Furthermore, in

general, the parameter estimates exhibited very little bias. Traditionally, relative

bias of less than 5% is considered fairly benign (Bandalos & Leite, 2013; Hoogland

& Boomsma, 1998). None of the parameter estimates for the variance components

exhibited relative bias of 5% or greater for any packages across all conditions. The

parameter estimates for certain fixed effects (Γ) did exhibit a small amount of bias.

Figures 1 through 4 depict the relative bias in g00, g10, g20, and g50 by software and

condition. These four effects were the only parameter estimates for which at least

one relative bias estimate exceeded the 5% threshold.

The degree of bias was generally similar across software packages. One

exception was the bias for g10 in Condition 5, which was substantially larger

FIGURE 1. Relative bias for g00 by software and condition. Y-axis is the mean percentage

relative bias across all 500 replications. The area within the dashed lines is generally

considered to represent a nonproblematic degree of bias. Recall that Conditions 1–5

contain at least one variance component with a population value of 0; for more detailed

information on conditions, consult Table 3.
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FIGURE 2. Relative bias in g10 by software and condition. Y-axis is the mean percentage

relative bias across all 500 replications. The area within the dashed lines is generally

considered to represent a nonproblematic degree of bias. Recall that Conditions 1–5

contain at least one variance component with a population value of 0; for more detailed

information on conditions, consult Table 3.

FIGURE 3. Relative bias in g20 by software and condition. Y-axis is the mean percentage

relative bias across all 500 replications. The area within the dashed lines is generally

considered to represent a nonproblematic degree of bias. Recall that Conditions 1–5

contain at least one variance component with a population value of 0; for more detailed

information on conditions, consult Table 3.
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in lme4 than it was in any of the other software packages. In addition, in Con-

ditions 4 and 5, the direction of the bias for g50 was negative in lme4 and positive

in the other four software packages. However, when the software packages

produce parameter estimates, they generally appear to be very similar.

Estimation Time

More interesting were the results comparing estimation times and rates of

convergent/admissible solutions. With respect to the first five conditions, each

of which contain at least one variance component that is 0 in the population;

Figure 5 contains a boxplot of the estimation times by software package for all

admissible solutions, whereas Figure 6 contains mean estimation times by soft-

ware package for all replications, regardless of convergence status.

Several trends emerged in terms of estimation time. First, estimation times

were typically longer for Conditions 1 through 5, the conditions that contained at

least one randomly varying slope that was zero in the population. Second, over-

all, Mplus was the fastest software program, and Stata was clearly the slowest.

SAS was also very fast, except when estimating models which featured at least

one variance component that was zero in the population (e.g., the first five

simulation conditions). In these conditions, Mplus, HLM, and R had faster com-

putational times than SAS. In fact, HLM was substantially faster than SAS in the

first five conditions; however, SAS was faster than HLM when estimating

FIGURE 4. Relative bias in g50 by software and condition. Y-axis is the mean percentage

relative bias across all 500 replications. The area within the dashed lines is generally

considered to represent a nonproblematic degree of bias. Recall that Conditions 1–5

contain at least one variance component with a population value of 0; for more detailed

information on conditions, consult Table 3.

Does the Package Matter?

22



models in which all population variance components were nonzero (i.e., Condi-

tions 6–15). In these remaining 10 conditions, SAS and Mplus had the fastest

computational speeds; SAS was actually slightly faster than Mplus. The estima-

tion times were fairly uniform across all conditions for the R package, lme4::

lmer; however, lme4 was noticeably slower than HLM, Mplus, and SAS. More

specifically, lme4 was always slower than Mplus and HLM, and the R package

FIGURE 5. Comparison of estimation times among the five packages across the five

conditions containing at least one variance component that is 0 in the population. Time

is reported in seconds. Only admissible solutions are included in this graph.

Mplusplus

FIGURE 6. Estimation time for all solutions (both admissible and inadmissible) across

Conditions 1–15.
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was faster than SAS when estimating models with population variance compo-

nents of zero. However, SAS was faster than lme4 when estimating models with

population variance components larger than zero.

Clearly, the five software packages differ in terms of estimation speed/effi-

ciency, and inadmissible solutions generally appear to take more time than

admissible ones. Mplus and HLM were noticeably and consistently faster than

SAS, Stata, or lme4 across all conditions, and their speed advantage was even

more pronounced for models that attempted to estimate at least one variance

component that was 0 in the population.

