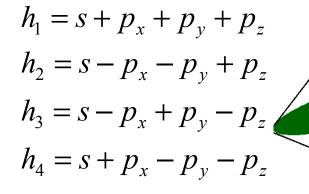
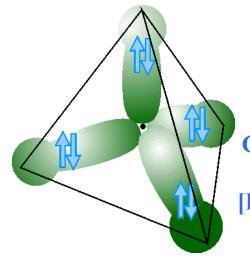

Relief for the VB Theory: Promotion and Hybridization

⇒ Trick 1: Promote a valence electron


C: [He]2s²2p_x¹2p_y¹ \rightarrow [He]2 0 2p_x02p_y02p_z0

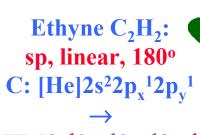
⇒ Trick 2: Describe the same electron distribution as composed of four singly occupied hybrid orbitals

4 σ bonds can now form: CH₄


- ⇒ Overall huge gain in energy
- ⇒ Tetravalent carbon leads to organic chemistry

BUT: One bond is from a 2s orbital, the other three from 2p orbitals

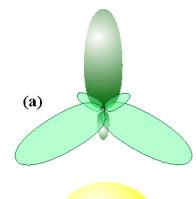
 \Rightarrow four sp³ hybrid orbitals


Now VB Theory Gets the Molecular **Geometries Right**

Methane CH₄: sp³, tetrahedral, 109.5°

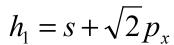
C: $[He]2s^22p_x^{-1}2p_y^{-1}$

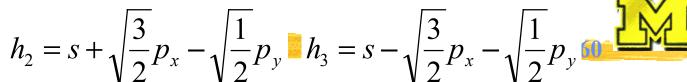
 $\begin{array}{c}
\rightarrow \\
[\text{He}]2s^{1}2p_{x}^{-1}2p_{y}^{-1}2p_{z}^{-1}
\end{array}$

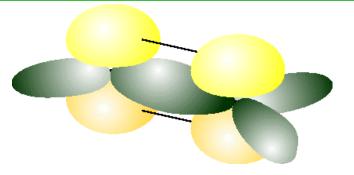


 $[He]2s^{1}2p_{x}^{-1}2p_{y}^{-1}2p_{z}^{-1}$

$$h_1 = s + p_z \qquad h_2 = s - p_z$$


 \Rightarrow hybridization of N atomic orbitals


results in N hybrid orbitals



Ethene C_2H_4 : sp², trigonal pyramidal, 120° C: $[He]2s^22p_x^{-1}2p_y^{-1}$

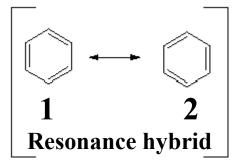
 $[He]2s^{1}2p_{x}^{-1}2p_{y}^{-1}2p_{z}^{-1}$

But What About Polar Molecules? Resonance!

E.g., HCl:
$$\Psi_{\text{covalent}} = \Psi_H(1) \times \Psi_{Cl}(2) + \Psi_H(2) \times \Psi_{Cl}(1)$$
 for a purely covalent bond: electrons only can exchange

 \Rightarrow Allow for both electrons to be on Cl, i.e., H⁺Cl⁻:

$$\Psi_{\text{ion}} = \Psi_{Cl}(1) \times \Psi_{Cl}(2)$$


$$\Rightarrow$$
 In reality: superposition $\Psi = \Psi_{covalent} + \lambda \Psi_{ion}$ Ionic-covalent resonance

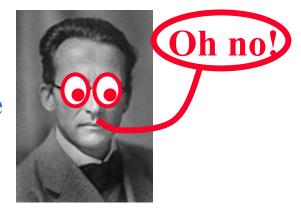
 λ^2 = relative proportion (probability) of the ionic contribution

To find λ the Variation Theorem is used:

Similar: benzene

$$\Psi = \Psi_{Kek1} + \Psi_{Kek2}$$

The energy of a trial wavefunction is never less than the true energy



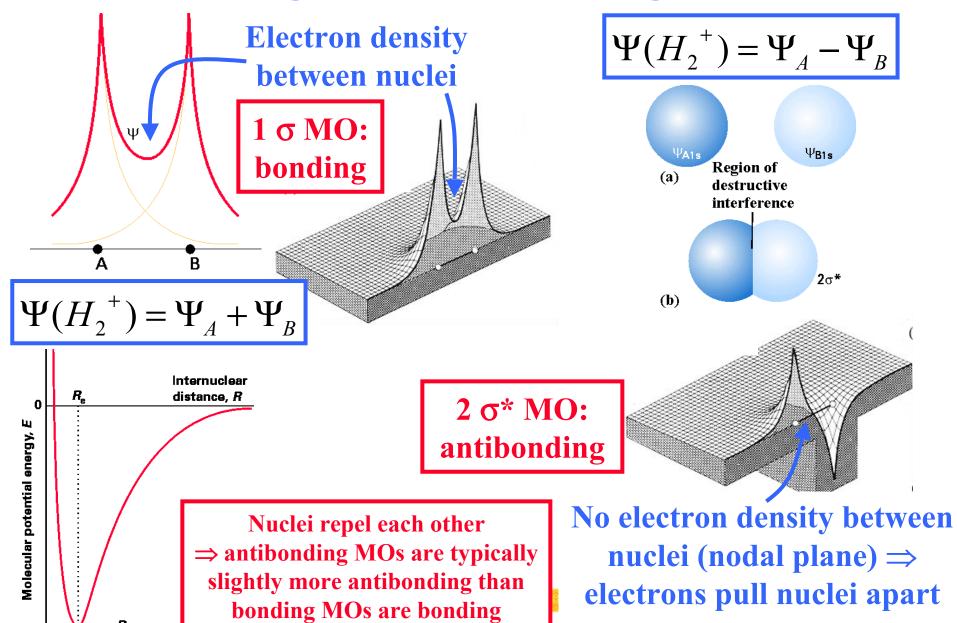
Even Better for Polar Molecules: Molecular Orbital Theory

Basic ideas:

- Every electron contributes to every bond
- Electrons spread through the entire molecule
- Each electron may be found in any of the atomic orbitals involved



 \Rightarrow Approximation: <u>Linear Combination of Atomic Orbitals (LCAO)</u>


Example: H_2^+ $\Psi(H_2^+) = c_A \Psi_A + c_B \Psi_B \Rightarrow c_A^2, c_B^2 = \text{relative contributions}$ of the atomic orbitals to the

Homonuclear diatomic molecule $\Rightarrow c_A^2 = c_B^2$

$$\Rightarrow \Psi(H_2^+) = \Psi_A \oplus \Psi_B$$

Bonding and Antibonding Orbitals

