
CHAPTER 10

THE CHEMICAL BOND

The Hydrogen Molecule
This four-particle system, two nuclei plus two electrons, is described by the
Hamiltonian
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in terms of the coordinates shown in Fig. 1. We note first that
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Figure 1. Coordinates
used for hydrogen molecule.

the masses of the nuclei are much greater than those of the electrons,
Mproton = 1836 atomic units, compared to melectron = 1 atomic unit. There-
fore nuclear kinetic energies will be negligibly small compared to those of
the electrons. In accordance with the Born-Oppenheimer approximation,
we can first consider the electronic Schrödinger equation

Ĥelecψ(r1, r2, R) = Eelec(R)ψ(r1, r2, R) (2)
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The internuclear separation R occurs as a parameter in this equation so
that the Schrödinger equation must, in concept, be solved for each value of
the internuclear distance R. A typical result for the energy of a diatomic
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molecule as a function of R is shown in Fig. 2. For a bound state, the energy
minimum occurs at for R = Re, known as the equilibrium internuclear
distance. The depth of the potential well at Re is called the binding energy
or dissociation energy De. For the H2 molecule, De = 4.746 eV and Re=
1.400 bohr = 0.7406 Å. Note that as R → 0, E(R) → ∞, since the 1/R
nuclear repulsion will become dominant.
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Figure 2. Energy curves for a diatomic molecule.

The more massive nuclei move much more slowly than the electrons.
From the viewpoint of the nuclei, the electrons adjust almost instanta-
neously to any changes in the internuclear distance. The electronic energy
Eelec(R) therefore plays the role of a potential energy in the Schrödinger
equation for nuclear motion
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}
χ(rA, rB) = E χ(rA, rB) (4)

where
V (R) = Eelec(R) (5)

from solution of Eq (2). Solutions of Eq (4) determine the vibrational and
rotational energies of the molecule. These will be considered further in
Chap. 13. For the present, we are interested in the obtaining electronic
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energy from Eqs (2) and (3). We will thus drop the subscript “elec” on Ĥ
and E(R) for the remainder this Chapter.

The first quantum-mechanical account of chemical bonding is due to
Heitler and London in 1927, only one year after the Schrödinger equation
was proposed. They reasoned that, since the hydrogen molecule H2 was
formed from a combination of hydrogen atoms A and B, a first approxima-
tion to its electronic wavefunction might be

ψ(r1, r2) = ψ1s(r1A)ψ1s(r2B) (6)

Using this function into the variational integral

Ẽ(R) =
∫

ψ Ĥ ψ dτ∫
ψ2 dτ

(7)

the value Re ≈ 1.7 bohr was obtained, indicating that the hydrogen atoms
can indeed form a molecule. However, the calculated binding energy De ≈
0.25 eV, is much too small to account for the strongly-bound H2 molecule.
Heitler and London proposed that it was necessary to take into account the
exchange of electrons, in which the electron labels in (6) are reversed. The
properly symmetrized function

ψ(r1, r2) = ψ1s(r1A)ψ1s(r2B) + ψ1s(r1B)ψ1s(r2A) (8)

gave a much more realistic binding energy value of 3.20 eV, with Re = 1.51
bohr. We have already used exchange symmetry (and antisymmetry) in
our treatment of the excited states of helium in Chap. 8. The variational
function (8) was improved (Wang, 1928) by replacing the hydrogen 1s func-
tions e−r by e−ζr. The optimized value ζ = 1.166 gave a binding energy
of 3.782 eV. The quantitative breakthrough was the computation of James
and Coolidge (1933). Using a 13-parameter function of the form

ψ(r1, r2) = e−α(ξ1+ξ2) × polynomial in {ξ1, ξ2, η1, η2, ρ} ,

ξi ≡ riA + riB

R
, ηi ≡ riA − riB

R
, ρ ≡ r12

R
(9)

they obtained Re = 1.40 bohr, De = 4.720 eV. In a sense, this result pro-
vided a proof of the validity of quantum mechanics for molecules, in the
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same sense that Hylleraas’ computation on helium was a proof for many-
electron atoms.

The Valence Bond Theory

The basic idea of the Heitler-London model for the hydrogen molecule can
be extended to chemical bonds between any two atoms. The orbital function
(8) must be associated with the singlet spin function σ0,0(1, 2) in order
that the overall wavefunction be antisymmetric [cf. Eq (8.18)]. This is a
quantum-mechanical realization of the concept of an electron-pair bond,
first proposed by G. N. Lewis in 1916. It is also now explained why the
electron spins must be paired, i.e., antiparallel. It is also permissible to
combine an antisymmetric orbital function with a triplet spin function but
this will, in most cases, give a repulsive state, as shown by the red curve in
Fig. 2.

According to valence-bond theory, unpaired orbitals in the valence
shells of two adjoining atoms can combine to form a chemical bond if they
overlap significantly and are symmetry compatible. A σ-bond is cylindri-
cally symmetrical about the axis joining the atoms. Two s AO’s, two pz

AO’s or an s and a pz can contribute to a σ-bond, as shown in Fig. 3. The
z-axis is chosen along the internuclear axis. Two px or two py AO’s can
form a π-bond, which has a nodal plane containing the internuclear axis.
Examples of symmetry-incompatible AO’s would be an s with a px or a px

with a py. In such cases the overlap integral would vanish because of cancel-
lation of positive and negative contributions. Some possible combinations
of AO’s forming σ and π bonds are shown in Fig. 3.