Model Convergence

None of the software packages produced any inadmissible solutions for

Conditions 6 through 15 in which all slopes had nonzero variance components

in the population. Therefore, we focus on reporting results from Conditions 1

through 5, for which lme4 produced a troubling number of nonconvergent and

error-laden solutions. For details on these problematic conditions by software

package, see Table 4 (number of replications) and Figure 7 (proportion of

replications). In fact, in Conditions 3 through 5, over 60% of the replications

produced nonconvergence warnings; overall, across the first five conditions,

almost half of the lme4’s replications warned of nonconvergence. In these

conditions, the R package displayed three different types of error messages.

The most common was a nonpositive definite Hessian matrix, which accounted

for 53% of the lme4 error messages. Nonconvergence after reaching the max-

imum number of iterations accounted for 46% of the errors, and 1% of the lme4

messages labeled the results as “nearly unidentifiable” due to a large eigenva-

lue ratio. The fact that lme4 produced so many nonconvergence error messages

in Conditions 1 through 5 was a striking finding. However, even though lme4

was plagued by these nonconvergent error messages, the program still

TABLE 4.

Nonconvergent and Problematic Replications by Software Package

Condition HLM

Software Package

Mplus Stata R (lme4) Total

1 4 27 122 41 194

2 0 0 74 183 257

3 0 0 60 326 386

4 0 0 45 326 371

5 0 0 67 368 435

6–15 0 0 0 0 0

Total 4 27 368 1,244 1,643
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produced parameter estimates. Also, despite the warning messages produced by

R, lme4 did typically perform well; the parameter estimates generally did not

differ from the parameter estimates for the convergent solutions. However, for

the remainder of this article, we include only the fully convergent solutions in

our software comparisons.

Stata also exhibited nonconvergence problems for 11.8% of the replications in

Conditions 1 through 5. For these nonconvergent solutions, Stata displayed the

fixed effects, random effects, and standard errors for the fixed effects but failed to

display standard errors for any of the variance components. In addition, Stata

failed to produce any parameter estimates at all for 75 replications in Condition 1

and one replication in Condition 2. Therefore, overall, 14.7% of the Stata repli-

cations in Conditions 1 through 5 were problematic. Again, we examined the

nonconvergent solutions. Generally, the parameter estimates for the fixed effects

and the variance components for the nonconvergent solutions were similar to

those for the convergent solutions.

Finally, both SAS and Stata failed to produce standard errors at least 50% of

the time for the variance component that was zero in the population (t44 and/or

t55). Figure 8 shows the proportions of replications that were missing a standard

error estimate for t44 (specified to be zero in the population) in Conditions 1

through 5. Recall that lme4 never reports standard error estimates for the var-

iance components by design; therefore, we do not report rates of missingness for

the standard errors in lme4 (which are 100% by design).

Mplusplus

FIGURE 7. Proportion of inadmissible solutions (Conditions 1–5).
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Discussion

Although all programs appear to produce very similar estimates for fixed

effects, random effects, and standard errors for the fixed effects, the programs

do differ in three ways: (a) convergence rates, (b) production of standard errors,

and (c) computational speed.

Both R (lme4) and Stata had convergence issues when estimating models with

at least one population variance component equal to zero. Although both pro-

grams produced error messages, the estimates of the fixed effects and the var-

iance components appeared to adequately recover the population parameters.

Mplus and HLM produced standard errors for the variance components more

consistently than the other three software packages. However, both the utility of

computing standard error estimates for the variance components and the best

method for determining the statistical significance of the variance components

are debatable. Raudenbush and Bryk (2002) question the utility of using the

standard errors to evaluate the statistical significance of variance components.

Variances cannot be negative; therefore, the sampling distribution of the variance

estimates is skewed, especially under the null hypothesis (which is that the

variance component is 0). “As a result, symmetrical confidence intervals and

statistical tests based on these [standard errors] may be highly misleading” (Rau-

denbush & Bryk, 2002, p. 55). Instead, Raudenbush and Bryk advocate for the

use of w2 tests to evaluate the statistical significance of the variance components,

and the HLM software package reports these w2 tests by default. This is one of the

unique features of the HLM program; none of the other software packages

examined in this study provide w2 tests to evaluate the statistical significance

Mplusplus

FIGURE 8. Proportion of missing standard errors for t44 in Conditions 1–5 across the

five software packages. Because lme4 does not produce standard errors for the variance

components by design, it is excluded from this graph.
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of the variance components. Snijders and Bosker (2012) recommend using a

modified likelihood ratio test to determine whether it is necessary to include

variance components.

