CHAPTER 11
MOLECULAR ORBITAL THEORY

Molecular orbital theory is a conceptual extension of the or-
bital model, which was so successfully applied to atomic struc-
ture. As was once playfuly remarked, “a molecue is nothing
more than an atom with more nuclei.” This may be overly pre-
sumptuous, but we do attempt, as far as posssible, to exploit
analogies with atomic structure. Our understanding of atomic
orbitals began with the exact solutions of a prototype problem—
the hydrogen atom. We will begin our study of homonuclear di-
atomic molecules beginning with another exactly solvable pro-
totype, the hydrogen molecule-ion Hj .

The Hydrogen Molecule-Ion

The simplest conceivable molecule would be made of two pro-
tons and one electron, namely H; . This species actually has
a transient existence in electrical discharges through hydrogen
gas and has been detected by mass spectrometry. It also has
been detected in outer space. The Schrodinger equation for Hy
can be solved exactly within the Born-Oppenheimer approxi-
mation. For fixed internuclear distance R, this reduces to a
problem of one electron in the field of two protons, designated
A and B. We can write
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where r5 and rg are the distances from the electron to protons
A and B, respectively. This equation was solved by Burrau
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(1927), after separating the variables in prolate spheroidal co-
ordinates. We will write down these coordinates but give only a
pictorial account of the solutions. The three prolate spheroidal
coordinates are designated p, v, ¢. the first two are defined by
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while ¢ is the angle of rotation about the internuclear axis.
The surfaces of constant ;1 and v are, respectively, confocal
ellipsoids and hyperboloids of revolution with foci at A and B.
The two-dimensional analog should be familiar from analytic
geometry, an ellipse being the locus of points such that the
sum of the distances to two foci is a constant. Analogously,
a hyperbola is the locus whose difference is a constant. Fig.
1 shows several surfaces of constant p, v and ¢. The ranges
of the three coordinates are p = {1,000}, v = {-1,1}, ¢ =
{0,27}. The prolate-spheroidal coordinate system conforms to
the natural symmetry of the Hj problem in the same way that
spherical polar coordinates were the appropriate choice for the
hydrogen atom.




Figure 1. Prolate spheroidal coordinates.

The first few solutions of the HJ Schrédinger equation are
sketched in Fig. 2, roughly in order of increasing energy. The
¢-dependence of the wavefunction is contained in a factor

O(p) =€, AN=0,41,42... (3)

which is identical to the ¢-dependence in atomic orbitals. In
fact, the quantum number A\ represents the component of or-
bital angular momentum along the internuclear axis, the only
component which has a definite value in systems with axial
(cylindrical) symmetry. The quantum number A\ determines
the basic shape of a diatomic molecular orbital, in the same
way that [ did for an atomic orbital. An analogous code is used,
o for A =0, 7 for A = £1, 0 for A = £2, and so on. We are
already familiar with o- and m-orbitals from valence-bond the-
ory. A second classification of the HJ eigenfunctions pertains
to their symmetry with respect to inversion through the cen-
ter of the molecule, also known as parity. If ¢»(—r) = 1(r), the
function is classified gerade or even parity, and the orbital desig-
nation is given a subscript ¢, as in o, or ;. If Y(—r) = —9(r),
the function is classified as ungerade or odd parity, and we
write instead o, or m,. Atomic orbitals can also be classified
by inversion symmetry. However, all s and d AO’s are ¢, while
all p and f orbitals are u, so no subscript is necessary. The
MO’s of a given symmetry are numbered in order of increasing
energy, for example 1oy, 204, 304.
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Figure 2. HJ molecular orbitals.

The lowest-energy orbital, as we have come to expect, is
nodeless. It obviously must have cylindrical symmetry (A = 0)
and inversion symmetry (g). It is designated lo, since it is
the first orbital of this classification. The next higher orbital
has a nodal plane, with v = 0, perpendicular to the axis. This
function still has cylindrical symmetry (o) but now changes
sign upon inversion (u). It is designated lo,, as the first or-
bital of this type. The next higher orbital has an inner ellip-
siodal node. It has the same symmetry as the lowest orbital
and is designated 20,. Next comes the 20, orbital, with both
planar and ellipsoidal nodes. Two degenerate m-orbitals come
next, each with a nodal plane containing the internuclear axis,
with ¢=const. Their classification is 1m,. The second 1m,-
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orbital, not shown in Fig. 2, has the same shape rotated by
90°. The 30, orbital has two hyperbolic nodal surfaces, where
v = xconst. The 1m,, again doubly-degenerate, has two nodal
planes, v = 0 and ¢=const. Finally, the 30,, the last orbital
we consider, has three nodal surfaces where r=const.

