Chapter 11. Exercises

1. After separation of variables in the H_{2}^{+}problem, the function $\Xi(\xi)$ obeys the differential equation

$$
\frac{d}{d \xi}\left[\left(\xi^{2}-1\right) \frac{d \Xi}{d \xi}\right]+\left(A+2 R \xi+\frac{1}{4} R^{2} E \xi^{2}-\frac{\lambda^{2}}{\xi^{2}-1}\right) \Xi(\xi)=0
$$

where A is a constant, R is the internuclear distance, λ is the angular momentum quantum number, an integer, and E is the energy, a negative number for bound states. Find the asymptotic solution of the above equation as $\xi \rightarrow \infty$.
2. Write out the two-electron orbital function for the H_{2} molecule

$$
\psi(1,2)=\psi_{1 \sigma g}(1) \psi_{1 \sigma g}(2)
$$

assuming the LCAO approximation for each MO. Expand this result and show how it relates to the corresponding valence-bond wavefunction. What is the meaning of the left-over terms?
3. Give the electron configuration, term symbol and bond order for the ground state of each of the following species: $\mathrm{N}_{2}^{+}, \mathrm{N}_{2}$ and N_{2}^{-}
4. Predict the electronic configuration and term symbol for the ground state of the superoxide ion O_{2}^{-}and of the peroxide ion O_{2}^{-2}.
5. Propose electron configurations and term symbols for the two lowest singlet excited states of O_{2}.
6. Rationalize why the Be_{2} molecule, unlike He_{2}, is weakly bound ($D_{2} \approx 0.1$ eV). Hint: 2s-2p hybridization is involved.
7. The overlap integral between a $1 s$ and a $2 p \sigma$ orbital on nuclei separated by a distance R (in bohr) is given by

$$
S=\left(R+R^{2}+\frac{R^{3}}{3}\right) e^{-R}
$$

Determine the value of R which gives the maximum overlap. (It may be of interest that the internuclear distance in HF equals $0.916 \AA$.)
8. Carry out a Hückel calculation on the allyl radical

$$
\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}{ }^{\circ}
$$

Determine, in terms of the empirical parameters α and β, the energies of the π-molecular orbitals, the resonance stabilization energy and the wavelength of the lowest-energy electronic transition.
9. The species H_{3} occurs as an intermediate in the hydrogen exchange reaction

$$
\mathrm{H}_{2}+\mathrm{H} \rightleftharpoons \mathrm{H}_{3} \rightleftharpoons \mathrm{H}+\mathrm{H}_{2}
$$

Is H_{3} a linear or a triangular molecule? For both the linear and equilateral triangular configurations, apply a variant of the Hückel theory based on hydrogen 1s orbitals (rather than carbon $2 p$) to predict which has the lower energy. Also predict the shapes of the ions H_{3}^{+}and H_{3}^{-}.

Chapter 11. Solutions

1. As $\xi \rightarrow \infty$, the equation reduces approximatly to

$$
\xi^{2} \frac{d^{2} \Xi}{d \xi^{2}}-\frac{R^{2}|E| \xi^{2}}{4} \Xi \approx 0
$$

Cancelling the ξ^{2} and noting that E is negative for bound states,

$$
\Xi(\xi) \approx \exp \left(-\frac{R}{2} \sqrt{|E|} \xi\right)
$$

2.

$$
\psi_{1 \sigma g}=1 s_{A}+1 s_{B}
$$

Thus

$$
\begin{gathered}
\psi(1,2)=\left(1 s_{A}(1)+1 s_{B}(1)\right)\left(1 s_{A}(2)+1 s_{B}(2)\right)= \\
\left\{1 s_{A}(1) 1 s_{B}(2)+1 s_{B}(1) 1 s_{A}(2)\right\}+1 s_{A}(1) 1 s_{A}(2)+1 s_{B}(1) 1 s_{B}(2)
\end{gathered}
$$

