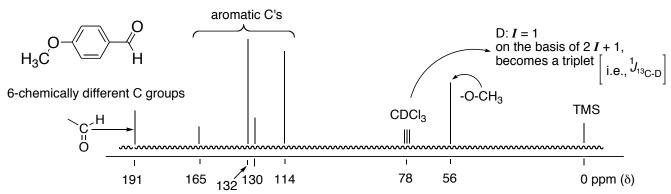
Chem 216 S11 Notes - Dr. Masato Koreeda

Topic: NMR-III (C-13 NMR) page 1 of 2.

¹³C NMR Spectroscopy

(1) 13 C Isotope (I = 1/2; the same as 1 H)

Natural abundance of 13 C is only 1% [99% of carbon is 12 C (I = 0)].


For example, for CH₃CH₂OH: A probability of finding ¹³C in the CH₃ is 0.01 (1%) and a probability of finding ¹³C in the CH₂ is 0.01 (1%).

Thus, a probability of finding 13 C in both the CH₃ and CH₂ at the same time is 0.001 (1% of 1%). Therefore, the contribution of 13 C- 13 C coupling in natural abundance 13 C NMR may be ignored. However, 13 C found at any 1 H-attached carbon exhibits spin-spin coupling with the 1 H(s) (one-bond coupling; 1 J_{13C,1H}). In order to avoid complications due to these 13 C- 1 H couplings, 13 C NMR spectra are usually obtained by eliminating these couplings by irradiating the entire 1 H NMR absorption range (called decoupling). Consequently, all 13 C NMR peaks are observed as *singlets*. This mode of obtaining 13 C NMR spectra is called a **proton-decoupled** (or broad-band decoupled) method.

Date: June 2, 2011

(2) Proton-decoupled ¹³C NMR Spectra

As in the case of ${}^{1}H$ NMR, ${}^{13}C$ NMR spectra are obtained typically in CDCl₃ with tetramethylsilane (TMS) as internal reference, i.e., $\delta = 0$ ppm for TMS methyl carbons. Most of the ${}^{13}C$ NMR chemical shift values fall in the range between 0 and 220 ppm. For representative ${}^{13}C$ NMR chemical shifts, see Table 11.2, p. 403 of Ege's book.

(a) Unlike ¹H NMR, the intensity of each of the ¹³C peaks is *not* proportional to the number of ¹³C nuclei belonging to each peak.

(b) ¹³C NMR chemical shifts are predictable primarily based upon the electron density on each C.

(c) The chemical shifts of alkynic sp carbons are unusual as in the case of alkynic Hs in ¹H NMR. However, allenic sp carbons have expected chemical shifts (~ 200 ppm).

R-
$$C \equiv C$$
-H

 $74-85 \text{ ppm}$
 93.4 ppm
 207 ppm

These are quite high-field shifted for sp² carbons!

 $C = C = CH_2$
 $C = CH_3$
 $C = CH_2$
 $C =$

Chem 216 S11 Notes - Dr. Masato Koreeda

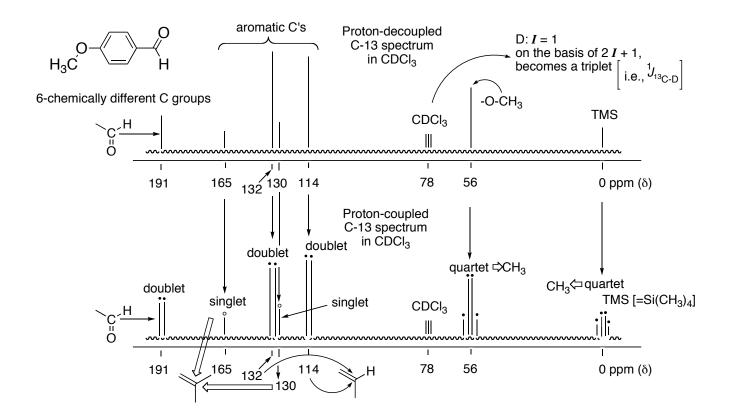
Topic: NMR-III (C-13 NMR) page 2 of 2.

(d) Unlike ¹H NMR, alkenic and aromatic carbons have similar chemical shifts (δ 110 – 140 ppm) (i.e., no significant ring current effect observed in C-13 NMR).

Date: June 2, 2011

(e) Chemical shifts of aromatic carbons: predictable on the basis of the resonance and inductive effects of the substituents on the ring.

(3) Proton-coupled ¹³C NMR Spectra


By irradiating slightly off the ¹H NMR region, each of the ¹³C NMR peaks can be designed to exhibit couplings with the ¹H nuclei attached to the C, i.e., one-bond ¹³C-¹H coupling(s).

Under such conditions: a CH₃ (methyl) carbon appears as a quartet.

a CH₂ (methylene) carbon appears as a triplet.

a CH (methine) carbon appears as a doublet.

a quaternary carbon appears as a singlet.

