

Chemistry 216

Second Examination

June 17, 2010

Professor Masato Koreeda
(120 min, 120 points)

Please CHECK OFF your lab section.

sectn #	GSI
_____	130 Rebecca Chota
_____	131 Junsi Gu
_____	132 Rui Huang
_____	133 Natalie Vandeven
_____	134 Deidra Gerlach
_____	135 Shaoon Rahman
_____	136 Soojeong Kim
_____	137 Emily Nelson
_____	138 Anthony Grillo
_____	139 Wen Wen

This exam has 13 pages including this cover page.
The last five pages include a periodic table, tables of characteristic IR frequencies, representative H-1 and C-13 NMR chemical shifts, and H-1/H-1 coupling constants and a table of pKa values for representative acids.

Name _____

Please Print

Signature _____

Student ID # _____

I	14	
II	6	
III	11	
IV	14	
V	5	
VI	25	
VII	20	
VIII	12	
IX	13	
TOTAL	120	

I. (14 points) The Grignard reagent C_6H_5-MgBr is prepared from bromobenzene (C_6H_5-Br) and Mg. Answer in the boxes below the following questions.

(1) (2 points) Is the carbon atom associated with the bromine atom in bromobenzene electrophilic or nucleophilic?

electrophilic nucleophilic

[circle one]

(2) (2 points) Is the carbon atom associated with magnesium in the Grignard reagent electrophilic or nucleophilic?

electrophilic nucleophilic

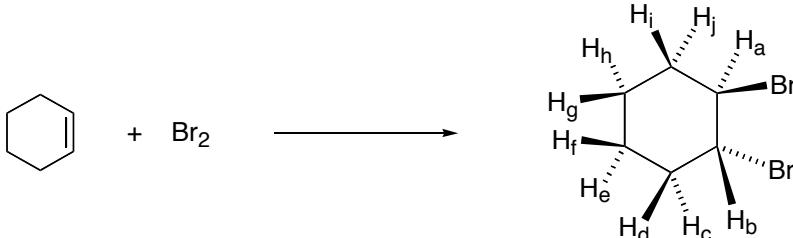
[circle one]

(3) (2 points) Is the magnesium atom oxidized or reduced during the formation of the Grignard reagent?

oxidized reduced

[circle one]

(4) (4 points) Explain why the Grignard reaction has to be carried out in an anhydrous solvent.


(5) (4 points) Write the conjugate carbon acid (i.e., C-H) of the C_6H_5-MgBr and explain why Grignard reagents are strong bases.

structure:	explanation:
------------	--------------

II. (6 points) Ethanol [CH_3CH_2OH] is often present in technical-grade diethyl ether. If this grade of diethyl ether were used, what effect, if any, would the ethanol have on a Grignard reagent used? Explain through the use of a chemical equation using C_6H_5-MgBr as an example.

explanation based upon the reaction mechanism:

III. (11 points) Treatment of cyclohexene with bromine produces *trans*-1,2-dibromocyclohexane as a racemate. In spite of its simple structure, it shows quite complex spectra, particularly the ^1H NMR spectrum.

(1) (2 points) How many different ^{13}C NMR peaks would you expect from this dibromide? _____

(2) (9 points) Identify the indicated pairs of hydrogens in the dibromide as (i) homotopic, (ii) enantiotopic, or (iii) diastereotopic Hs. Write the answers as (i), (ii), or (iii).