An MO is classified as a bonding orbital if it promotes the
bonding of the two atoms. Generally a bonding MO has a
significant accumulation of electron charge in the region be-
tween the nuclei and thus reduces their mutual repulsion. The
logy, 204, 17, and 30, are evidently bonding orbitals. An MO
which does not significantly contribute to nuclear shielding is
classified as an antibonding orbital. The 10, 20, 17, and 30,
belong in this category. Often an antibonding MO is designated
by o* or mw*.

The actual ground state of Hy has the 1o, orbital occu-
pied. The equilibrium internuclear distance R, is 2.00 bohr
and the binding energy D, is 2.79 eV, which represents quite
a strong chemical bond. The 10, is a repulsive state and a
transition from the ground state results in dissociation of the
molecule.

The LCAO Approximation

In Fig. 3, the 104 and 1o, orbitals are plotted as functions of
z, along the internuclear axis. Both functions have cusps, dis-
continuities in slope, at the positions of the two nuclei A and B.
The 1s orbitals of hydrogen atoms have the same cusps. The
shape of the 1o, and 1o, suggests that they can be approx-
imated by a sum and difference, respectively, of hydrogen 1s
orbitals, such that

b(logu) = ¢¥(1sa) £¢(1sp) (4)



Figure 3. HJ orbitals along internuclear axis.

This linear combination of atomic orbitals is the basis of the
so-called LCAO approximation. The other orbitals pictured in
Fig. 2 can likewise be approximated as follows:

$(204.4) = (25.4) £ ¥(255)

V(304,u) = Y(2poa) £ Y(2pop)
Y(17y,g) = (2pma) £V (2p7B) (5)

The 2po atomic orbital refers to 2p,, which has the axial sym-
metry of a o-bond. Likewise 2pr refers to 2p, or 2p,, which
are positioned to form m-bonds. An alternative notation for
diatomic molecular orbitals which specifies their atomic origin
and bonding/antibonding character is shown here:

log loy, 20 20, 304 30, 1m, I,
ols c*ls o02s o*2s  02p o 2p  w2p T 2p

Almost all applications of molecular-orbital theory are based
on the LCAO approach, since the exact H; functions are far
too complicated to work with.



The relationship between MO’s and their constituent AO’s
can be represented in a correlation diagram, show in Fig. 4.
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Figure 4. Molecular-orbital correlation diagram.
The 1s — 1oy, 1o, 1s similar to the 2s correlations.

MO Theory of Homonuclear Diatomic Molecules

A sufficient number of orbitals is available for the Aufbau of
the ground states of all homonuclear diatomic species from Ho
to Neo. Table 1 summarizes the results. The most likely order
in which the MO’s are filled is given by



log < loy, <204 <20, <304 ~ 1my, < 17y < 30y

The relative order of 30, and 17, depends on which other MO’s
are occupied, much like the situation involving the 4s and 3d
atomic orbitals. The results of photoelectron spectroscopy in-
dicate that 1w, is lower up to and including Ng, but 30, is
lower thereafter.

The term symbol X, II, A ..., analogous to the atomic S,
P, D... symbolizes the axial component of the total orbital
angular momentum. When a m-shell is filled (4 electrons) or
half-filled (2 electrons), the orbital angular momentum cancels
to zero and we find a X term. The spin multiplicity is com-
pletely analogous to the atomic case. The total parity is again
designated by a subscript g or u. Since the many electron wave-
function is made up of products of individual MQO’s, the total
parity is odd only if the molecule contains an odd number of u
orbitals. Thus a 02 or a 72 subshell transforms like g.

For X terms, a £ superscript denotes the sign change of
the wavefunction under a reflection in a plane containing the
internuclear axis. This is equivalent to a sign change in the
variable ¢ — —¢@. This symmetry is needed when we deal with
spectroscopic selection rules. In a spin-paired 72 subshell the
triplet spin function is symmetric so that the orbital factor
must be antisymmetric, of the form

1
75 (mm@ -, m) (6)
This will change sign under the reflection, since x — x but
y — —y. We need only remember that a 72 subshell will give

the term symbol 32;.



