
CHAPTER 13

MOLECULAR SPECTROSCOPY

Our most detailed knowledge of atomic and molecular structure has been
obtained from spectroscopy—study of the emission, absorption and scat-
tering of electromagnetic radiation accompanying transitions among atomic
or molecular energy levels. Whereas atomic spectra involve only electronic
transitions, the spectroscopy of molecules is more intricate because vibra-
tional and rotational degrees of freedom come into play as well. Early
observations of absorption or emission by molecules were characterized as
band spectra—in contrast to the line spectra exhibited by atoms. It is now
understood that these bands reflect closely-spaced vibrational and rota-
tional energies augmenting the electronic states of a molecule. With im-
provements in spectroscopic techniques over the years, it ha become pos-
sible to resolve individual vibrational and rotational transitions. This has
provided a rich source of information on molecular geometry, energetics
and dynamics. Molecular spectroscopy has also contributed significantly to
analytical chemistry, environmental science, astrophysics, biophysics and
biochemistry.

Reduced Mass

Consider a system of two particles of masses m1 and m2 interacting with
a potential energy which depends only on the separation of the particles.
The classical energy is given by

E =
1
2
m1 ṙ2

1 +
1
2
m2 ṙ2

2 + V (|r2 − r1|) (1)

the dots signifying derivative wrt time. Introduce two new variables, the
particle separation r and the position of the center of mass R:

r = r2 − r1, R =
m1r1 + m2r2

m
(2)

where m = m1 + m2. In terms of the new coordinates

r1 = R +
m2

m
r, r2 = R − m1

m
r (3)
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and
E =

1
2
m Ṙ2 +

1
2
µ ṙ2 + V (r) (4)

where r = |r| and µ is called the reduced mass

µ ≡ m1m2

m1 + m2
(5)

An alternative relation for reduced mass is

1
µ

=
1

m1
+

1
m2

(6)

reminiscent of the formula for resistance of a parallel circuit. Note that,
if m2 → ∞, then µ → m1. The term containing Ṙ represents the kinetic
energy of a single hypothetical particle of mass m located at the center
of mass R. The remaining terms represent the relative motion of the two
particles. It has the appearance of a single particle of effective mass µ
moving in the potential field V (r).

Erel =
1
2
µ ṙ2 + V (r) =

p2

2µ
+ V (r) (7)

We can thus write the Schrödinger equation for the relative motion

{
− h̄2

2µ
∇2 + V (r)

}
ψ(r) = Eψ(r) (8)

When we treated the hydrogen atom, it was assumed that the nuclear mass
was infinite. In that case we can set µ = m, the mass of an electron. The
Rydberg constant for infinite nuclear mass was calculated to be

R∞ =
2π2me4

h3c
= 109, 737 cm−1 (9)

If instead, we use the reduced mass of the electron-proton system

µ =
mM

m + M
≈ 1836

1837
m ≈ 0.999456m (10)
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This changes the Rydberg constant for hydrogen to

RH ≈ 109, 677 cm−1 (11)

in perfect agreement with experiment.

In 1931, H. C. Urey evaporated four liters of hydrogen down to one
milliliter and measured the spectrum of the residue. The result was a set of
lines displaced slightly from the hydrogen spectrum. This amounted to the
discovery of deuterium, or heavy hydrogen, for which Urey was awarded in
1934 Nobel Prize in Chemistry. Estimating the mass of the deuteron, 2H1,
as twice that of the proton, gives

RD ≈ 109, 707 cm−1 (12)

Another interesting example involving reduced mass concerns positron-
ium, a short-lived combination of an electron and a positron—the electron’s
antiparticle. The electron and positron mutually annihilate with a half-life
of approximately 10−7 sec and positronium decays into gamma rays. The
reduced mass of positronium is

µ =
m × m

m + m
=

m

2
(13)

half the mass of the electron. Thus the ionization energy equals 6.80 eV, half
that of hydrogen atom. Positron emission tomography (PET) provides a
sensitive scanning technique for functioning living tissue, notably the brain.
A compound containing a positron-emitting radionuclide, for example, 11C,
13N, 15O or 18F, is injected into the body. The emitted positrons attach to
electrons to form short-lived positronium, and the annihilation radiation is
monitored.