In terms of computational speed, Stata was by far the slowest of the software

programs, and the difference was not trivial. In fact, on average (across all 15

conditions), Stata’s run times were over 3 times as long as those of lme4,

approximately 5 times as long as those of SAS, over 9 times as long as those

of HLM, and almost 50 times as long as those of Mplus. Such time differentials

are not negligible, especially when estimating many large models with large data

files or when conducting simulation studies. However, moving from a general-

purpose statistical software such as SAS, Stata, or R into a more specialized

program such as Mplus or HLM also comes at a cost in terms of the data analyst’s

time. To use Mplus or HLM, the analyst must export the data and create a new

data file; therefore, there is a time loss associated with the creation of the new

data file and the transition into a new software package. In other words, even

though Mplus and HLM were the fastest software packages for running the

specified model, it may actually be slower to complete the analyses for smaller,

less-complex models, after accounting for the amount of time that it takes to

prepare and import the data into either HLM or Mplus.

However, if analysts seek to estimate larger, more complex models, it is

possible that using a more-specialized software program could offer time savings

overall. Additionally, if an analyst must estimate many models or is conducting

simulations, specialized software may offer time advantages.

Additionally, differences between these programs in terms of ease in conduct-

ing simulation studies would also influence an analyst’s decision to choose one

software package over another. By far, the most capable of the programs used in

this study is lme4, as the functionality of the R environment offers tremendous

flexibility with respect to carrying out simulation studies. However, this comes at

a cost of computational time because the package does not directly pass the

models to an executable file. Instead, information must pass through the R

environment to the compiled lmer function.

Of the specialized software, Mplus is clearly the friendliest program for

carrying out simulations. Mplus includes a Montecarlo command with which

modelers can generate data for a given population model and estimate either the

same applied model or an alternative model. HLM 7 is less flexible and requires

knowledge of batch scripting to conduct simulations. Therefore, this software

program is not particularly user-friendly for conducting such studies.

With respect to SAS, it is possible to use incremental variables for simulation

work. However, analysts must use the IML procedure to do so. Unfortunately, the

procedures available in SAS are not automatically available in IML, requiring

users to program estimation routines at times from the ground up. Stata is also

one of the more simulation friendly programs: It provides an avenue to manually
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program population values for models, generate data, estimate models, and pool

results using the simulate command.

Limitations and Future Research

Although we considered five of the most common software packages, we did

not include other possible programs/packages such as MLwiN, a specialty multi-

level modeling program, or SPSS, a common general purpose software package.

In addition, we only utilized one R package for this research, lme4, which

appeared to be the most commonly used R package at the time of this study.

However, we could have investigated additional R packages (e.g., nlme or xxM),

which may have performed more efficiently than lme4.

The current study also used only one organizational model as the basis for its

15 simulation conditions. Different models may produce different results. Addi-

tionally, the most interesting differences among the software packages appear to

occur when the specified model includes at least one variance component that is

zero in the population. The present study only included two variance components

with possible population parameter values equal to zero. Perhaps specifying the

three remaining variance components in this organizational model with smaller

near-zero (or zero) parameter values or three-level models with near-zero com-

ponents at levels two and/or three could illuminate additional differences among

these packages.

Given that Mplus does not have the ability to estimate multilevel models in

RML, we used FML estimation for all software packages, which may appear as a

limitation; however, we felt it necessary to accommodate for this limitation, due

to the popularity of the software program. Generally speaking, the variance

components did not exhibit substantial bias, and we would expect the fixed effect

estimates to be virtually identical under RML and FML. However, given that

RML is the preferred estimation method for multilevel models with small num-

bers of clusters, future researchers may wish to conduct similar comparisons

across multiple software packages (other than Mplus) using RML to see whether

the results differ across the two estimation strategies.

