Rates of reaction components

In General:

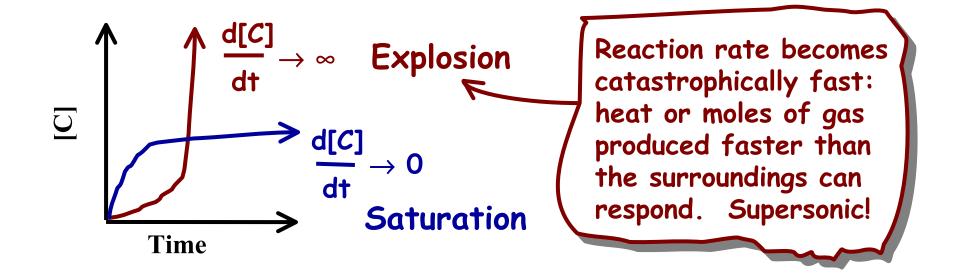
$$aA + bB \rightarrow cC + dD$$

$$-\frac{1}{a}\frac{d[A]}{dt} = -\frac{1}{b}\frac{d[B]}{dt} = \frac{1}{c}\frac{d[C]}{dt} = \frac{1}{d}\frac{d[D]}{dt}$$

Sample problem: The rate of formation of NH_3 in the reaction $N_2(g)+3$ $H_2 \rightarrow 2$ $NH_3(g)$ was reported as 1.2 mmol L^{-1} s⁻¹ under a certain set of conditions. What is the rate of consumption of H_2 ?

The rate of a reaction may depend upon:

- * Concentration of reactants
- * Concentration of products
- * Mechanism of the reaction
- * Time



Rate laws

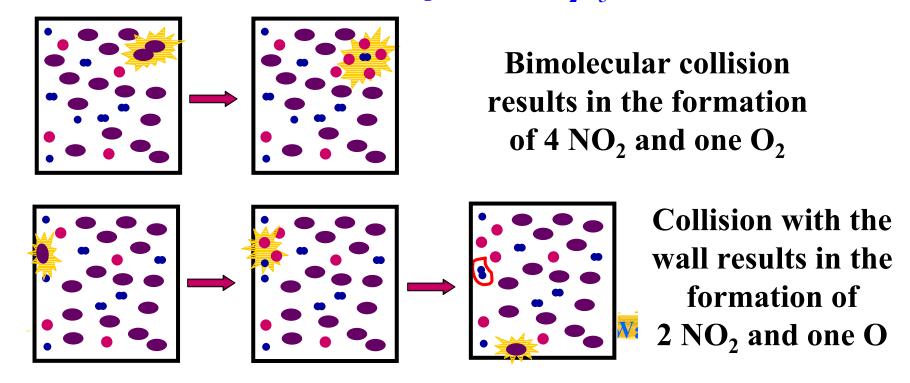
$$A + B \rightarrow C$$

$$\frac{dC}{dt} = f([A],[B],[C],t)$$

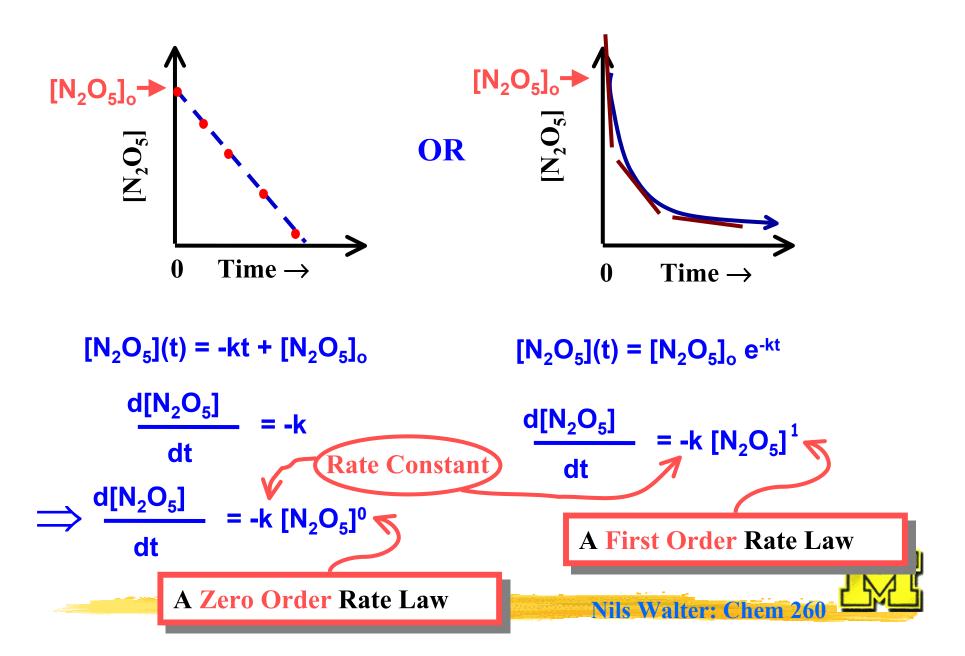
Expression relating rate to concentrations and time

Many different functional forms are in principle possible!

An <u>Empirical</u> Rate Law: An experimentally determined, macroscopic rate law

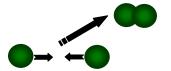


Example: Decomposition of N₂O₅


$$N_2O_5 \rightarrow 2 NO_2 + 1/2 O_2 \frac{d[N_2O_5]}{dt} = f([N_2O_5],[N_2O],[O_2],...,t)?$$

The rate law depends on the overall microscopic mechanism and <u>cannot</u> in general be inferred from the net reaction!

For example, the following two mechanisms will give very different rate laws for the decomposition of N_2O_5 :



How do we find the rate law?

Empirical rate laws

$$A \rightarrow B$$

$$A + B \rightarrow C$$

If
$$\frac{-d[A]}{dt} = k [A][B]$$
Overall 2nd Order
1st order in A
1st order in B

If
$$\frac{-d[A]}{dt} = k [A]^2 [B]$$
Overall 3rd Order
2nd order in A
1st order in B

Sample Problem:

The reaction $2NO + Cl_2 \rightarrow 2NOCl$ was studied at $-10^{\circ}C$. The following data were obtained for the rate of loss of Cl_2 .

Measure- ment	[NO] _o	[Cl ₂] _o	d[Cl ₂]
1	0.10 M	0.10 M	-0.18 M/s
2	0.10 M	0.20 M	-0.35 M/s
3	0.20 M	0.20 M	-1.45 M/s

- (a) What is the rate law?
- (b) What is the rate constant?

