Differential and integrated rate laws

Consider $A \rightarrow B$: a) 0^{th} Order

$$-\frac{d[A]}{dt} = k$$

$$-\frac{d[A]}{dt} = k$$

$$d[A] = -kdt \implies \int_{[A]_0}^{[A](t)} d[A] = -k \int_0^t dt$$

Differential rate law

$$\Rightarrow$$
 [A](t)-[A]₀ = -kt

$$[A](t) = [A]_0 - kt$$

Integrated rate law

b) 1st Order

$$-\frac{d[A]}{dt} = k[A]$$

$$\int_{[A]_0}^{[A](t)} \frac{d[A]}{[A]} = -k \int_0^t dt$$

Differential rate law

$$-\frac{d[A]}{dt} = k[A]$$

$$\int_{[A]_0}^{[A](t)} \frac{d[A]}{[A]} = -k \int_0^t dt$$

$$\Rightarrow \ln[A](t) - \ln[A]_0 = \ln\left(\frac{[A](t)}{[A]_0}\right) = -kt$$

$$[A](t) = [A]_0 e^{-kt}$$

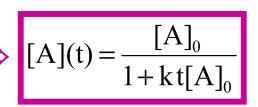
Integrated rate law

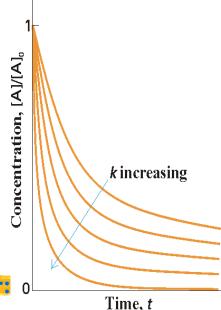
Time, t

Differential and integrated rate laws of a second order reaction

c) 2nd Order

$$-\frac{d[A]}{dt} = k[A]^2$$


$$\frac{1}{2} = k[A]^{2} \qquad \int_{[A]_{0}}^{[A](t)} \frac{d[A]}{[A]^{2}} = -k \int_{0}^{t} dt$$


Differential rate law

$$\Rightarrow -\frac{1}{[A]}\Big|_{[A]_0}^{[A](t)} = -\left(\frac{1}{[A](t)} - \frac{1}{[A]_0}\right) = -kt$$

$$\Rightarrow \frac{1}{[A](t)} = kt + \frac{1}{[A]_0}$$

Integrated rate law

Nils Walter:

The half-life of a reaction

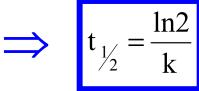
Half-Life of a Reaction:

The time required for [A] to drop by a factor of two

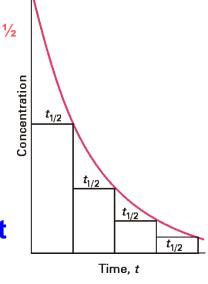
$$0^{th}$$
 Order: [A](t) = -kt + [A]₀

$$[A]_0/2 = -kt_{1/2} + [A]_0$$

$$kt_{\frac{1}{2}} = [A]_0 - [A]_0/2$$


$$\implies t_{\frac{1}{2}} = \frac{[A]_0}{2k}$$

2nd Order:
$$\frac{1}{[A](t)} = kt + \frac{1}{[A]_0}$$


$$\frac{2}{[A]_0} = kt_{1/2} + \frac{1}{[A]_0}$$

1st Order:
$$[A](t) = [A]_0 e^{-kt}$$

$$[A]_0/2 = [A]_0 e^{-kt} \frac{1}{2}$$

 $e^{-kt} \frac{1}{2} = \frac{1}{2}$

Independent of [A]₀!

$$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$$

Nils Walter: Chem 260

Summary of rate laws

Differential Rate Law

Integral Rate Law

Half-Life

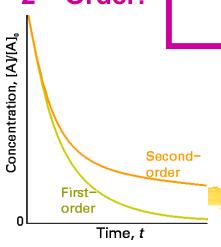
$$-\frac{d[A]}{dt} = k$$

$$[A](t) = [A]_0 - kt$$

$$t_{\frac{1}{2}} = \frac{[A]_0}{2k}$$

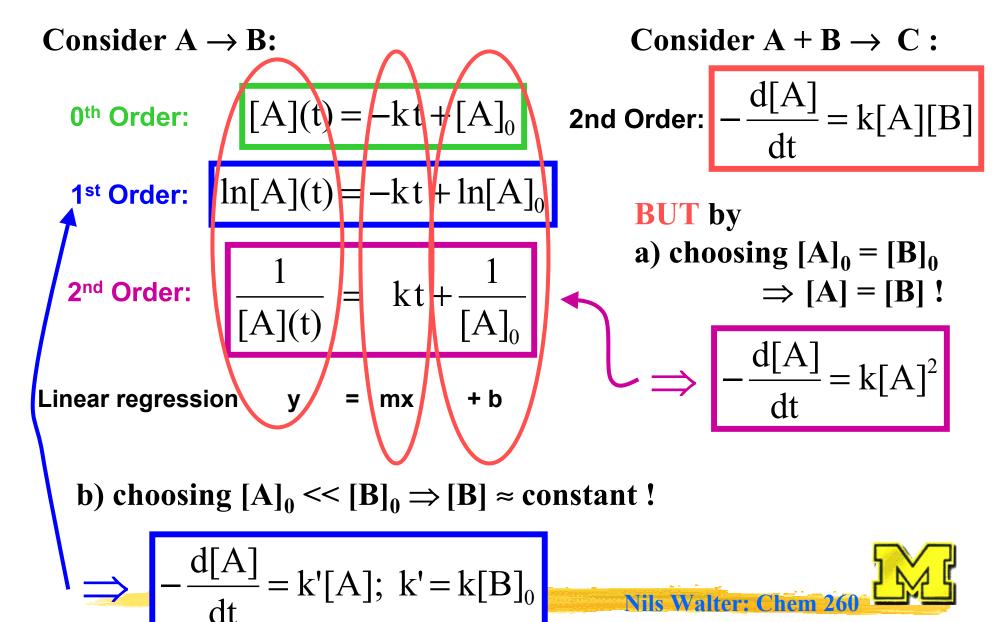
1st Order:

$$-\frac{d[A]}{dt} = k[A]$$


$$[A](t) = [A]_0 e^{-kt}$$

$$t_{\frac{1}{2}} = \frac{\ln 2}{k}$$

$$-\frac{d[A]}{dt} = k[A]^2$$


$$\frac{1}{[A](t)} = kt + \frac{1}{[A]_0}$$

$$t_{\frac{1}{2}} = \frac{1}{k[A]_0}$$

Tricks to determine rate laws

Nils Walter: Chem

Sample Problem:

Consider: $CH_3CH_2NO_2 + OH^- \rightarrow CH_3CHNO_2^- + H_2O$

Initially $[CH_3CH_2NO_2] = [OH^-] = 5.00 \times 10^{-3} M$ The concentration of

hydroxide was then measured by monitoring the pH with the following result.

What is the order of the reaction? What is k?

t (min)	0	5	10	15	
[OH ⁻] (M)	5.00×10 ⁻³	2.6×10 ⁻³	1.7×10 ⁻³	1.3×10 ⁻³	
[OH ⁻] ⁻¹	200	385	588	769	

The most reasonable initial guess for this reaction is: 800 $-d[OH^{-}] = k [OH^{-}][CH_3CH_2NO_2] = k [OH^{-}]^2$ dt $Good line (r = 0.9998) \Rightarrow correct rate law$ $slope = k = 0.637 M^{-1} s^{-1}$ $\Rightarrow \frac{1}{[OH^{-}]} = kt + \frac{1}{[OH^{-}]_0}$ Nils Walton
Time (s)