
Building up Many-Electron Diatomic

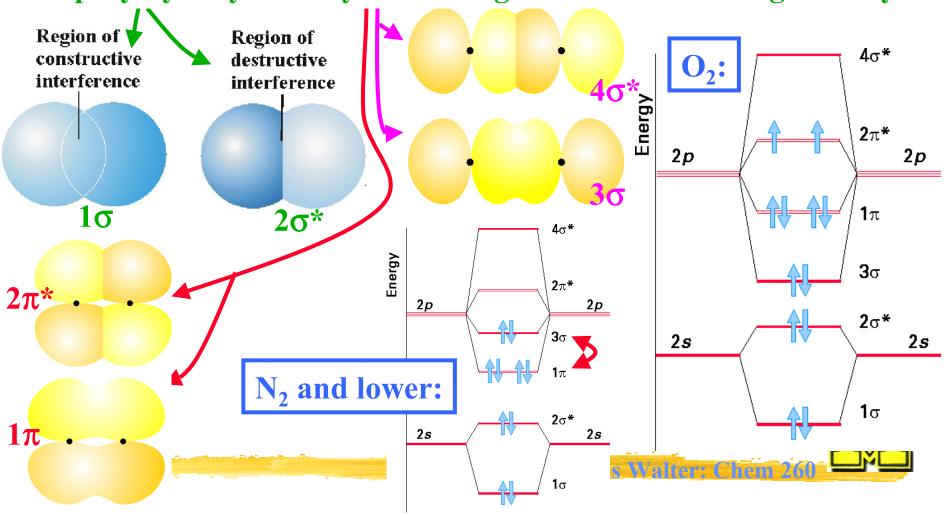
Molecules

MO energy level diagram built from two 1s orbitals

 H_2 : $1\sigma^2$ "He₂": $1\sigma^2 2\sigma^{*2}$ More strongly and closely bonded than H₂⁺

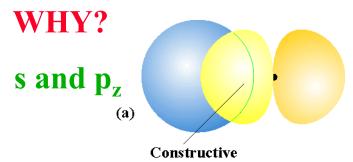
More antibonding than bonding

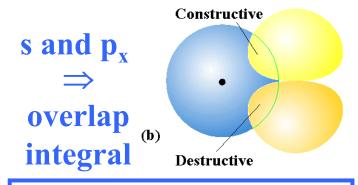
 \Rightarrow does not exist


"Aufbau" rules:

- 1.) Construct N MOs from N atomic orbitals
- 2.) Fill in electrons to achieve lowest overall energy; observe the Pauli exclusion principle
- 3.) Electrons occupy different degenerate MOs before doubly occupying any one of them
- 4.) Observe Hund's rule: If electrons occupy different degenerate MOs, then they do so with parallel spins

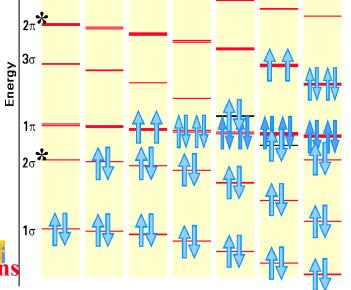
Period 2 Homonuclear Diatomic Molecules


E.g., O_2 : [He] $2s^22p_x^22p_y^12p_z^1$ and [He] $2s^22p_x^22p_y^12p_z^1$


Simplify by only linearly combining orbitals of similar geometry

How Does it Work Again?

Simplify by only linearly combining orbitals of similar geometry


$$S = \int \Psi_A \Psi_B dx dy dz = 0$$

Rules for building molecular orbitals:

- 1.) Use all available valence orbitals from all atoms
- 2.) Classify the orbitals as having σ and π symmetry with respect to the internuclear axis

b=1

- 3.) From N_{σ} atomic orbitals of σ symmetry N_{σ} MOs with progressively higher energy can be built
- 4.) From N_{π} atomic orbitals of π symmetry N_{π} MOs with progressively higher energy can be built; π orbitals are doubly degenerate

Bond order? $b = \frac{1}{2}(n-n^*)$

bonding electrons

antibonding electrons

The Electronic Configuration of a Diatomic Molecule

Example: $O_2 = 1\sigma_g^2 2\sigma_u^{*2} 3\sigma_g^2 1\pi_u^4 2\pi_g^{*2}$ **Further classification of MOs:** Parity (= behavior under inversion) Energy 2p2p **2**σ* 2*s* 2s

Quantum mechanics for a σ^2 MO: $\Psi = \sigma(1)\sigma(2)$ (normalized)

$$\Psi = (1s_A(1) + 1s_B(1))(1s_A(2) + 1s_B(2))$$

$$\Psi = \left(1s_A(1)1s_B(2) + 1s_A(2)1s_B(1) + 1s_A(1)1s_A(2) + 1s_B(1)1s_B(2)\right)$$

= VB theory, covalent ionic bond contribution