
CHAPTER 3

QUANTUM MECHANICS OF
SOME SIMPLE SYSTEMS

The Free Particle

The simplest system in quantum mechanics has the potential energy V
equal to zero everywhere. This is called a free particle since it has no forces
acting on it. We consider the one-dimensional case, with motion only in
the x-direction, giving the Schrödinger equation

− h̄2

2m

d2ψ(x)
dx2 = Eψ(x) (1)

Total derivatives can be used since there is but one independent variable.
The equation simplifies to

ψ′′(x) + k2 ψ(x) = 0 (2)

with the definition
k2 ≡ 2mE/h̄2 (3)

Possible solutions of Eq (2) are

ψ(x) = const

{ sin kx
cos kx
e±ikx

(4)

There is no restriction on the value of k. Thus a free particle, even in
quantum mechanics, can have any non-negative value of the energy

E =
h̄2k2

2m
≥ 0 (5)

The energy levels in this case are not quantized and correspond to the same
continuum of kinetic energy shown by a classical particle.
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It is of interest also to consider the x-component of linear momentum
for the free-particle solutions (4). According to Eq (2-32), the eigenvalue
equation for momentum should read

p̂xψ(x) = −ih̄
dψ(x)

dx
= p ψ(x) (6)

where we have denoted the momentum eigenvalue as p. It is easily shown
that neither of the functions sin kx or cos kx from (4) is an eigenfunction
of p̂x. But e±ikx are both eigenfunctions with eigenvalues p = ±h̄k, respec-
tively. Evidently the momentum p can take on any real value between −∞
and +∞. The kinetic energy, equal to E = p2/2m, can correspondingly
have any value between 0 and +∞.

The functions sin kx and coskx, while not eigenfunctions of p̂x, are each
superpositions of the two eigenfunctions e±ikx, by virtue of the trigonometric
identities

cos kx =
1
2
(eikx + e−ikx) and sin kx =

1
2i

(eikx − e−ikx) (7)

The eigenfunction eikx for k > 0 represents the particle moving from left
to right on the x-axis, with momentum p > 0. Correspondingly, e−ikx

represents motion from right to left with p < 0. The functions sin kx
and cos kx represent standing waves, obtained by superposition of opposing
wave motions. Although these latter two are not eigenfunctions of p̂x but
are eigenfunctions of p̂2

x, hence of the Hamiltonian Ĥ.

Particle in a Box
This is the simplest non-trivial application of the Schrödinger equation,
but one which illustrates many of the fundamental concepts of quantum
mechanics. For a particle moving in one dimension (again along the x-
axis), the Schrödinger equation can be written

− h̄2

2m
ψ′′(x) + V (x)ψ(x) = E ψ(x) (8)

Assume that the particle can move freely between two endpoints x = 0
and x = a, but cannot penetrate past either end. This is equivalent to a
potential energy dependent on x with

V (x) =
{ 0 0 ≤ x ≤ a

∞ x < 0 and x > a
(9)
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Figure 1. Potential well
and lowest energy levels
for particle in a box.

This potential is represented by the dark lines in Fig. 1. Infinite potential
energy constitute an impenetrable barrier. The particle is thus bound to a
potential well. Since the particle cannot penetrate beyond x = 0 or x = a,

ψ(x) = 0 for x < 0 and x > a (10)

By the requirement that the wavefunction be continuous, it must be true
as well that

ψ(0) = 0 and ψ(a) = 0 (11)

which constitutes a pair of boundary conditions on the wavefunction within
the box. Inside the box, V (x) = 0, so the Schrödinger equation reduces to
the free-particle form (1)

− h̄2

2m
ψ′′(x) = E ψ(x), 0 ≤ x ≤ a (12)

We again have the differential equation

ψ′′(x) + k2 ψ(x) = 0 with k2 = 2mE/h̄2 (13)

The general solution can be written

ψ(x) = A sin kx + B cos kx (14)
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where A and B are constants to be determined by the boundary conditions
(11). By the first condition, we find