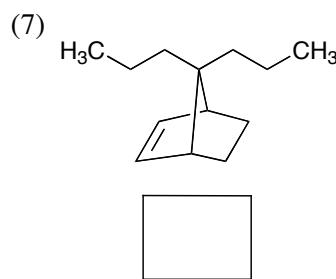
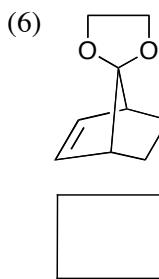
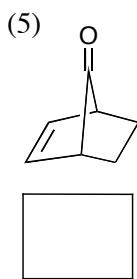
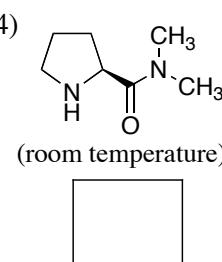
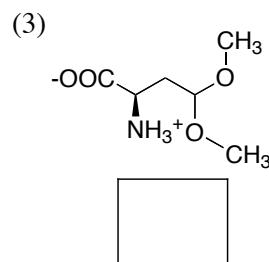
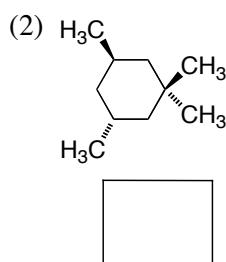
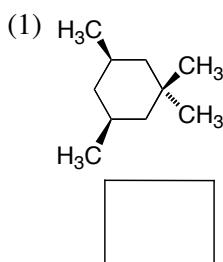
H_a and H_b _____

H_g and H_h _____

H_d and H_j _____

H_c and H_d _____

H_i and H_j _____

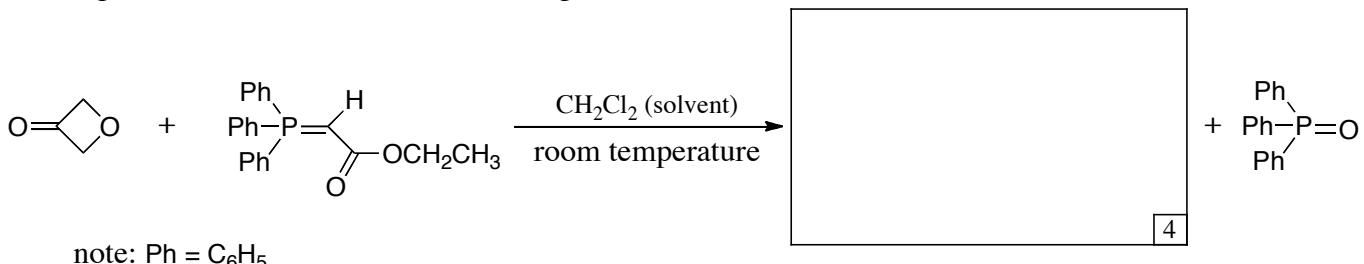







H_e and H_g _____

H_e and H_f _____

H_c and H_i _____

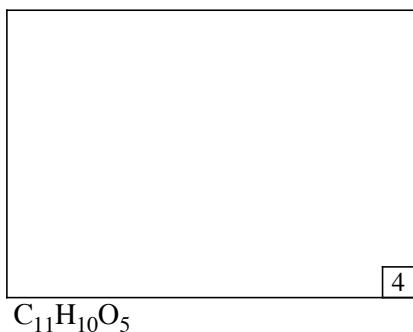
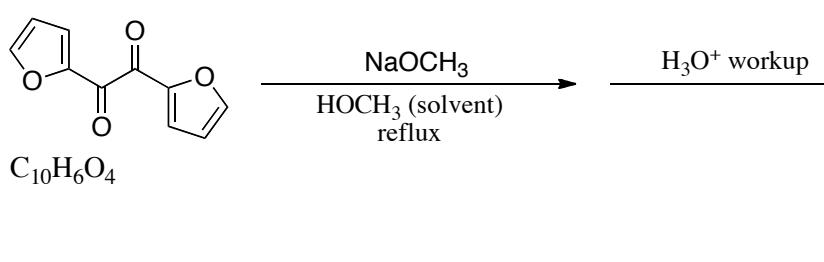
H_f and H_h _____

IV. (14 points) Show how many peaks you would expect to observe in the proton-decoupled ^{13}C NMR spectra of the following compounds. Indicate your answers in each of the boxes provided.