Finally, we generally used most of the default settings for the software pro-

grams because we were interested in comparisons of the software packages in

their “native” form. However, it is certainly possible to increase the computa-

tional speed in any of these programs by providing good starting values or by

changing the computational algorithm, if other options are available. For

instance, future research could compare the performance of SAS when using the

default NR to its performance when invoking SCORING¼FISHER.

Also, in this study, we only examined models with normal outcomes. How-

ever, the major software packages may differ even more noticeably with regard

to their estimation strategies for categorical, ordinal, and other nonnormal data.

Future research should further compare the major multilevel software packages
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in terms of performance with logistic, ordinal, and count data as well as for other

types of generalized linear models. Future research could also examine the

performance of different software packages for more complex models with nor-

mal outcomes. These could include three-level models: cross-classified, random-

effects models, and so on.

The utility of computing standard errors to evaluate the statistical significance

is somewhat controversial. Future research should compare the performance of

three commonly used methods to determine the necessity of a random effect: the

w2 method used by HLM (Raudenbush & Bryk), Wald tests based on standard

errors of the variance components, and the modified likelihood ratio tests of

differences in the deviances of models with and without the variance compo-

nents, as advocated by Snijders and Bosker (2010).

Finally, given the frequency with which R’s lme4 package (and to a lesser

extent Stata) produced nonconvergence errors, future research should more sys-

tematically investigate the effects of such errors on bias and efficiency to help

provide guidance about the gravity of the error messages. It would be beneficial

to know whether such warning messages can safely be ignored and when they

indicate underlying issues that bias the analytic results.

Our results demonstrated that there are major differences across the five

software packages in terms of computational speed. This is critically important,

particularly given that computing time may vary widely between software

options as the number of random effects, cluster sizes, numbers of clusters, and

overall sample sizes increase. Future research should systematically examine the

effects of sample sizes (at Level 1 and Level 2), model complexity (both in terms

of fixed and random effects), and other design features on the performance of

these multilevel packages, especially in terms of computational speed.

Conclusion

Based upon the results of this study, it appears that all of the five software

packages perform reasonably well, especially for models that do not attempt to

estimate variance components that are 0 in the population. When they converged,

all programs provided accurate estimates for fixed effects and variance

components.

Therefore, determining the most appropriate software depends upon the prio-

rities of the analyst. If time is a major concern, choose Mplus or HLM (or SAS, as

long as the variance components are not actually zero). If convergence and

admissibility are the main concerns, choose HLM, SAS, or Mplus. If it is impor-

tant to obtain standard errors for the variances of the random effects, choose

HLM or Mplus. In this, HLM has the added advantage of providing the w2 tests

for the statistical significance of the variance components. Generally, specialized

software programs (HLM and Mplus) do offer some advantages in terms of

speed, convergence, and standard error estimation. However, these advantages

McCoach et al.

29



come at a cost, in terms of both software price and the time that it takes to prepare

and bring the data into an additional specialized software package.

This study also serves as a stark reminder that trying to estimate all possible

slope coefficients as randomly varying is a problematic analytic strategy. Ana-

lysts should carefully consider whether each of the slopes in their multilevel

model should be estimated as randomly varying, nonrandomly varying, or fixed

before they begin estimating their models. Although it might seem tempting to

allow all slopes to randomly vary, determine which random effects are unneces-

sary empirically, and then trim the unnecessary random effects from the model,

this strategy is ill-advised. As demonstrated in this research, using such a strategy

greatly increases the likelihood of obtaining a nonconvergent solution. If the

analyst has fit a model with multiple randomly varying slopes, he or she has

no clear way to determine which of the slopes should be eliminated from the

multilevel model. Therefore, it is essential that analysts are judicious and parsi-

monious in their terms of which random slopes to include in their multilevel

models. They should also be aware that models that fail to converge or are slow

to converge are likely to contain one or more random effects that are near zero in

the population. Unfortunately, such results may not provide guidance about

which of the random effects needs to be eliminated.

We conclude with what is perhaps this study’s most important message: A

model that fails to converge in one software package may actually produce an

admissible solution in another software package or even by changing the estima-

tion settings within the original software package. Therefore, researchers who

have trouble running a complex model in one software package (and who have

carefully considered which random effects to include and exclude a priori)

should consider changing the defaults within the package or estimating the

identical model in another software package before abandoning the model

altogether.
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