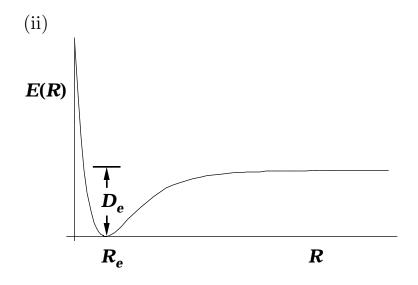
Chapter 10. Exercises

1. The electronic energy of a diatomic molecule can be approximated by the Morse function:


$$E(R) = D\left(1 - e^{-\beta(R - R_e)}\right)^2$$

 R_e is the equilibrium internuclear separation while D and β are constants.

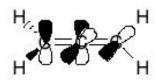
- (i) Find the dissociation energy D_e
- (ii) Sketch the Morse function, labelling D_e and R_e .
- (iii) Expand the Morse function up to terms quadratic in $(R R_e)$. Show that this approximates a harmonic oscillator potential and identify the force constant k.
- 2. The allene molecule CH₂=C=CH₂ is known to have a linear geometry for the three carbon atoms. Rationalize this on the basis of hybridization of carbon AO's.
- 3. Applying the valence-shell model, predict the shapes of each of the following molecules: H₂S, SF₆, XeF₄, SF₄, IF₅.

Chapter 10. Solutions

1. (i) Minimum value of E(R) can be found by setting E(R) = 0. It is easy to see from the formula itself that E(R) will have a minimum value of 0 when $R = R_e$. As $R \to \infty$, E(R) approaches D. Thus $D_e = D$, the dissociation energy.

(iii) Remember the expansion for the exponential (In fact, don't ever forget this!)

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \dots$$


Expanding the Morse function up to terms quadratic in $R-R_e$ gives

$$E(R) = 0 + D\beta^{2}(R - R_{e})^{2} + \dots$$

This has the form of a harmonic oscillator potential $V(x) = \frac{1}{2}kx^2$ with

$$x = R - R_e$$
 and $k = 2D\beta^2$

2. The central carbon forms two sp-hybrids and two unhybridized p-orbitals, just like acetylene. The sp-hybrids bond to the terminal carbons in a linear arrangement of σ -bonds. Each p orbitals then bonds to a terminal carbon to form a π -bond, as shown below

Note that the two CH₂ groups are in perpendicular planes.

3. H_2S : S has 6 valence electrons, 2 form bonds to H leaving 4 electrons or 2 unshared pairs. SH_2E_2 approximately tetrahedral configuration giving two S–H bonds for bent H–S–H molecule. Just like H_2O !

SF₆: 6 S–F bonds, octahedral molecule.

 XeF_4 : Xe has 8 valence electrons, 4 bonds to F, leaving 2 pairs. XeF_4E_2 octahedral with the two E's on opposite sides to minimize repulsion, so XeF_4 molecule is square planar.

SF₄: 4 S–F bonds, leaving 2 electrons or 1 lone pair. SF₄E trigonal bipyramid with E in one equatorial position. The 4 S–F bonds bend away from the E giving a see-saw shaped molecule.

IF₅: I has 7 valence electrons, 5 I–F bonds plus 1 lone pair. IF₅E octahedral configuration gives geometry of square pyramid.