
## What about an isolated system? $\Rightarrow \Delta S_{Sys} \geq 0$ !

A gas will not spontaneously compress



Heat will not spontaneously flow from a cooler to a warmer object



$$\Delta S=S_2-S_1 = k (lnW_2-lnW_1)$$
= -39 k

$$\Delta S_{Sys} = \Delta S_1 + \Delta S_2 = \frac{q}{T_1} + \frac{-q}{T_2} = q \left[ \frac{T_2 - T_1}{T_1 T_2} \right] < 0$$

in a truly macroscopic system  $N \approx 10^{23}$ 

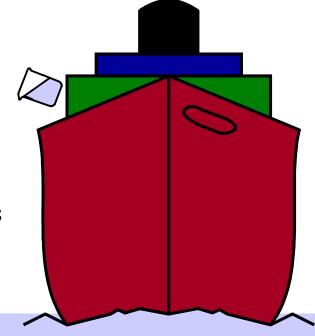
Matter and energy tend to become disordered

 $\Delta S_{Sys} < 0$  would violate the 2nd law  $\Rightarrow$  it will not happen

NIIS TAILUI CHAIL AVV

# What other examples for the second law of thermodynamics are there in daily life?

"The second law of thermodynamics has as much truth as saying that, if you poured a glass of water into the ocean, it would not be possible to get the same glass of water back again"


James Clerk Maxwell (1831-1879)



Kinetic theory of gases (Maxwell-Boltzmann distribution of velocities)

⇒ heat = thermal motion of particles;

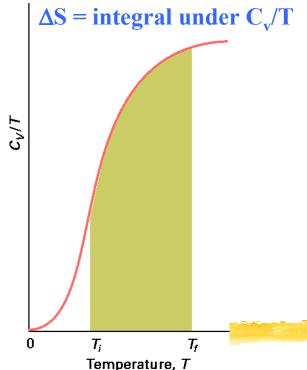
Also: theories of electricity and magnetism

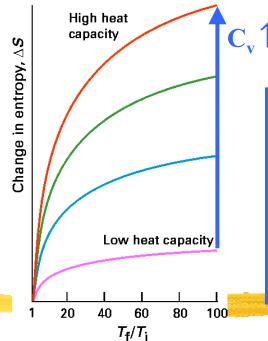




#### The variation of entropy with temperature

$$dS_{Sys} = \frac{dq_{rev}}{T}$$


(a) constant volume:  $dq_v = C_v dT$ 

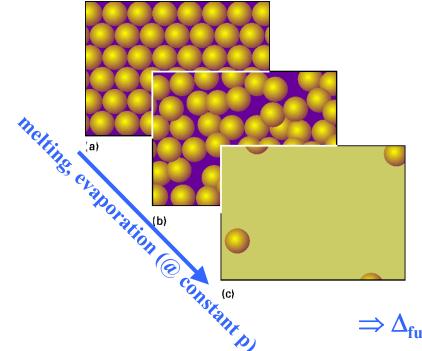

small change

$$\Rightarrow dS_{Sys} = \frac{C_{\rm v}dT}{T}$$

$$\Rightarrow dS_{Sys} = \frac{C_{v}dT}{T} \Rightarrow \Delta S_{Sys} = \int_{T_{i}}^{T_{f}} \frac{C_{v}dT}{T} = C_{v} \int_{T_{i}}^{T_{f}} \frac{dT}{T} = C_{v} \ln \left(\frac{T_{f}}{T_{i}}\right)$$

$$\approx \text{constant heat capacity}$$






(a) constant pressure:  $dq_p = C_p dT$ 

 $T_f > T_i \Rightarrow S \uparrow$ 

$$\Delta S_{Sys} = C_{\rm p} \ln \left( \frac{T_f}{T_i} \right)$$

#### Fusion and boiling entropies



Melting is in equilibrium at  $T_{fus}$ :  $q_{rev} = \Delta_{fus}H$ 

$$\Rightarrow \Delta_{fus} S = \frac{\Delta_{fus} H}{T_{fus}}$$

entropy of fusion (per mole)