ψ(0) = A sin 0 + B cos 0 = B = 0 (15)

The second boundary condition at x = a then implies

ψ(a) = A sin ka = 0 (16)

It is assumed that A 6= 0, for otherwise ψ(x) would be zero everywhere and
the particle would disappear. The condition that sin kx = 0 implies that

ka = nπ (17)

where n is a integer, positive, negative or zero. The case n = 0 must
be excluded, for then k = 0 and again ψ(x) would vanish everywhere.
Eliminating k between (13) and (17), we obtain

En =
h̄2π2

2ma2 n2 =
h2

8ma2 n2 n = 1, 2, 3 . . . (18)

These are the only values of the energy which allow solution of the Schrö-
dinger equation (12) consistent with the boundary conditions (11). The
integer n, called a quantum number, is appended as a subscript on E to
label the allowed energy levels. Negative values of n add nothing new
because the energies in Eq (18) depends on n2. Fig. 1 shows part of the
energy-level diagram for the particle in a box. The occurrence of discrete
or quantized energy levels is characteristic of a bound system, that is, one
confined to a finite region in space. For the free particle, the absence of
confinement allowed an energy continuum. Note that, in both cases, the
number of energy levels is infinite—denumerably infinite for the particle in
a box but nondenumerably infinite for the free particle.

The particle in a box assumes its lowest possible energy when n = 1,
namely

E1 =
h2

8ma2 (19)

The state of lowest energy for a quantum system is termed its ground state.
An interesting point is that E1 > 0, whereas the corresponding classical
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system would have a minimum energy of zero. This is a recurrent phe-
nomenon in quantum mechanics. The residual energy of the ground state,
that is, the energy in excess of the classical minimum, is known as zero point
energy. In effect, the kinetic energy, hence the momentum, of a bound par-
ticle cannot be reduced to zero. The minimum value of momentum is found
by equating E1 to p2/2m, giving pmin = ±h/2a. This can be expressed as
an uncertainty in momentum given by ∆p ≈ h/a. Coupling this with the
uncertainty in position, ∆x ≈ a, from the size of the box, we can write

∆x∆p ≈ h (20)

This is in accord with the Heisenberg uncertainty principle, which we will
discuss in greater detail later.

The particle-in-a-box eigenfunctions are given by Eq (14), with B = 0
and k = nπ/a, in accordance with (17):

ψn(x) = A sin
nπx

a
, n = 1, 2, 3 . . . (21)

These, like the energies, can be labelled by the quantum number n. The
constant A, thus far arbitrary, can be adjusted so that ψn(x) is normalized.
The normalization condition (2-39) is, in this case,

∫ a

0
[ψn(x)]2 dx = 1 (22)

the integration running over the domain of the particle, 0 ≤ x ≤ a. Substi-
tuting (21) into (22),

A2
∫ a

0
sin2 nπx

a
dx = A2 a

nπ

∫ nπ

0
sin2 θ dθ = A2 a

2
= 1 (23)

We have made the substitution θ = nπx/a and used the fact that the
average value of sin2 θ over an integral number of half wavelenths equals
1/2. (Alternatively, one could refer to standard integral tables.) From (23),
we can identify the normalization constant A = (2/a)1/2, for all values of
n. Finally we can write the normalized eigenfunctions:

ψn(x) =
(

2
a

)1/2

sin
nπx

a
, n = 1, 2, 3 . . . (24)
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The first few eigenfunctions and the corresponding probability distributions
are plotted in Fig. 2. There is a close analogy between the states of this
quantum system and the modes of vibration of a violin string. The patterns
of standing waves on the string are, in fact, identical in form with the
wavefunctions (24).
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Figure 2. Eigenfunctions and probability
densities for particle in a box.

