The cell potential and the Gibbs energy

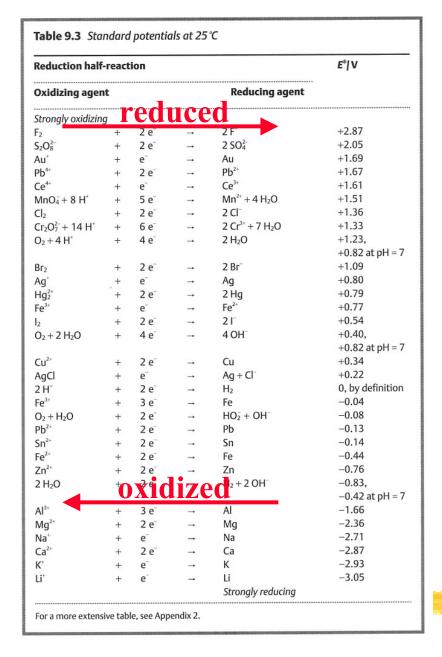
$$- \mathbf{vFE} = \Delta_{\mathbf{r}} \mathbf{G}$$
 $\Rightarrow E = -\frac{\Delta_{r} G}{vF}$ @ equilibrium: $\Delta_{\mathbf{r}} \mathbf{G} = \mathbf{0} \Rightarrow \mathbf{E} = \mathbf{0}$

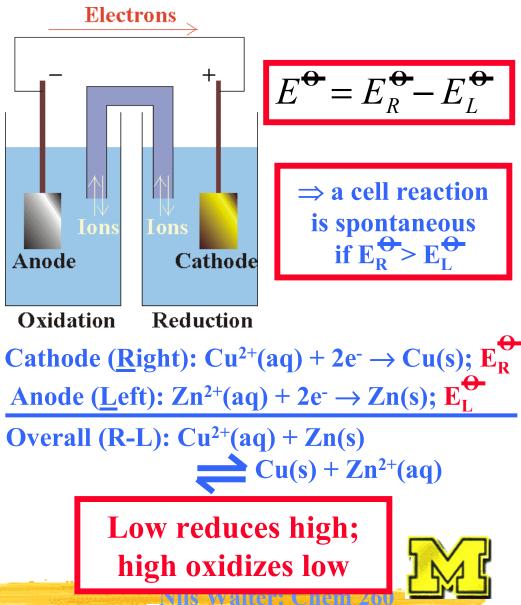
if $\Delta_r G < 0 \Rightarrow E > 0$ for a spontaneous reaction if $\Delta_r G > 0 \Rightarrow E < 0$ for a non-spontaneous reaction

and
$$\Delta_r G = \Delta_r G^{\bullet} + RT \ln Q$$

$$\Rightarrow E = \left(\frac{\Delta_r G}{vF}\right) - \frac{RT}{vF} \ln Q = E^{\Theta} - \frac{RT}{vF} \ln Q \quad \text{(a) equivariant of } P = \frac{RT}{vF} \ln Q$$

@ equilibrium:


$$\ln K = \frac{vFE}{RT}$$


Nernst equation

Standard cell potentials are measured relative to the standard hydrogen electrode: $Pt(s)|H_2(g)|H^+(aq)$ with $E^{\Theta}=0$ V

standard cell potential

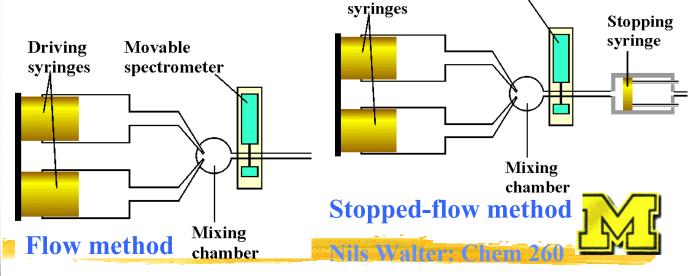
The electrochemical series

The rates of reactions: Chemical kinetics

Atkins, Chapter 10

What can we learn?

- → predict how quickly a reaction mixture approaches equilibrium
- → study the reaction mechanism (understand the elementary steps)

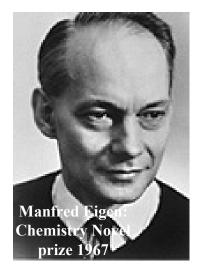

How do we do it?

- → determine the stoichiometry and identify any side reactions
- → determine how the reagent and/or product concentrations change

A) Quenching the reaction at defined times

B) Real-time analysis by spectroscopy

Technique	Range of time-scales
Femtochemistry	>10 ⁻¹⁵
Flash photolysis	>10 ⁻¹²
Fluorescence decay	$10^{-10} - 10^{-6}$
Ultrasonic absorption	$10^{-10} - 10^{-4}$
EPR*	$10^{-9} - 10^{-4}$
Electric field jump	10 ⁻⁷ -1
Temperature jump	10 ⁶ -1
Phosphorescence	10 ⁶ -10
NMR*	10 ⁻⁵ -1
Pressure jump	>10 ⁻⁵
Stopped flow	>10 ⁻³



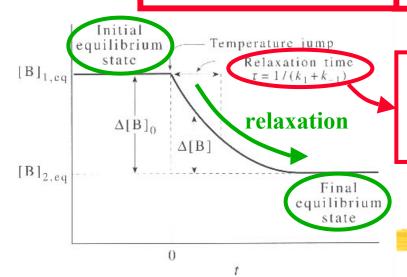

Driving

with time (@ constant T)

Spectrometer

Kinetics can be measured when relaxing!?

Connection between kinetics and equilibrium!

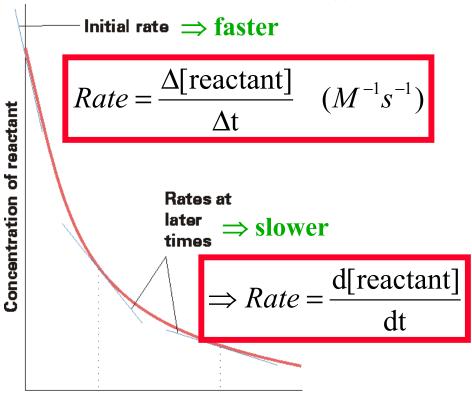

@ equilibrium:

 $A \rightarrow B$ is as fast as $B \rightarrow A$

$$K = \frac{[B]}{[A]}$$

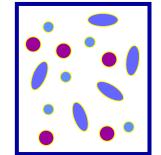
van't Hoff equation: T dependence of K

$$\ln K' - \ln K = \ln \frac{K'}{K} = \frac{\Delta_r H}{R} \left(\frac{1}{T} - \frac{1}{T'} \right)$$


From the relaxation time the reaction rate can be calculated ⇒ fast reactions that reach their equilibrium quickly can be studied!

Reaction rates

Raw kinetic data: [reactant](t)


Time, t

Stoichiometry and rate:

$$A + B \rightarrow C$$

E.g.,
$$I_2 + C_2H_4 \rightarrow C_2H_4I_2$$

$$\Delta B = -5$$

$$\triangle C = 5$$

$$-\frac{d[A]}{dt} = -\frac{d[B]}{dt} = \frac{d[C]}{dt}$$

$$2A \rightarrow C$$

$$\Delta A = -10$$

$$\triangle C = 5$$

$$-\frac{d[A]}{dt} = 2\frac{d[C]}{dt}$$

$$\Rightarrow -\frac{1}{2}\frac{d[A]}{dt} = \frac{d}{dt}$$

vils Walter: Chem 260