
Supplement 1A

Maxwell’s equations

These four vector relations summarize the previously discovered experimen-
tal laws to describe all known electrical and magnetic phenomena. In these
expressions, ρ is the electric charge density, J, the current density, E, the
electric field and B, the magnetic induction. Maxwell’s equations in free
space (in the absence of dielectric or magnetic media) can be written

∇ · D = ρ (1)

∇ · B = 0 (2)

∇ × E +
∂B
∂t

= 0 (3)

∇ × H = J +
∂D
∂t

(4)

The two auxilliary fields D, the electric displacement, and H, the magnetic
field are defined by constitutive relations. In free space

D = ε0E and B = µ0H (5)

where ε0 and µ0, are the vacuum electric permittivity and magnetic perme-
ability, respectively.

Eq. (1) states that an electric field diverges from a distribution of electric
charge. This implies Coulomb’s law. Eq. (2) implies the nonexistence of
isolated magnetic poles–the magnetic equivalent of electric charges. The
most elementary magnetic objects are dipoles, connected pairs of north and
south poles which can not be isolated from one another. Eq. (3) is an
expression of Faraday’s law of electromagnetic induction, which shows how
a circulating electric field can be produced by a time-varying magnetic field.
Eq. (4) contains Ampère’s law showing how a magnetic field is produced
by an electric current. The second term on the right, which was added by
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Maxwell himself, is, in a sense, reciprocal to Faraday’s law, since it implies
that a circulating magnetic field can also be produced by a time-varying
electric field.

In the absence of charges and currents, Maxwell equations can be trans-
formed into three-dimensional wave equations

{
∇2 − 1

c2
∂2

∂t2

}
E = 0 and

{
∇2 − 1

c2
∂2

∂t2

}
B = 0 (6)

where c = 1/
√

ε0µ0 = 2.9979 × 108 m/sec, representing the speed of light
in vacuum. Possible solutions to Eqs (6) represent synchronized transverse
electric and magnetic waves propagating at the speed c, as sketched in
Figure 1.3.

Even in the classical theory, electromagnetic fields can carry energy and
momentum. The energy density of an electromagnetic field in free space is
given by

ρE =
1
2

(
ε0 E2 +

B2

µ0

)
(7)

The energy flux or intensity (energy transported across unit area per unit
time across unit area) is given by the Poynting vector

S = E × H (8)

It is significant that the energy density and intensity depend of the square
of field quantities. We will exploit an analogous relationship in the inter-
pretation of the wavefunction in quantum mechanics.

Maxwell’s first equation is equivalent to Coulomb’s law. In its simplest form,
the force between two point charges q1 and q2 separated by a distance r is
given by

F =
1

4πε0

q1 q2

r2 (9)

The algebraic signs of q1 and q2 determine whether the force is attractive or
repulsive. If q1 and q2 are like charges, they repel (F > 0), whereas opposite
charges attract (F < 0). In our applications to atomic and molecular
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structure, it is clumsy and unnecessary to carry the constant 4πε0. We will
instead write Coulomb’s law in gaussian electromagnetic units, whereby

F =
q1 q2

r2 (10)

The potential energy of interaction between two charges is related to the
force by F = −dV/dr (more generally, F = −∇V ). Coulomb’s law therefore
implies

V (r) =
q1 q2

r
(11)

which we will repeatedly use in applications to the quantum theory of atoms
and molecules.

3