V. (5 points) The pK_a value of the NH of CH_3NH_2 is about 35. In contrast, the pK_a value of NH of urea $[(\text{H}_2\text{N})_2\text{C}=\text{O}]$ is about 12. Provide an explanation in the box below as to why the NH of urea is considerably more acidic than that of methylamine. If your explanation involves the resonance concept, make sure to draw a relevant resonance structure(s).

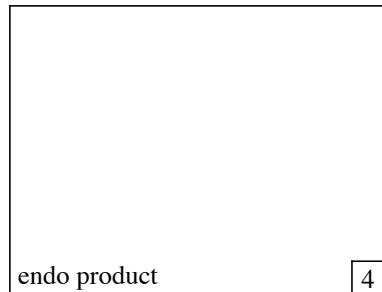
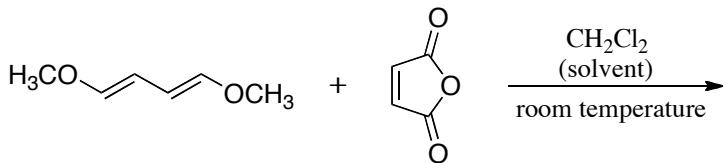

5

VI. (25 points) For each of the following two reactions, draw in the box the structure of the expected product from the reaction shown and provide in the box a reasonable step-by-step mechanism using the curved-arrow convention that accounts for its formation. You need not show the mechanism for the protonation step in (2).

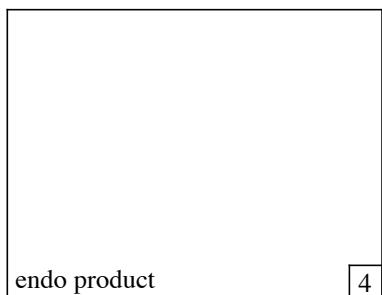
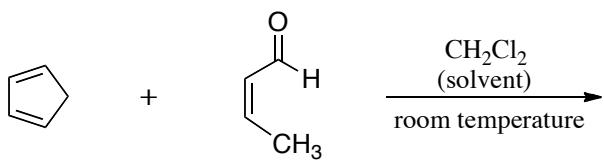


(1) (11 points) [J. Am. Chem. Soc. **2010**, in press]

Mechanism:

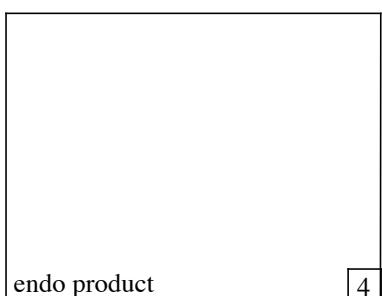
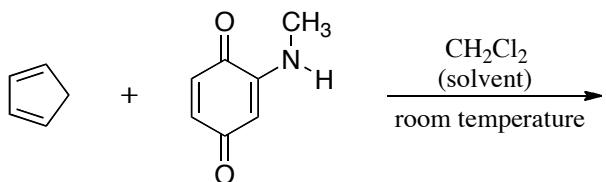
(2) (14 points)

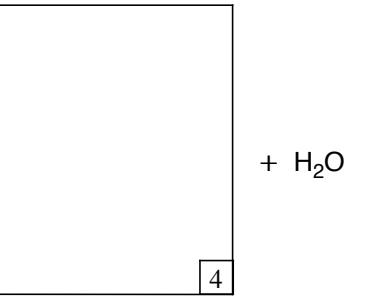
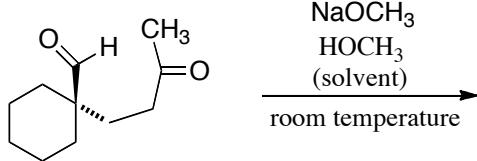
Mechanism:



VII. (20 points) For each of the following reactions, draw in the box provided the structure of the expected product.

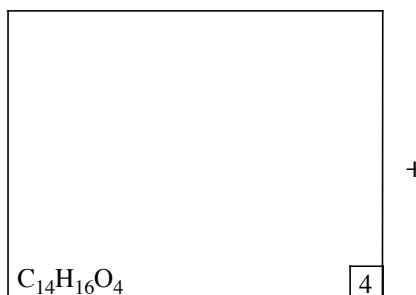
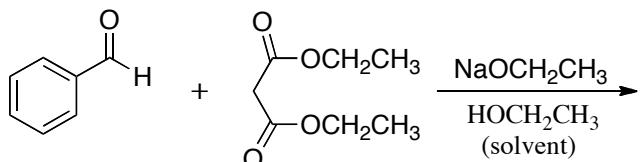
(1)



[4]

(2)

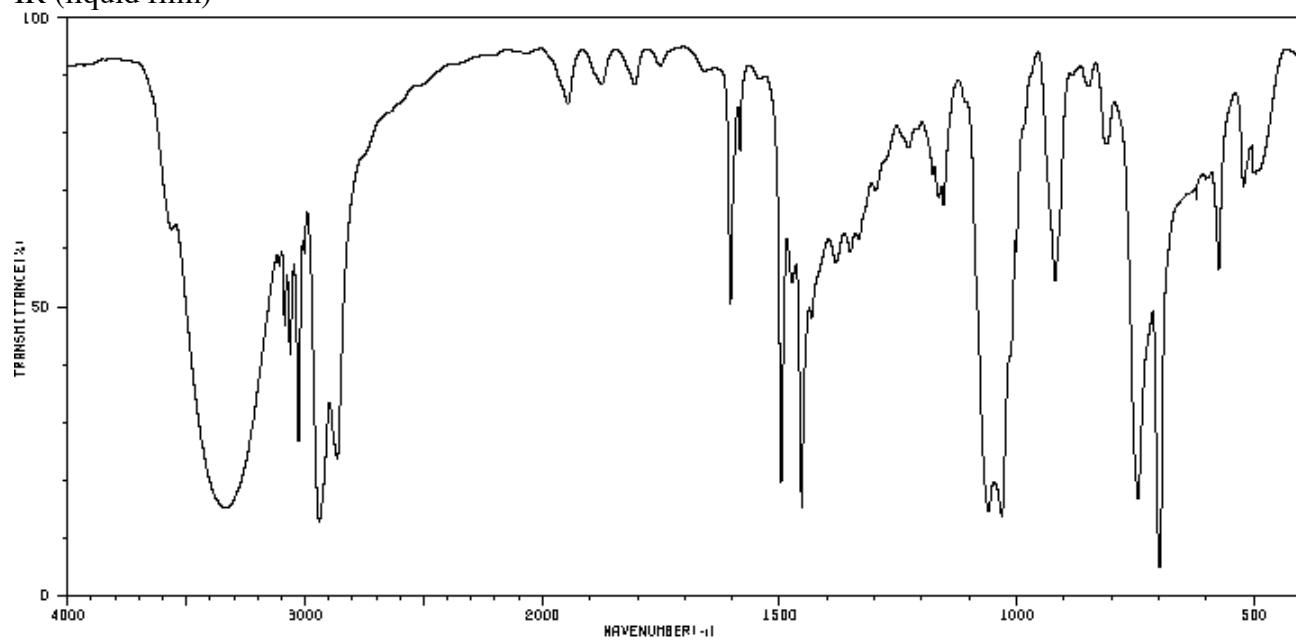
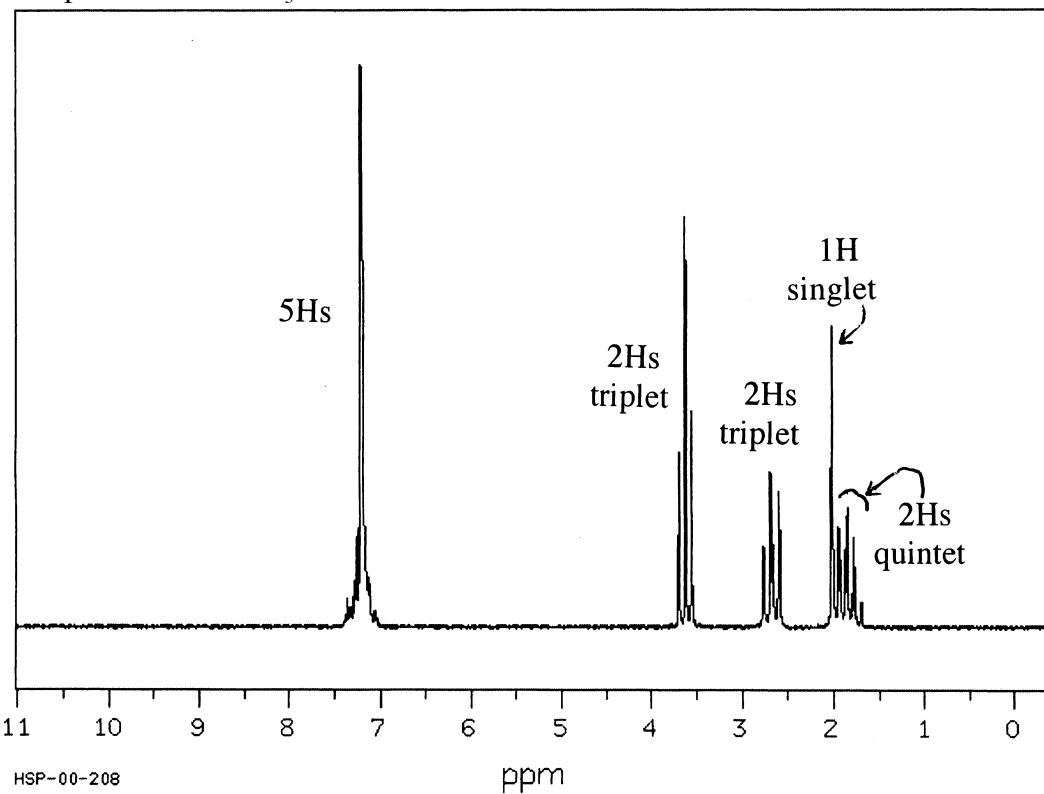