Term in brackets is the valence bond function for the bond. The remaining terms represent ionic structures $\mathrm{H}^{+} \mathrm{H}^{-}$and $\mathrm{H}^{-} \mathrm{H}^{+}$with both electrons on the same hydrogen atom.
3. $\mathrm{N}_{2} \quad \ldots 1 \pi_{u}^{4} 3 \sigma_{g}^{2} \quad{ }^{1} \Sigma_{g}^{+} \quad \mathrm{BO}=3$
$\mathrm{N}_{2}^{+} \quad \ldots 1 \pi_{u}^{4} 3 \sigma_{g} \quad{ }^{2} \Sigma_{g}^{+} \quad \mathrm{BO}=2.5$
$\mathrm{N}_{2}^{-} \quad \ldots 1 \pi_{u}^{4} 3 \sigma_{g}^{2} 1 \pi_{g} \quad{ }^{2} \Pi_{g} \quad \mathrm{BO}=2.5$
4. O_{2}

$$
\ldots 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2} \quad{ }^{3} \Sigma_{g}^{-}
$$

$\mathrm{O}_{2}^{-} \quad \ldots 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{3} \quad{ }^{2} \Pi_{g}$
$\mathrm{O}_{2}^{-2} \quad \ldots 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{4} \quad{ }^{1} \Sigma_{g}^{+}$
5. Both excited states have same configuration as ground state, $\ldots 3 \sigma_{g}^{2} 1 \pi_{u}^{4} 1 \pi_{g}^{2}$, but with the following occupancy of $1 \pi_{g}$ orbitals:

$$
\uparrow \downarrow \quad{ }^{1} \Sigma_{g}^{+} \quad \text { and } \quad \mathbb{\|}-\quad{ }^{1} \Delta_{g}
$$

The plus superscript in the first term symbol is rather tricky. Don't worry about it. But if you insist ... two-electron singlet spin state has antisymmetric spin function, thus must have symmetric orbital function like $\pi_{x}(1) \pi_{y}(2)+\pi_{y}(1) \pi_{x}(2)$ which doesn't change sign upon transformation $\phi \rightarrow-\phi$. Singlet oxygen and other active oxygen species are involved in lipid metabolism.
6. Be_{2} has configuration $\ldots 2 \sigma_{g}^{2} 2 \sigma_{u}^{2} \quad{ }^{1} \Sigma_{g}^{+}$

The 2σ orbitals are LCAO's made from hybrids of $2 s$ and $2 p \sigma$. The $2 \sigma_{g}$ MO probably becomes more strongly bonding while the $2 \sigma_{u}$ becomes more weakly antibonding, with the net effect being weak bonding.
7. Setting $d S / d R=0$ find maximum at $R=2.1038$ bohrs or $2.1038 \times .593=$ 1.115 Å.
8. Secular determinant

$$
\left|\begin{array}{ccc}
x & 1 & 0 \\
1 & x & 1 \\
0 & 1 & x
\end{array}\right|=x^{3}-2 x=0
$$

where $x=(\alpha-E) / \beta$. Roots $x=0, \pm \sqrt{2}$, thus $E=\alpha-\sqrt{2} \beta, \alpha, \alpha+$ $\sqrt{2} \beta$. Remember both α and β are negative. Ground state energy (3 electrons) $=2(\alpha+\sqrt{2} \beta)+\alpha=3 \alpha+2 \sqrt{2} \beta$. One localized π-orbital plus one unpaired electron would have energy $=2(\alpha+\beta)+\alpha=3 \alpha+2 \beta$. Resonance stabilization energy $=(2-2 \sqrt{2}) \beta=-.828 \beta=.828|\beta|$. Lowest energy electronic transition given by

$$
\frac{h c}{\lambda}=\sqrt{2}|\beta|
$$

9. For linear H_{3}, the secular equation is

$$
\left|\begin{array}{ccc}
x & 1 & 0 \\
1 & x & 1 \\
0 & 1 & x
\end{array}\right|=x^{3}-2 x=0
$$

with roots $x=0, \pm \sqrt{2}$. Thus the three MO energies are $\alpha-\sqrt{2} \beta, \alpha, \alpha+\sqrt{2} \beta$. The energy of the three-electron ground state is $3 \alpha+2 \sqrt{2} \beta \approx 3 \alpha+2.828 \beta$. For triangular H_{3},

$$
\left|\begin{array}{ccc}
x & 1 & 1 \\
1 & x & 1 \\
1 & 1 & x
\end{array}\right|=x^{3}-3 x+2=0
$$

One obvious root is $x=1$. Division of $x^{3}-3 x+2$ by $x-1$ gives $x^{2}+x-2$, with roots $x=1$ and -2 . The three MO's are $\alpha+2 \beta, \alpha-\beta, \alpha-\beta$. The energy of the ground state is $3 \alpha+3 \beta$.

Apparently the triangular form of H_{3} has a slightly lower energy.