Vibration of Diatomic Molecules

A diatomic molecule with nuclear masses MA, MB has a reduced mass

µ =
MAMB

MA + MB
(14)
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Figure 1. Jens Zorn sculpture depicting positronium annihilation.
Outside University of Michigan Physics Building.

Solution of the electronic Schrödinger equation gives the energy as a func-
tion of internuclear distance Eelec(R). This plays the role of a potential
energy function for motion of the nuclei V (R), as sketched in Fig. 2. We
can thus write the Schrödinger equation for vibration

{
− h̄2

2µ

d2

dR2 + V (R)
}

χ(R) = Eχ(R) (15)

If the potential energy is expanded in a Taylor series about R = Re

V (R) = V (Re) + (R − Re)V ′(Re) + 1
2 (R − Re)2V ′′(Re) + . . . (16)

An approximation for this expansion has the form of a harmonic oscillator
with

V (R) ≈ 1
2k(R − Re)2 (17)
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Figure 2. Vibrational energies of a diatomic molecule,
as approximated by a Morse oscillator.

The energy origin can be chosen so V (Re) = 0. At the minimum of the
potential, V ′(Re) = 0. The best fit to the parabola (17) is obtained with a
force constant set equal to

k ≈ d2V (R)
dR2

∣∣∣∣
R=Re

(18)

From the solution for the harmonic oscillator, we identify the ground state
vibrational energy, with quantum number v = 0

E0 = h̄ω = h̄

√
k

µ
(19)

The actual dissociation energy from ground vibrational state is then ap-
proximated by

D0 ≈ De − 1
2 h̄ω (20)
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In wavenumber units

hcD0 ≈ hcDe − 1
2 ν̃ cm−1 (21)

An improved treatment of molecular vibration must account for anhar-
monicity, deviation from a harmonic oscillator. Anharmonicity results in a
finite number of vibrational energy levels and the possibility of dissociation
of the molecule at sufficiently high energy. A very successful approximation
for the energy of a diatomic molecule is the Morse potential:

V (R) = hcDe

{
1 − ea(R−Re)

}2
a =

(
µω2

2hcDe

)1/2

(22)

Note that V (Re) = 0 at the minimum of the potential well. The Schrödinger
equation for a Morse oscillator can be solved to give the energy levels

Ev = (v + 1
2 )h̄ω − (v + 1

2 )2h̄ωxe (23)

or, expressed in wavenumber units,

hcEv = (v + 1
2 )ν̃ − (v + 1

2)2xeν̃ (24)

Higher vibrational energy levels are spaced closer together, just as in real
molecules. Vibrational transitions of diatomic molecules occur in the in-
frared, roughly in the range of 50–12,000 cm−1. A molecule will absorb or
emit radiation only if it has a non-zero dipole moment. Thus HCl is infrared
active while H2 and Cl2 are not.

Vibration of Polyatomic Molecules

A molecule with N atoms has a total of 3N degrees of freedom for its nu-
clear motions, since each nucleus can be independently displaced in three
perpendicular directions. Three of these degrees of freedom correspond
to translational motion of the center of mass. For a nonlinear molecule,
three more degrees of freedom determine the orientation of the molecule
in space, and thus its rotational motion. This leaves 3N − 6 vibrational
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modes. For a linear molecule, there are just two rotational degrees of free-
dom, which leaves 3N − 5 vibrational modes. For example, the nonlinear
molecule H2O has three vibrational modes while the linear molecule CO2
has four vibrational modes. The vibrations consist of coordinated motions
of several atoms in such a way as to keep the center of mass stationary and
nonrotating. These are called the normal modes. Each normal mode has
a characteristic resonance frequency ν̃i, which is usually determined exper-
imentally. To a reasonable approximation, each normal mode behaves as
an independent harmonic oscillator of frequency ν̃i. The normal modes of
H2O and CO2 are pictured below.