[4]

(3)



[4]

(4)

[4]



(5)

[4]

VIII. (12 points) On the basis of its spectroscopic information provided below, answer the questions given on page 7 and draw the structure of the compound ($C_9H_{12}O$) in the box on page 7.

IR (liquid film)

 1H NMR spectrum in $CDCl_3$

^{13}C NMR data (in $CDCl_3$): δ 32.06, 34.15, 61.85, 125.79, 128.35, 128.39, and 141.91 ppm

VIII. (continued)

(1) (1 points) What is (are) the unit(s) of unsaturation of this compound? _____

(2) (1 point) Does this compound have a benzene ring? Yes No (circle the one that applies)

(3) (1 point) What does the IR spectrum tell you in terms of the presence of an *O*-containing functional group in this molecule? _____

(4) (4 points) What is the structure of this compound? (no partial)

(5) (5 points) Draw in the box below the structure you showed above and assign all ^1H peaks in the 1 – 4 ppm range and the ^{13}C peak at 61.85 ppm to the corresponding H and C nuclei in the proposed structure.

IX. (13 points) On the basis of its spectroscopic information provided below, answer the questions given on page 8 and draw the structure of the compound ($\text{C}_7\text{H}_{14}\text{O}$) in the box on page 8.

$\text{C}_7\text{H}_{14}\text{O}$: IR (liquid film) 2958 - 2872 (several strong peaks), 1719 cm^{-1} (strong).

