Exam 2 and Answers

1. Determine quantum numbers n_{1} and n_{2} for any transition of He^{+}in the visible region.

For $\mathrm{He}^{+}, Z=2$ and the Rydberg formula can be written

$$
\frac{1}{\lambda}=Z^{2} R\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

where $R=10973700 \mathrm{~m}^{-1}$.
$n_{1}=3, n_{2}=4$ gives $\lambda=469 \mathrm{~nm}$, which is in the visible region (400-700 $\mathrm{nm})$.
2. For the ground state of the hydrogen atom:
(i), (ii) Calculate $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$. Use atomic units, of course.

$$
\begin{gathered}
\psi_{1 s}(r)=\frac{1}{\sqrt{\pi}} e^{-r} \\
\langle r\rangle=\int_{0}^{\infty} r\left(\frac{1}{\sqrt{\pi}} e^{-r}\right)^{2} 4 \pi r^{2} d r=4 \int_{0}^{\infty} e^{-2 r} r^{3} d r=4 \times \frac{3!}{2^{4}}=\frac{3}{2} \\
\left\langle r^{2}\right\rangle=\int_{0}^{\infty} r^{2}\left(\frac{1}{\sqrt{\pi}} e^{-r}\right)^{2} 4 \pi r^{2} d r=4 \int_{0}^{\infty} e^{-2 r} r^{4} d r=4 \times \frac{4!}{2^{5}}=3
\end{gathered}
$$

The radial momentum operator is defined by

$$
\hat{p}_{r}=-i \hbar \frac{1}{r} \frac{\partial}{\partial r} r
$$

(iii), (iv) Calculate $\left\langle p_{r}\right\rangle$ and $\left\langle p_{r}^{2}\right\rangle$.

$$
\begin{gathered}
\left\langle p_{r}\right\rangle=\int_{0}^{\infty} \frac{1}{\sqrt{\pi}} e^{-r}\left\{-i \hbar \frac{1}{r} \frac{d}{d r} r\right\} \frac{1}{\sqrt{\pi}} e^{-r} 4 \pi r^{2} d r \\
=-4 i \hbar \int_{0}^{\infty} e^{-r} \frac{1}{r}\left(e^{-r}-r e^{-r}\right) r^{2} d r=-4 i \hbar\left(\frac{1!}{2^{2}}-\frac{2!}{3^{2}}\right)=0 \\
\left\langle p_{r}^{2}\right\rangle=\int_{0}^{\infty} \frac{1}{\sqrt{\pi}} e^{-r}\left\{-\hbar^{2} \frac{1}{r} \frac{d^{2}}{d r^{2}} r\right\} \frac{1}{\sqrt{\pi}} e^{-r} 4 \pi r^{2} d r=\hbar^{2}
\end{gathered}
$$

(v) Calculate the uncertainty product $\Delta r \Delta p_{r}$ in the ground state of the hydrogen atom. Recall that

$$
\begin{gathered}
\Delta a=\sqrt{\left\langle A^{2}\right\rangle-\langle A\rangle^{2}} \\
\Delta r=\sqrt{3-\left(\frac{3}{2}\right)^{2}}=\frac{\sqrt{3}}{2} \quad \Delta p_{r}=\hbar \quad \Delta r \Delta p_{r}=\frac{\sqrt{3}}{2} \hbar
\end{gathered}
$$

Note that this is $>\hbar / 2$, just as Heisenberg said.
3. Using the best approximate method at your immediate disposal, calculate the ground state energy of the hydride ion H^{-}(in hartrees).

Use the variational function $\psi\left(r_{1}, r_{2}\right)=e^{-\alpha\left(r_{1}+r_{2}\right)}$ just like helium. We found the energy

$$
E(\alpha)=\alpha^{2}-2 Z \alpha+\frac{5}{8} \alpha \quad \text { where } \quad Z=1
$$

This is minimized for

$$
\alpha=Z-\frac{5}{16}=\frac{11}{16} \quad \text { giving } \quad E=-\frac{11}{16}^{2}=-0.473 \text { hartree }
$$

This might seem to indicate that H is unstable since H has an energy of -0.5 hartree. A more accurate calculation gives an energy of -0.5284
hartree, showing that H is stable. The hydride ion is involved in the action of NAD-linked dehydrogenases.
4. For the ground state of the helium atom, the Slater determinant for the approximate wavefunction can be written, in abbreviated notation,

$$
\Psi(1,2)=\frac{1}{\sqrt{2}}(1 s \alpha(1) 1 s \beta(2)-1 s \beta(1) 1 s \alpha(2))
$$

and the corresponding energy is

$$
E=2 I_{1 s}+J_{1 s, 1 s}
$$

Write the analogous formulas for the ground state of lithium atom.

$$
\begin{gathered}
\Psi(1,2,3)=\frac{1}{\sqrt{3!}}\left|\begin{array}{ccc}
1 s \alpha(1) & 1 s \beta(1) & 2 s \alpha(1) \\
1 s \alpha(2) & 1 s \beta(2) & 2 s \alpha(2) \\
1 s \alpha(3) & 1 s \beta(3) & 2 s \alpha(3)
\end{array}\right| \\
=\frac{1}{\sqrt{6}}(1 s \alpha(1) 1 s \beta(2) 2 s \alpha(3)+1 s \beta(1) 2 s \alpha(2) 1 s \alpha(3)+2 s \alpha(1) 1 s \alpha(2) 1 s \beta(3) \\
-2 s \alpha(1) 1 s \beta(2) 1 s \alpha(3)-1 s \beta(1) 1 s \alpha(2) 2 s \alpha(3)-1 s \alpha(1) 2 s \alpha(2) 1 s \beta(3)) \\
E=2 I_{1 s}+I_{2 s}+J_{1 s, 1 s}+2 J_{1 s, 2 s}-K_{1 s, 2 s}
\end{gathered}
$$

5. The energy of interaction between two atoms can be approximated by the Lennard-Jones potential:

$$
E(R)=\frac{A}{R^{12}}-\frac{B}{R^{6}}
$$

Find D_{e} and R_{e} in terms of the parameters A and B.

The minimum of the function is found from

$$
E^{\prime}(R)=-12 A R^{-13}+6 B R^{-7}=0
$$

This gives

$$
R_{e}=(2 A / B)^{1 / 6} \quad \text { and } \quad E\left(R_{e}\right)=-\frac{B^{2}}{4 A}
$$

Since $E(\infty)=0, D_{e}=B^{2} / 4 A$.
6. On the basis of the valence-shell model, predict the geometry of each of the following trifluorides:
(i) BF_{3}

B has 3 valence electrons, 3B-F bonds in trigonal planar arrangement.
(ii) NF_{3}

N has 5 valence electrons, $3 \mathrm{~N}-\mathrm{F}$ bonds plus lone pair. Tetrahedral $\mathrm{NF}_{3} \mathrm{E}$ with 3 bonds making trigonal pyramid, like NH_{3}.
(iii) ClF_{3}

Cl has 7 valence electrons, $3 \mathrm{Cl}-\mathrm{F}$ bonds plus 2 lone pairs. $\mathrm{ClF}_{3} \mathrm{E}_{2}$ in trigonal bipyramid. E's both go to equatorial positions leaving distorted T-shape.