For ice:  $\Delta_{\text{fus}}H = 6.01 \text{ kJ mol}^{-1} (1 \text{ bar, } 0^{\circ}\text{C})$ 

 $\Rightarrow \Delta_{\text{fus}} S = (6.01 \text{ kJ mol}^{-1})/273.15 \text{ K} = +22 \text{ J mol}^{-1} \text{ K}^{-1}$ 

**Trouton's rule:**  $\Delta_{\text{vap}}H/T \approx 85 \text{ J mol}^{-1} \text{ K}^{-1}$ 

Table 4.1 Entropies of vaporization at 1 atm and the normal boiling point  $\Delta_{\text{vap}}$ S/(| K<sup>-1</sup> mol<sup>-1</sup>) 88.6 Bromine, Br<sub>2</sub> 87.2 Benzene, C6H6 85.9 Carbon tetrachloride, CCl4 Cyclohexane, C6H12 85.1 87.9 Hydrogen sulfide, H<sub>2</sub>S 97.4 Ammonia, NH3 Water, H<sub>2</sub>O Mercury

$$\Delta_{vap} S = \frac{\Delta_{vap} H}{T_{vap}}$$

entropy of vaporization (per mole)

For water:  $\Delta_{\text{vap}}H = 40.7 \text{ kJ mol}^{-1} (1 \text{ bar}, 100^{\circ}\text{C})$ 

$$\Rightarrow \Delta_{\text{vap}} S = (40.7 \text{ kJ mol}^{-1})/373.15 \text{ K} = +109 \text{ J mol}^{-1} \text{ K}^{-1}$$

Nils Walter: Chem 260



### When will a chemical reaction occur spontaneously?

**Endothermic, exothermic and energy neutral processes** all may occur spontaneously

 $\Rightarrow \Delta H_{Svs}$  and  $\Delta U_{Svs}$  do not control spontaneity!

Second Law: 
$$\Delta S_{\text{Universe}} = \Delta S_{\text{System}} + \Delta S_{\text{Surroundings}} \ge 0$$

A reaction is spontaneous if  $\Delta S_{\text{Univ}} > 0$ 

In a chemical reaction: 
$$\Delta S_{Svs} = \overline{\Delta}_r S$$

Heat absorbed or released from system (typically @ constant p)

$$\Delta S_{Surr} = -\frac{q_{Sys}}{T} = -\frac{\Delta_r H}{T}$$

$$\Delta S_{Univ} = \Delta_r S - \frac{\Delta_r H}{T} \ge 0$$

A reaction is spontaneous if and only if:

$$\Delta_r S > \frac{\Delta_r H}{T}$$

| Enthalpy                    | Entropy          | Exothermic?                 | Spontaneous?                                                                                                                                   |
|-----------------------------|------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| $\Delta_{\rm r} { m H} > 0$ | $\Delta_r S < 0$ | Endothermic "heat required" | NO $\Delta S_{Univ} < 0$                                                                                                                       |
| $\Delta_{\rm r} { m H} < 0$ | $\Delta_r S > 0$ | Exothermic "heat released"  | $\mathbf{YES}$ $\Delta S_{Univ} > 0$                                                                                                           |
| $\Delta_{\rm r} { m H} > 0$ | $\Delta_r S > 0$ | Endothermic "heat required" | $\begin{array}{ccc} \textbf{IF} & \Delta_{r}S > \Delta_{r}H \\ \hline T \\ \textbf{Entropy Driven} \end{array}$                                |
| $\Delta_{\rm r} H < 0$      | $\Delta_r S < 0$ | Exothermic "heat released"  | $\begin{array}{ccc} \textbf{IF} & -\Delta_{r} \mathbf{H} > -\Delta_{r} \mathbf{S} \\ \hline \mathbf{T} & \textbf{Enthalpy Driven} \end{array}$ |

Energy must be conserved

First Law

$$\Delta S_{Univ} = \Delta_r S - \frac{\Delta_r H}{T} \ge 0$$

But ...

Entropy Rules!



#### Sample problem:

A typical resting person generates about 100 W in heat. Estimate the entropy they generate in the surroundings in the course of a day at 20°C!