^1H NMR (CDCl_3) δ 0.890 (d, 6H, J = 7.1 Hz), 1.359 (quartet, 2H, J = 7.1 Hz), 1.435 (nonet,* 1H, J = 7.1 Hz), 2.137 (s, 3H), and 2.418 (t, 2H, J = 7.1 Hz)

^{13}C NMR (CDCl_3) δ 22.36, 27.73, 29.79, 32.72, 41.82, 209.22 ppm

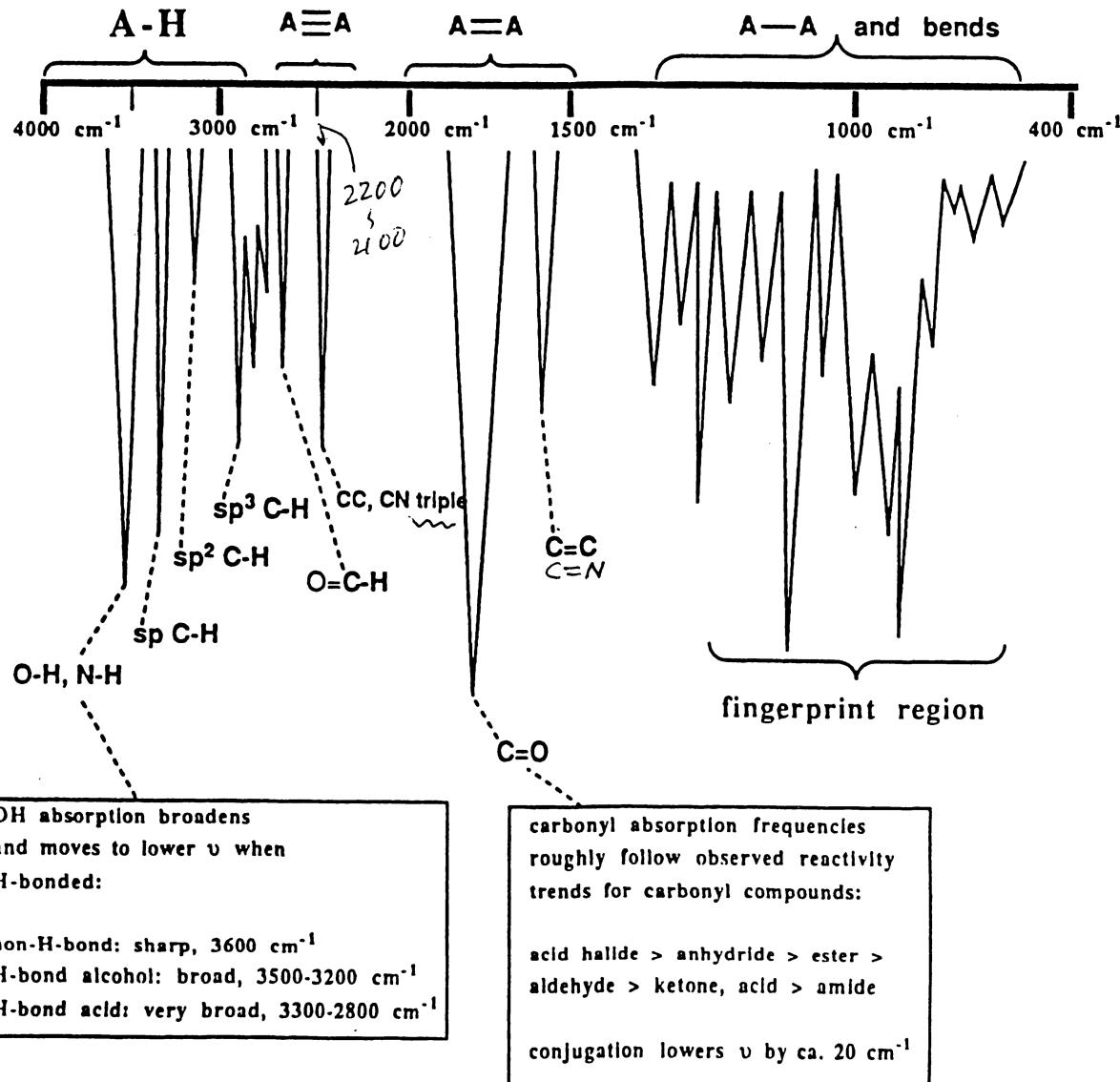
note: *nine peaks

IX. (continued)

(1) (1 points) What is (are) the unit(s) of unsaturation of this compound? _____

(2) (1 point) What do the IR spectral data tell you in terms of the presence of an *O*-containing functional group in this molecule? _____

(3) (1 points) What do the ^{13}C NMR spectral data tell you in terms of the presence of an *O*-containing functional group in this molecule? _____


(4) (4 points) What is the structure of this compound? (no partial)

4

(5) (6 points) Draw in the box below the structure you showed above and assign all ^1H peaks and the ^{13}C peak at 209.22 ppm to the corresponding H and C nuclei in the proposed structure.

6

PERIOD	GROUP	1A	2A	3A	4A	5A	6A	7A	He												
1		H 1.008							4.003												
2		Li 6.941	Be 9.012																		
3		Na 22.99	Mg 24.31																		
4		K 39.10	Ca 40.08	Sc 44.96	Ti 47.88	V 50.94	Cr 52.00	Mn 54.94	Fe 55.85	Co 58.93	Ni 58.69	Cu 63.55	Zn 65.38	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.90	Kr 83.80		
5		Rb 85.47	Sr 87.62	Y 88.91	Zr 91.22	Nb 92.91	Mo 95.94	Tc (98)	Ru 101.1	Rh 102.9	Pd 106.4	Ag 107.9	Cd 112.4	In 114.8	Sn 118.7	Sb 121.8	Te 127.6	I 126.9	Xe 131.3		
