
Chapter 7. Exercises

1. Assume that each circular Bohr orbit for an electron in a hydrogen
atom contains an integer number of de Broglie wavelengths, n = 1, 2, . . ..
Show that the orbital angular momentum must then be quantized. Bohr’s
formula for the hydrogen energy levels follows from this.

2. Based on your knowledge of the first few hydrogenic eigenfunctions,
deduce general formulas, in terms of n and `, for: (i) the number of radial
nodes in an atomic orbital; (ii) the number of angular nodes; (iii) the total
number of nodes.

3. Calculate the wavelength of the Lyman alpha transition (1s ← 2p) in
atomic hydrogen and in He+. Express the results in both nm and cm−1.

4. Determine the maximum of the radial distribution function for the
ground state of hydrogen atom. Compare this value with the corresponding
radius in the Bohr theory.

5. The following reaction might occur in the interior of a star:

He++ + H → He+ + H+

Calculate the electronic energy change (in eV). Assume all species in their
ground states.

6. Which of the following operators is not equal to the other four: (i)
∂2/∂r2 (ii) r−2 ∂/∂r r2 ∂/∂r (iii) r−1 ∂2/∂r2 r (iv) (r−1 ∂/∂r r)2

(v) ∂2/∂r2 + 2r−1∂/∂r.

7. Calculate the expectation values of r, r2 and of r−1 in the ground state
of the hydrogen atom. Give results in atomic units.

8. Calculate the expectation values of potential and kinetic energies for the
1s state of of a hydrogenlike atom.

9. Verify that the 3dxy orbital given in the table is a normalized eigenfunc-
tion of the hydrogenlike Schrödinger equation.
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10. Show that the function

ψ(r, θ, φ) = const
[
1 − r sin2(θ/2)

]
e−r/2

is a solution of the Schrödinger equation for the hydrogen atom and find
the corresponding eigenvalue (in atomic units).

11. For the ground state of a hydrogenlike atom, calculate the radius of the
sphere enclosing 90% of the electron probability in the 1s state of hydrogen
atom. (This involves a numerical computation with successive approxima-
tions.)

12. Consider as a variational approximation to the ground state of the
hydrogen atom the wavefunction ψ(r) = e−αr. Calculate the corresponding
energy E(α) then optimize with respect to the parameter α. Compare with
the exact solution.

13. The electron-spin resonance hyperfine splitting for atomic hydrogen is
given by

∆ν = 532.65
{

8π

3
|ψ(0)|2 +

〈
3 cos2 θ − 1

r3

〉}
MHz

Calculate ∆ν for the 1s and for the 2p0 states. The result is in MHz when
the bracketed terms are expressed in atomic units. (Hint: In the expectation
value, do the integral over angles first.)
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Chapter 7. Solutions

1. De Broglie wavelength λ = h/p with L = r p. Circumference of orbit
2πr = nλ, an integer number of wavelengths. This implies L = nh/2π = nh̄.

2. n − ` − 1 radial nodes, ` angular nodes, n − 1 total nodes.

3. The best formula to use is

1
λ

= Z2R

(
1
n2

1
− 1

n2
2

)

where R is the Rydberg constant, 109678 cm−1. For hydrogen, 1/λ =
R(1/12−1/22) = 82258.5 cm−1, λ = 121.6 nm. For helium, 1/λ = 4 R(1/12-
1/22) = 329034 cm−1, λ = 30.39 nm.

4. Find the maximum of D1s(r) = 4πr2 [ψ1s(r)]
2 = const r2 e−2Zr. Set

dD/dr = 0, giving rmax = 1/Z (= a0/Z), same as Bohr radius for 1s orbit.

5. He++ and H+ are bare nuclei so their electronic energies equal zero.
He+ and H are hydrogenlike so their 1s energies equal −Z2/2. Thus ∆E =
−4/2 + 1/2 = −3/2 hartrees = −40.8 eV.

6. (i). The other four operators are equal.

7.

〈r〉 =
∫ ∞

0
ψ1s(r) r ψ1s(r) 4πr2 dr =

3
2

(
=

3
2
a0

)

〈r2〉 =
∫ ∞

0
ψ1s(r) r2 ψ1s(r) 4πr2 dr = 3

(
= 3a2

0
)
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〈r−1〉 =
∫ ∞

0
ψ1s(r) r−1 ψ1s(r) 4πr2 dr = 1

(
=

1
a0

)

8. Average potential energy:

< V >=
∫ ∞

0
ψ1s(r)

(
−Z

r

)
ψ1s(r) 4πr2 dr = −Z2

Average kinetic energy:

< T >=
∫ ∞

0
ψ1s(r)

(
−1

2
∇2

)
ψ1s(r) 4πr2 dr = Z2/2

More simply, since total energy E1s = −Z2/2, 〈T 〉 = E1s − 〈V 〉. Note that
〈V 〉 = −2〈T 〉, consistent with the virial theorem.

9. For an easier exercise, do the 2pz orbital instead.

10. You should find that this function solves the Schrödinger equation with
E = −Z2/8, i.e., n = 2. For normalization

const =
Z3/2

4
√

π

Noting that sin2(θ/2) = (1 − cos θ)/2, the function is found to be an s-p
hybrid orbital:

ψ =
1√
2

(ψ2s + ψ2pz)
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11. Solve for R: ∫ R

0
|ψ1s(r)|2 4πr2 dr = 0.9

or easier ∫ ∞

R

|ψ1s(r)|2 4πr2 dr = 0.1

We find, using integral table,

4
∫ ∞

R

r2 e−2r dr = e2R (1 + 2R + 2R2) = 0.1

Solving numerically, R = 2.6612a0 = 1.41 Å.

12. Let ψ(r) = e−αr. Then

E(α) =

∫ ∞
0 e−αr

(
− 1

2∇2 − Z/r
)
e−αr4πr2 dr∫ ∞

0 e−2αr4πr2 dr
=

1
2
α2 − Zα

E′(α) = 0 for minimum, giving α = Z. Thus ψ(r) = e−Zr and E = −Z2/2,
which in this exceptional case equal the exact eigenfunction and eigenvalue.
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