Figure 3. Normal modes of H2O.

Figure 4. Normal modes of CO2.

A normal mode will be infrared active only if it involves a change in the
dipole moment. All three modes of H2O are active. The symmetric stretch
of CO2 is inactive because the two C–O bonds, each of which is polar, ex-
actly compensate. Note that the bending mode of CO2 is doubly degenerate.
Bending of adjacent bonds in a molecule generally involves less energy than
bond stretching, thus bending modes generally have lower wavenumbers
than stretching modes.
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Rotation of Diatomic Molecules

The rigid rotor model assumes that the internuclear distance R is a constant.
This is not a bad approximation since the amplitude of vibration is generally
of the order of 1% of R. The Schrödinger equation for nuclear motion
then involves the three-dimensional angular momentum operator, written
Ĵ rather than L̂ when it refers to molecular rotation. The solutions to this
equation are already known and we can write

Ĵ2

2µR2 YJM (θ, φ) = EJ YJM (θ, φ)

J = 0, 1, 2 . . . M = 0,±1 . . . ± J (25)

where YJM (θ, φ) are spherical harmonics in terms of the quantum numbers
J and M , rather than l and m. Since the eigenvalues of Ĵ2 are J(J + 1)h̄2,
the rotational energy levels are

EJ =
h̄2

2I
J(J + 1) (26)

The moment of inertia is given by

I = µR2 = MAR2
A + MBR2

B (27)

where RA and RB are the distances from nuclei A and B, respectively, to
the center of mass. In wavenumber units, the rotational energy is expressed

hcEJ = BJ(J + 1) cm−1 (28)

where B is the rotational constant. The rotational energy-level diagram
is shown in Fig.5. Each level is (2J + 1)-fold degenerate. Again, only
polar molecules can absorb or emit radiation in the course of rotational
transitions. The radiation is in the microwave or far infrared region. The
selection rule for rotational transitions is ∆J = ±1.
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Figure 5. Rotational Energies
hcEJ = BJ(J + 1)

Molecular Parameters from Spectroscopy

Following is a table of spectroscopic constants for the four hydrogen halides:

ν̃/cm−1 B/cm−1

1H19F 4138.32 20.956
1H35Cl 2990.95 10.593
1H81Br 2648.98 8.465
1H127I 2308.09 6.511

The force constant can be found from the vibrational constant. Equating
the energy quantities h̄ω = hcν̃, we find

ω = 2πc ν̃ =

√
k

µ
(29)

Thus
k = (2πc ν̃)2µ (30)

with
µ =

mAmB

mA + mB
=

MAMB

MA + MB
u (31)

where u = 1.66054 × 10−27 kg, the atomic mass unit. MA and MB are the
conventional atomic weights of atoms A and B (on the scale 12C = 12).
Putting in numerical factors

k = 58.9 × 10−6 (ν̃/cm−1)2
MAMB

MA + MB
N/m (32)
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This gives 958.6, 512.4, 408.4 and 311.4 N/m for HF, HCl, HBr and HI,
respectively. These values do not take account of anharmonicity.

The internuclear distance R is determined by the rotational constant.
By definition,

hcB =
h̄2

2I
(33)

Thus

B =
h̄

4πcI
(34)

with
I = µR2 =

mAmB

mA + mB
R2 =

MAMB

MA + MB
u R2 kg m2 (35)

Solving for R,

R = 410.6
/√

MAMB

MA + MB
(B/cm−1) pm (36)

For the hydrogen halides, HF, HCl, HBr, HI, we calculate R = 92.0, 127.9,
142.0, 161.5 pm, respectively.

