
Chapter 2. Exercises

1. In the theory of relativity, space and time variables can be combined
to form a 4-dimensional vector thus: x1 = x, x2 = y, x3 = z, x4 =
ict. The momentum and energy analogously combine to a 4-vector with
p1 = px, p2 = py, p3 = pz , p4 = iE/c. By a suitable generalization of
the quantization prescription for momentum components, deduce the time-
dependent Schrödinger equation:

{
− h̄2

2m
∇2 + V (r)

}
Ψ(r, t) = ih̄

∂Ψ(r, t)
∂t

2. Estimate the number of photons emitted per second by a 100-watt light-
bulb. Assume a wavelength of 550 nm (yellow light).

3. Electron diffraction makes use of 40 keV (40,000 eV) electrons. Calculate
their de Broglie wavelength.

4. Show that the wavefunction Ψ(x, t) = ei(px−Et)/h̄ is a solution of the
one-dimensional time-dependent Schrödinger equation.

5. Show that Ψ(r, t) = ei(p·r−Et)/h̄ is a solution of the three-dimensional
time-dependent Schrödinger equation.

6. A certain one-dimensional quantum system in 0 ≤ x ≤ ∞ is described
by the Hamiltonian:

Ĥ = − h̄2

2m

d2

dx2 − q2

x
(q = constant)

One of the eigenfunctions is known to be

ψ(x) = Axe−αx, α ≡ mq2/h̄2, A = constant

(i) Write down the Schrödinger equation and carry out the indicated differ-
entiation.
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(ii) Find the corresponding energy eigenvalue (in terms of h̄, m and q).

(iii) Find the value of A which normalizes the wavefunction according to

∫ ∞

0
|ψ(x)|2 dx = 1

You may require the definite integrals

∫ ∞

0
xne−ax dx = n!/an+1
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Answers to Exercises

Don’t even think of looking here before you attempt to
solve the problems yourself !

1. The components of the momentum operator can be expressed in the
form

p̂k = −ih̄
∂

∂xk
, k = 1, 2, 3

Now extend this relation for k = 4 using p4 = iE/c and x4 = ict. The
result is

Ĥ = +ih̄
∂

∂t

where the energy operator is the Hamiltonian Ĥ . Applying the quantization
prescription to the classical energy-momentum relation

E =
p2

2m
+ V (x, y, z) p2 = p2

1 + p2
2 + p2

3

then leads to the 3-dimensional time-dependent Schrödinger equation (29).

2. 100 watts = 100 J/sec. The energy of a 550 nm photon is given by

E = hν =
hc

λ
=

(6.626 × 10−34)(2.998 × 108)
550 × 10−9 = 3.61 × 10−19 J

Thus 100/E = 2.77 × 1020 photons/sec.

3. Since 1 eV=1.602 × 10−19 J, each electron has a kinetic energy of (40 ×
103)(1.602 × 10−19) J. This is equal to

E =
1
2
mv2 =

p2

2m

The de Broglie relation λ = h/p, therefore gives

λ =
h√

2mE
=

6.626 × 10−34
√

2(9.109 × 10−31)(40 × 103)(1.602 × 10−19)
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= 6.13 × 10−12 m. This gives sufficient resolution to study the geometric
structure of molecules. [Since 40 keV electrons travel at a significant fraction
of the speed of light, the relativistic energy-momentum relation must be
used. The corrected de Broglie wavelength is actually 6.016 × 10−12 m.]

4. Evaluate the partial derivatives

∂

∂x
Ψ(x, t) =

ip

h̄
ei(px−Et)/h̄ ∂2

∂x2 Ψ(x, t) = − p2

h̄2 ei(px−Et)/h̄

and
∂

∂t
Ψ(x, t) = − iE

h̄
ei(px−Et)/h̄

Eq (26) then follows from the relation E = p2/2m.

5. Note that p · r = px x + py y + pz z. Then

∂

∂x
Ψ(r, t) =

ipx

h̄
ei(p·r−Et)/h̄ etc.

and Eq (29), with V (r)=0, follows from E = (p2
x + p2

y + p2
z)/2m.

6. Evaluate the derivatives (suppressing A for now):

ψ′(x) = e−αx − αxe−αx and ψ′′(x) = −2αe−αx + α2xe−αx

Then the Schrödinger equation Ĥψ(x) = Eψ(x) becomes

− h̄2

2m
(−2αe−αx + α2xe−αx) − q2

/x
/xe−αx = Exe−αx

Now, cancel out the e−αx and find two independent relations for the terms
independent of x and linear in x. The results give α = mq2/h̄2, which
agrees with the definition and

E = − h̄2α2

2m
= −mq4

2h̄2

To normalize the function
∫ ∞

0
|ψ(x)|2 dx = 1 = A2

∫ ∞

0
x2e−2αx dx = A2 × 2!/(2α)3

giving A = 2α3/2.
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