6		Cs 132.9	Ba 137.3	La 138.9	Hf 178.5	Ta 180.9	W 183.9	Re 186.2	Os 190.2	Ir 192.2	Pt 195.1	Au 197.0	Hg 200.6	Tl 204.4	Pb 207.2	Bi 209.0	Po (209)	At (210)	Rn (222)		
7		Fr (223)	Ra 226.0	Ac 227.0	89 90-103 ACTIN- IDES (261)	88 (262)	89 (263)														
	LANTHANIDE SERIES	Ce 140.1	Pr 140.9	Nd 144.2 (145)	Sm 150.4	Eu 152.0	Gd 157.3	Tb 158.9	Dy 162.5	Ho 164.9	Er 167.3	Tm 168.9	Yb 173.0	Lu 175.0							
	ACTINIDE SERIES	Th 232.0	Pa 231.0	U 238.0	Np 237.0 (244)	Pu (243)	Am (247)	Cm (247)	Bk (247)	Cf (251)	Es (252)	Fm (257)	Md (258)	No (259)	Lr (260)						

TABLE 10.2 Characteristic Infrared Absorption Frequencies

Bond Type	Stretching, cm^{-1}	Bending, cm^{-1}
C—H alkanes	2960–2850 (s)	1470–1350 (s)
C—H alkenes	3080–3020 (m)	1000–675 (s)
C—H aromatic	3100–3000 (v)	870–675 (v)
C—H aldehyde	2900, 2700 (m, 2 bands)	
C—H alkyne	3300 (s)	
C≡C alkyne	2260–2100 (v)	
C≡N nitrile	2260–2220 (v)	
C=C alkene	1680–1620 (v)	
C=C aromatic	1600–1450 (v)	
C=O ketone	1725–1705 (s)	
C=O aldehyde	1740–1720 (s)	
C=O α,β -unsaturated ketone	1685–1665 (s)	
C=O aryl ketone	1700–1680 (s)	
C=O ester	1750–1735 (s)	
C=O acid	1725–1700 (s)	
C=O amide	1690–1650 (s)	
O—H alcohols (not hydrogen bonded)	3650–3590 (v)	
O—H alcohols (hydrogen bonded)	3600–3200 (s, broad)	1620–1590 (v)
O—H acids	3000–2500 (s, broad)	1655–1510 (s)
N—H amines	3500–3300 (m)	
N—H amides	3400–3200 (m)	
C—O alcohols, ethers, esters	1300–1000 (s)	
C—N amines, alkyl	1220–1020 (w)	
C—N amines, aromatic	1360–1250 (s)	
NO ₂ nitro	1560–1515 (s)	
	1385–1345 (s)	

