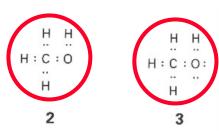
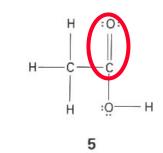
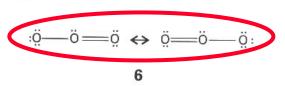
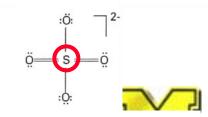
The Essence of Chemistry: The Covalent Bonding of Atoms

Atkins, Chapter 14


A brief review: Lewis bonding theory (1916)


1.) Arrange atoms as found in molecule


2.) Add one electron pair (:) between bonded atoms


- 3.) Use remaining electron pairs to complete the octets of all atoms (lone electron pairs!)
- 4.) Replace bonding electron pairs by bond lines (-)
- 5.) Allow for double and triple bonds
- **6.**) Allow for resonance hybrid (= blend)

Further Review: The VSEPR Model to Derive Molecular Geometry

VSEPR= Valence Shell Electron Pair Repulsion

Basic assumption: The valence-shell electron pairs of the central atom adopt positions that maximize their separation (lowest repulsion)

Linear

Trigonal

Tetrahedra

Trigonal

bipyramidal

planar

Trigonal

Seesaw

Square

120°

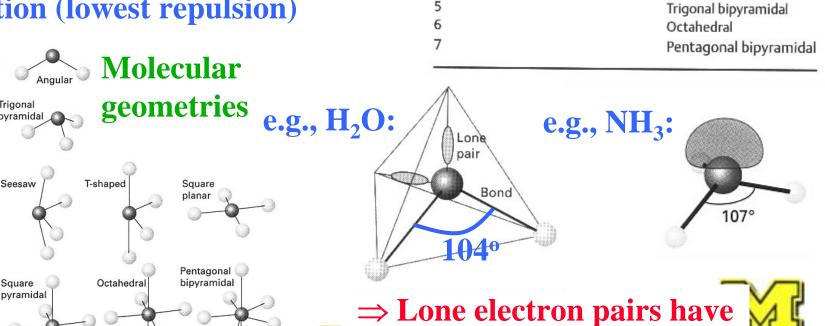
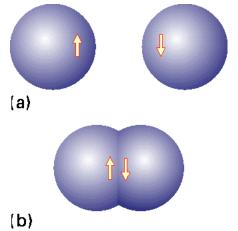
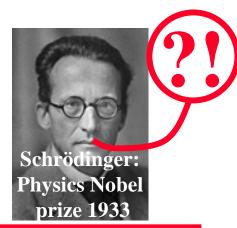


Table 1 Electron pair arrangements

greater repelling effect

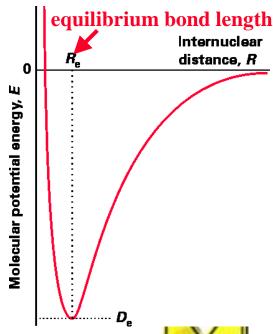

Arrangement


Trigonal planar Tetrahedral

Linear

Number of electron pairs

How Quantum Mechanics can Explain Bonding


Simplifying the problem: the Born-Oppenheimer approximation = the nuclei are stationary

The basis of bonding: electrons have larger space to roam and become attracted by two nuclei

How does one solve the Schrödinger equation?

- Valence Bond Theory
- Molecular Orbital Theory

⇒ Solve the Schrödinger equation for a variety of different nuclear distances

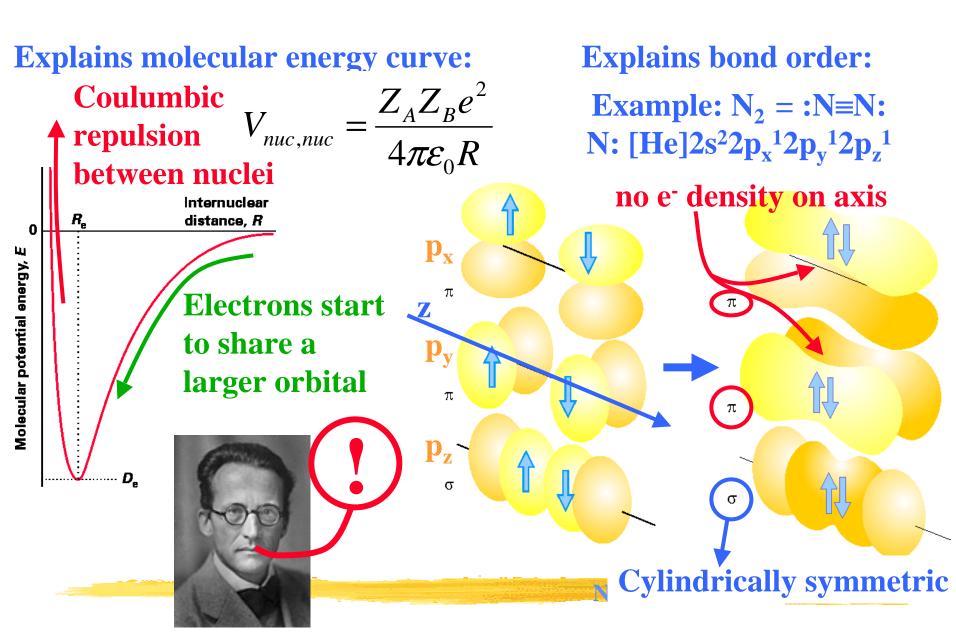
⇒ Molecular potential energy curve

Valence Bond (VB) Theory: Older but useful

Electron 1 of atom A, electron 2 of atom B

A and B far apart:
$$\Psi = \Psi_A(1) \times \Psi_B(2)$$
 "Overall wavefunction"

When A and B come closer:
$$\Psi = \Psi_A(2) \times \Psi_B(1)$$


Alternate overall wavefunction, equally likely (the electrons roam)

⇒ Valence bond function (wavefunctions of electrons blend):

$$\Psi(AB) = \Psi_A(1) \times \Psi_B(2) + \Psi_A(2) \times \Psi_B(1)$$

- ⇒ Bonds do form because electrons have more space and cannot be distinguished
- ⇒ Bonds are allowed to form because electrons can pair —

The VB Theory Explains Experimental Data



Here Comes the Trouble: The VB Theory and Polyatomic Molecules

Example: H₂O
O: [He]2s²2p_x²2p_y¹2p_z¹
H: 1s¹

⇒ Bond angles are poorly predicted

Example: CH₄
C: [He]2s²2p_x¹2p_y¹
H: 1s¹