Bonding in the HCl molecule can be attributed to a combination of
a hydrogen 1s with an unpaired 3pz on chlorine. In Cl2, a sigma bond is
formed between the 3pz AO’s on each chlorine. As a first approximation, the
other doubly-occupied AO’s on chlorine–the inner shells and the valence-
shell lone pairs–are left undisturbed.
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Figure 3. Formation of σ and π bonds.

The oxygen atom has two unpaired 2p-electrons, say 2px and 2py. Each
of these can form a σ-bond with a hydrogen 1s to make a water molecule. It
would appear from the geometry of the p-orbitals that the HOH bond angle
would be 90◦. It is actually around 104.5◦. We will resolve this discrepency
shortly. The nitrogen atom, with three unpaired 2p electrons can form
three bonds. In NH3, each 2p-orbital forms a σ-bond with a hydrogen 1s.
Again 90◦ HNH bond angles are predicted, compared with the experimental
107◦. The diatomic nitrogen molecule has a triple bond between the two
atoms, one σ bond from combining 2pz AO’s and two π bonds from the
combinations of 2px’s and 2py’s, respectively.

Hybrid Orbitals and Molecular Geometry
To understand the bonding of carbon atoms, we must introduce additional
elaborations of valence-bond theory. We can write the valence shell config-
uration of carbon atom as 2s22px2py, signifying that two of the 2p orbitals
are unpaired. It might appear that carbon would be divalent, and indeed
the species CH2 (carbene or methylene radical) does have a transient exis-
tence. But the chemistry of carbon is dominated by tetravalence. Evidently
it is a good investment for the atom to promote one of the 2s electrons to
the unoccupied 2pz orbital. The gain in stability attained by formation of
four bonds more than compensates for the small excitation energy. It can
thus be understood why the methane molecule CH4 exists. The molecule
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has the shape of a regular tetrahedron, which is the result of hybridization,
mixing of the s and three p orbitals to form four sp3 hybrid atomic orbitals.
Hybrid orbitals can overlap more strongly with neighboring atoms, thus
producing stronger bonds. The result is four C–H σ-bonds, identical except
for orientation in space, with 109.5◦ H-C-H bond angles.

Figure 4. Promotion and hybridization
of atomic orbitals in carbon atom.

Other carbon compounds make use of two alternative hybridization
schemes. The s AO can form hybrids with two of the p AO’s to give three sp2

hybrid orbitals, with one p-orbital remaining unhybridized. This accounts
for the structure of ethylene (ethene):

The C–H and C–C σ-bonds are all trigonal sp2 hybrids, with 120◦ bond
angles. The two unhybridized p-orbitals form a π-bond, which gives the
molecule its rigid planar structure. The two carbon atoms are connected
by a double bond, consisting of one σ and one π. The third canonical
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form of sp-hybridization occurs in C–C triple bonds, for example, acetylene
(ethyne). Here, two of the p AO’s in carbon remain unhybridized and can
form two π-bonds, in addition to a σ-bond, with a neighboring carbon:

Acetylene H–C≡C–H is a linear molecule since sp-hybrids are oriented 180◦

apart.
The deviations of the bond angles in H2O and NH3 from 90◦ can be

attributed to fractional hybridization. The angle H-O-H in water is 104.5◦

while H-N-H in ammonia is 107◦. It is rationalized that the p-orbitals of the
central atom acquire some s-character and increase their angles towards the
tetrahedral value of 109.5◦. Correspondingly, the lone pair orbitals must
also become hybrids. Apparently, for both water and ammonia, a model
based on tetrahedral orbitals on the central atoms would be closer to the ac-
tual behavior than the original selection of s- and p-orbitals. The hybridiza-
tion is driven by repulsions between the electron densities of neighboring
bonds.

Valence Shell Model

An elementary, but quite successful, model for determining the shapes of
molecules is the valence shell electron repulsion theory (VSEPR), first pro-
posed by Sidgewick and Powell and popularized by Gillespie. The local
arrangement of atoms around each multivalent center in the molecule can
be represented by AXn−kEk, where X is another atom and E is a lone pair
of electrons. The geometry around the central atom is then determined by
the arrangement of the n electron pairs (bonding plus nonbonding) which
minimizes their mutual repulsion. The following geometric configurations
satisfy this condition:

n shape
2 linear 5 trigonal bipyramid
3 trigonal planar 6 octahedral
4 tetrahedral 7 pentagonal bipyramid
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The basic geometry will be distorted if the n surrounding pairs are not
identical. The relative strength of repulsion between pairs follows the order
E–E > E–X > X–X. In ammonia, for example, which is NH3E, the shape
will be tetrahedral to a first approximation. But the lone pair E will repel
the N–H bonds more than they repel one another. Thus the E–N–H angle
will increase from the tetrahedral value of 109.5◦, causing the H–N–H angles
to decrease slightly. The observed value of 107◦ is quite well accounted for.
In water, OH2E2, the opening of the E–O–E angle will likewise cause a
closing of H–O–H, and again, 104.5◦ seems like a reasonable value.

Valence-bond theory is about 90% successful in explaining much of the
descriptive chemistry of ground states. VB theory fails to account for the
triplet ground state of O2 or for the bonding in electron-deficient molecules
such as diborane, B2H6. It is not very useful in consideration of excited
states, hence for spectroscopy. Many of these deficiencies are remedied by
molecular orbital theory, which we take up in the next Chapter.
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