Rotation of Nonlinear Molecules

A nonlinear molecule has three moments of inertia about three principal
axes, designated Ia, Ib and Ic. The classical rotational energy can be written

E =
J2

a

2Ia
+

J2
b

2Ib
+

J2
c

2Ic
(37)

where Ja, Jb, Jc are the components of angular momentum about the prin-
cipal axes. For a spherical rotor, such as CH4 or SF6, the three moments of
inertia are equal to the same value I. The energy simplifies to J2/2I and
the quantum-mechanical Hamiltonian is given by

Ĥ =
Ĵ2

2I
(38)
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The eigenvalues are

EJ =
h̄2

2I
J(J + 1) J = 0, 1, 2 . . . (39)

just as for a linear molecule. But the levels of a spherical rotor have degen-
eracies of (2J + 1)2 rather than (2J + 1).

A symmetric rotor has two equal moments of inertia, say Ic = Ib 6= Ia.
The molecules NH3, CH3Cl and C6H6 are examples. The Hamiltonian takes
the form

Ĥ =
Ĵ2

a

2Ia
+

Ĵ2
b + Ĵ2

c

2Ib
=

Ĵ2

2Ib
+

(
1

2Ia
− 1

2Ib

)
Ĵ2

a (40)

Since it its possible to have simultaneous eigenstates of Ĵ2 and one of its
components Ĵa, the energies of a symmetric rotor have the form

EJK =
J(J + 1)

2Ib
+

(
1

2Ia
− 1

2Ib

)
K2

J = 0, 1, 2 . . . K = 0, ±1,±2 . . . ± J (40)

There is, in addition, the (2J + 1)-fold M degeneracy.

Electronic Excitations in Diatomic Molecules

The quantum states of molecules are composites of rotational, vibrational
and electronic contributions. The energy spacings characteristic of these
different degrees of freedom vary over many orders of magnitude, giving
rise to very different spectroscopic techniques for studying rotational, vi-
brational and electronic transitions. Electronic excitations are typically of
the order of several electron volts, 1 eV being equivalent to approximately
8000 cm−1 or 100 kJ mol−1. As we have seen, typical energy differences
are of the order of 1000 cm−1 for vibration and 10 cm−1 for rotation. Fig.
6 gives a general idea of the relative magnitudes of these energy contribu-
tions. Each electronic state has a vibrational structure, characterized by
vibrational quantum numbers v and each vibrational state has a rotational
structure, characterized by rotational quantum numbers J and M .
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Figure 6. Schematic representation of the electronic ground state and an
excited state of a diatomic molecule. Vibrational levels of the ground state
are shown in red, those of the excited state, in blue. The rotational levels
for v = 0 are also shown.

Every electronic transition in a molecule is accompanied by changes in
vibrational and rotational states. Generally, in the liquid state, individual
vibrational transitions are not resolved, so that electronic spectra consist
of broad bands comprising a large number of overlapping vibrational and
rotational transitions. Spectroscopy on the gas phase, however, can often
resolve individual vibrational and even rotational transitions.

When a molecule undergos a transition to a different electronic state,
the electrons rearrange themselves much more rapidly than the nuclei. To a
very good approximation, the electronic state can be considered to occur in-
stantaneously, while the nuclear configuration remains fixed. This is known
as the Franck-Condon principle. It has the same physical origin as the Born-
Oppenheimer approximation, namely the great disparity in the electron and
nuclear masses. On a diagram showing the energies of the ground and ex-
cited states as functions of internuclear distance, Franck-Condon behavior
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is characterized by vertical transitions, in which R remains approximately
constant as the molecule jumps from one potential curve to the other.

Figure 7. Franck-Condon principle

In a vibrational state v = 0 the maximum of probability for the internuclear
distance R is near the center of the potential well. For all higher values
vibrational states, maxima of probability occur near the two turning points
of the potential—where the total energy equals the potential energy. These
correspond on the diagrams to the end points of the horizontal dashes inside
the potential curve.
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