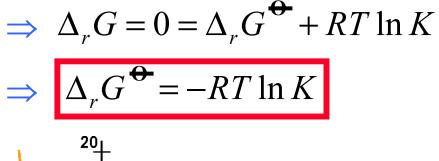
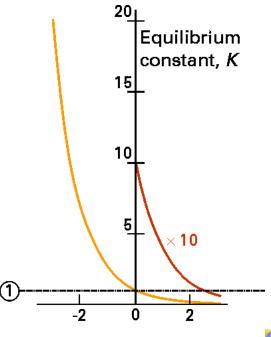
Δ_r G at and far from equilibrium

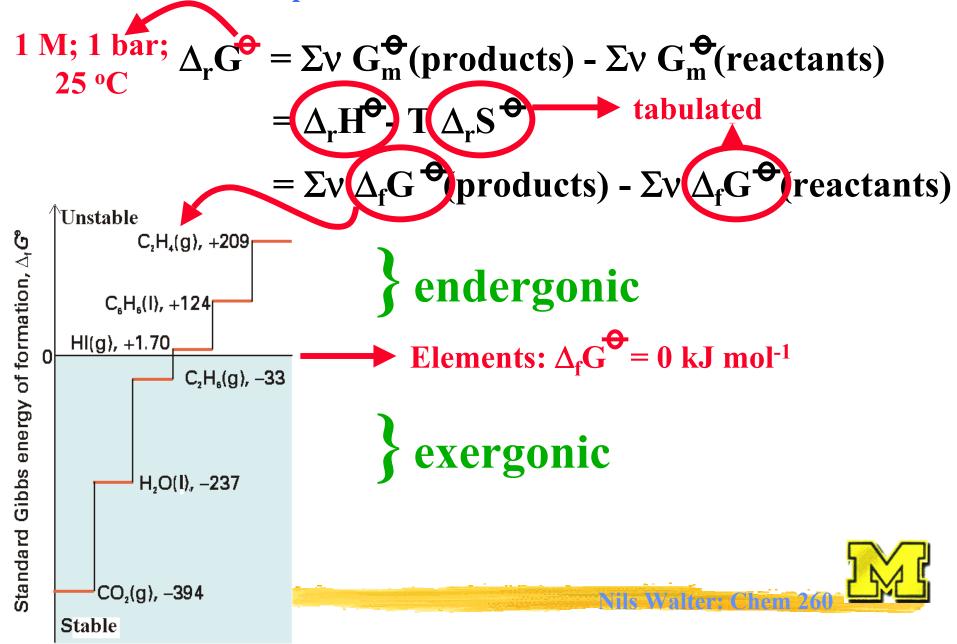

(a) equilibrium: $\mathbf{Q} \to \mathbf{K} \Rightarrow K = \left(\frac{a_C^c \times a_D^d}{a_A^a \times a_B^b}\right)_{\text{equilibr}}$


equilibrium constant

equilibrium (

Table 7.1 Thermodynamic criteria of spontaneity
$$\Delta_r G = \Delta_r H - T \Delta_r S$$

- 1 If the reaction is exothermic ($\Delta_r H^{\ominus} < 0$) and $\Delta_r S^{\ominus} > 0$
 - $\Delta_r G^{\ominus} < 0$ and K > 1 at all temperatures
- 2 If the reaction is exothermic ($\Delta_r H^{\ominus}$ < 0) and $\Delta_r S^{\ominus}$ < 0
 - $\Delta_r G^{\ominus} < 0$ and K > 1 provided that $T < \Delta_r H^{\ominus} / \Delta_r S^{\ominus}$
- 3 If the reaction is endothermic ($\Delta_r H^\Theta > 0$) and $\Delta_r S^\Theta > 0$
 - $\Delta_r G^{\ominus} < 0$ and K > 1 provided that $T > \Delta_r H^{\ominus} / \Delta_r S^{\ominus}$
- 4 If the reaction is endothermic ($\Delta_r H^{\ominus} > 0$) and $\Delta_r S^{\ominus} < 0$
 - $\Delta_r G^{\ominus} < 0$ and K > 1 at no temperature



Standard reaction Gibbs energy, $\Delta_r G^0/RT$

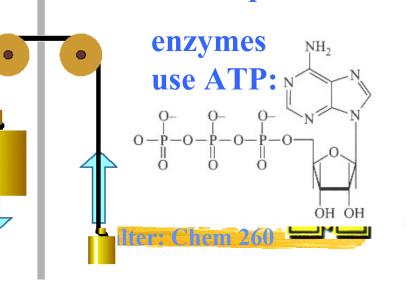
Δ_r G can be calculated

Coupled reactions can overcome an unfavorable Δ_r G

@ equilibrium:

$$\Delta_r G^{\bullet} = -RT \ln K$$

$$\Delta_r G^{\bullet} = -RT \ln K \qquad K = \frac{a_C^c \times a_D^d}{a_A^a \times a_B^b}$$


exergonic:

$$\Delta_r G^{\bullet} < 0 \Rightarrow K > 1 \Rightarrow a_C^{\ c} \times a_D^{\ d} > a_A^{\ a} \times a_B^{\ b} \Rightarrow \text{products will}$$
endergonic:

dominate in equilibrium

 $\Delta_{r}G^{\bullet} > 0 \Rightarrow K < 1 \Rightarrow a_{C}^{c} \times a_{D}^{d} < a_{A}^{a} \times a_{B}^{b} \Rightarrow \text{reactants will}$ dominate in equilibrium

BUT: If an endergonic reaction $(\Delta_r G^{\bullet} > 0)$ is coupled with a strongly exergonic one $(\Delta_r G^{\Theta_i} < 0)$: $\Delta_{r}G^{\Theta} + \Delta_{r}G^{\Theta} < 0$

Sample problem 1:

Estimate the composition of a solution in which G6P and F6P are in equilibrium at 25°C, and draw a graph to show how the spontaneity of the reaction varies with composition; $\Delta_r G^{\bullet} = +1.7 \text{ kJ mol}^{-1}$

Sample problem 2:

In an industrial process N, at 1 bar is mixed with H₂ at 3 bar and the two gases are allowed to reach equilibrium with the product ammonia in a reactor of constant volume. At the temperature of the reaction, K = 977. What are the equilibrium partial pressures of the three gases?