The net bonding effect of the occupied MO’s is determined
by the bond order, half the excess of the number bonding minus
the number antibonding. This definition brings the MO results
into correspondence with the Lewis (or valence-bond) concept
of single, double and triple bonds. It is also possible in MO the-
ory to have a bond order of 1/2, for example, in Hy which is
held together by a single bonding orbital. A bond order of zero
generally indicates no stable chemical bond, although helium
and neon atoms can still form clusters held together by much
weaker van der Waals forces. Molecular-orbital theory success-
fully accounts for the transient stability of a 3 excited state
of He,, in which one of the antibonding electrons is promoted
to an excited bonding orbital. This species has a lifetime of
about 10™* sec, until it emits a photon and falls back into the
unstable ground state. Another successful prediction of MO
theory concerns the relative binding energy of the positive ions
N3 and OF, compared to the neutral molecules. Ionization
weakens the N-N bond since a bonding electron is lost, but it
strengthens the O-O bond since an antibonding electron is lost.

One of the earliest triumphs of molecular orbital theory
was the prediction that the oxygen molecule is paramagnetic.
Fig. 5 shows that liquid O5 is a magnetic substance, attracted
to the region between the poles of a permanent magnet. The
paramagnetism arises from the half-filled 17'('3 subshell. Ac-
cording to Hund’s rules the two electrons singly occupy the
two degenerate 1m, orbitals with their spins aligned parallel.
The term symbol is 329_ and the molecule thus has a nonzero
spin angular momentum and a net magnetic moment, which is
attracted to an external magnetic field. Linus Pauling invented
the paramagnetic oxygen analyzer, which is extensively used in
medical technology.
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Figure 5. Demonstration showing blue liquid O,
attracted to the poles of a permanent magnet. From
http://jchemed.chem.wisc.edu/jcesoft /cca/CCA2/
STHTM/PARANIO/9.HTM

Variational Computation of Molecular Orbitals

Thus far we have approached MO theory from a mainly de-
scriptive point of view. To begin a more quantitative treat-
ment, recall the LCAO approximation to the H; ground state,
Eq (4), which can be written

Y =catha+cpis (7)
Using this as a trial function in the variational principle (4.53),
we have A
H ot
E(ca,c) = J v Hy (8)

[ % dr

where H is the Hamiltonian from Eq (1). In fact, these equa-
tions can be applied more generally to construct any molec-
ular orbital, not just solutions for H; . In the general case,
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H will represent an effective one-electron Hamiltonian deter-
mined by the molecular environment of a given orbital. The
energy expression involves some complicated integrals, but can
be simplified somewhat by expressing it in a standard form.
Hamiltonian matrix elements are defined by

HAAZ/wAﬁ¢AdT

HBB=/¢Bﬁ¢BdT

Hap=Hpa = / wa Hppdr (9)

while the overlap integral is given by

S = / Yats dr (10)

Presuming the functions 14 and 1 g to be normalized, the vari-
ational energy (8) reduces to

A Han+2cacg Hap + ¢% Hpp
¢4 + 2cacp Sap + 5

E(ca,cp) = (11)

To optimize the MO, we find the minimum of £ wrt variation
in c4 and cp, as determined by the two conditions
oF OFE
Oea decg

The result is a secular equation determining two values of the
energy:

0, 0 (12)

HAA—E HAB_ESAB _

0 13
Hap — FESap Hpp—FE (13)
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For the case of a homonuclear diatomic molecule, for exam-
ple H;’, the two Hamiltonian matrix elements H44 and Hpp
are equal, say to a. Setting Hap = fand Sap = 5, the secular
equation reduces to

gigs i:gs =(@-E) = (F-EBS)*=0 (14)

with the two roots
ot

1+ S

The calculated integrals o and (3 are usually negative, thus for
the bonding orbital

Ei

(15)

Et = ‘fi g (bonding) (16)
while for the antibonding orbital
E~ = ? _g (antibonding) (17)

Note that (F~ — a) > (a — ET), thus the energy increase
associated with antibonding is slightly greater than the energy
decrease for bonding.
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