s = strong absorption

w = weak absorption

m = medium absorption

v = variable absorption

TABLE 11.1 Typical Chemical Shifts for Types of Hydrogen Atoms, Seen in Proton Magnetic Resonance Spectra

Type of Hydrogen Atom	δ^*	Type of Hydrogen Atom	δ^*
RCH ₃	0.9	R ₂ C=CH ₂	5.0
RCH ₂ R acyclic	1.3	RCH=CR ₂	5.3
cyclic	1.5	ArH	7.3
R ₃ CH	1.5–2.0	O RCH	9.7
R ₂ C=CCH ₃ R'	1.8	RNH ₂	1–3
O RCCH ₃	2.0–2.3	ArNH ₂	3–5
ArCH ₃	2.3	O RCNHR	5–9
RC≡CH	2.5	ROH	1–5
RNHCH ₃	2–3	ArOH	4–7
RCH ₂ X (X = Cl, Br, I)	3.5	O RCOH	10–13
O ROCH ₃ , RCOCH ₃	3.8		

*The chemical shift values are given in ppm relative to tetramethylsilane at δ 0.00 and are for the hydrogen atoms shown in boldface in the formulas. The values for hydrogen atoms on oxygen and nitrogen are highly dependent on solvent, concentration, and temperature.

TABLE 11.3 Coupling Constants Seen in Proton Magnetic Resonance Spectra

Type of Hydrogen Atoms	J, Hz	Type of Hydrogen Atoms	J, Hz
	12-15		0-3
	6-8		2-3
	2-3		6-10
	12-18		1-3
	6-12		0-1
	0-2		
	0-3		

TABLE 11.4 Chemical Shifts for Carbon Atoms in Carbon-13 Nuclear Magnetic Resonance Spectra

Type of Carbon Atom	δ^*	Type of Carbon Atom	δ^*
RCH_2CH_3	13-16	$\text{RCH}=\text{CH}_2$	115-120
RCH_2CH_3	16-25	$\text{RCH}=\text{CH}_2$	125-140
R_3CH	25-38	$\text{RC}\equiv\text{N}$	117-125
CH_3CR	~ 30	ArH	125-150
CH_3COR	~ 20	RCOR'	170-175
RCH_2Cl	40-45	RCOH	177-185
RCH_2Br	28-35	RCH	190-200
RCH_2NH_2	37-45	RCR'	205-220
RCH_2OH	50-64		
$\text{RC}\equiv\text{CH}$	67-70		
$\text{RC}\equiv\text{CH}$	74-85		

*The chemical shift values are given in ppm relative to tetramethylsilane at δ 0.00 and are for the carbon atoms shown in boldface in the formulas.

ACID	pK _a	CONJUGATE BASE	ACID	pK _a	CONJUGATE BASE
(Strongest Acid)		(Weakest Base)			
	-9			10.2	
	-9			10.2	
	-7			10.2	
	-2.4			10.5	
	-1.7			15.0	
	-1.3			15.7	
	0.64			17	
	3.2			19	
	4.2			20	
	4.6			26	
	4.8			35	
	6.5			36	
	9.2			36	
	9.1			41	
	9.4			43	
	10.0		(Weakest Acid)	49	
					(Strongest Base)