A significant feature of the particle-in-a-box quantum states is the oc-
currence of nodes. These are points, other than the two end points (which
are fixed by the boundary conditions), at which the wavefunction vanishes.
At a node there is exactly zero probability of finding the particle. The
nth quantum state has, in fact, n − 1 nodes. It is generally true that the
number of nodes increases with the energy of a quantum state, which can
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be rationalized by the following qualitative argument. As the number of
nodes increases, so does the number and steepness of the ‘wiggles’ in the
wavefunction. It’s like skiing down a slalom course. Accordingly, the av-
erage curvature, given by the second derivative, must increase. But the
second derivative is proportional to the kinetic energy operator. Therefore,
the more nodes, the higher the energy. This will prove to be an invaluable
guide in more complex quantum systems.

Another important property of the eigenfunctions (24) applies to the
integral over a product of two different eigenfunctions. It is easy to see from
Fig. 3 that the integral

∫ a

0
ψ2(x) ψ1(x) dx = 0

1

2

1 2

Figure 3. Product of n=1 and n=2 eigenfunctions.

To prove this result in general, use the trigonometric identity

sinα sinβ =
1
2
[cos(α − β) − cos(α + β)]

to show that ∫ a

0
ψm(x) ψn(x) dx = 0 if m 6= n (25)

This property is called orthogonality. We will show in the Chap. 4 that
this is a general result for quantum-mechanical eigenfunctions. The nor-
malization (22) together with the orthogonality (25) can be combined into
a single relationship

∫ a

0
ψm(x) ψn(x) dx = δmn (26)

in terms of the Kronecker delta

δmn ≡
{

1 if m = n
0 if m 6= n
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(27)

A set of functions {ψn} which obeys (26) is called orthonormal.

Free-Electron Model
The simple quantum-mechanical problem we have just solved can provide
an instructive application to chemistry: the free-electron model (FEM) for
delocalized π-electrons. The simplest case is the 1,3-butadiene molecule

The four π-electrons are assumed to move freely over the four-carbon frame-
work of single bonds. We neglect the zig-zagging of the C–C bonds and as-
sume a one-dimensional box. We also overlook the reality that π-electrons
actually have a node in the plane of the molecule. Since the electron wave-
function extends beyond the terminal carbons, we add approximately one-
half bond length at each end. This conveniently gives a box of length equal
to the number of carbon atoms times the C–C bond length, for butadiene,
approximately 4 × 1.40 Å. Recall that 1 Å=10−10m, Now, in the lowest
energy state of butadiene, the 4 delocalized electrons will fill the two lowest
FEM “molecular orbitals.” The total π-electron density will be given (as
shown in Fig. 4) by

ρ = 2ψ2
1 + 2ψ2

2 (28)

2

2

+ =

Figure 4. Pi-electron density in butadiene.

A chemical interpretation of this picture might be that, since the π-electron
density is concentrated between carbon atoms 1 and 2, and between 3 and
4, the predominant structure of butadiene has double bonds between these
two pairs of atoms. Each double bond consists of a π- bond, in addition
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to the underlying σ-bond. However, this is not the complete story, be-
cause we must also take account of the residual π-electron density between
carbons 2 and 3. In the terminology of valence-bond theory, butadiene
would be described as a resonance hybrid with the contributing structures
CH2=CH-CH=CH2 (the predominant structure) and ◦CH2-CH=CH-CH2

◦

(a secondary contribution). The reality of the latter structure is suggested
by the ability of butadiene to undergo 1,4-addition reactions.

The free-electron model can also be applied to the electronic spectrum
of butadiene and other linear polyenes. The lowest unoccupied molecu-
lar orbital (LUMO) in butadiene corresponds to the n = 3 particle-in-a-
box state. Neglecting electron-electron interaction, the longest-wavelength
(lowest-energy) electronic transition should occur from n = 2, the highest
occupied molecular orbital (HOMO).

n=1

n=2

n=3

The energy difference is given by

∆E = E3 − E2 = (32 − 22)
h2

8mL2 (29)

Here m represents the mass of an electron (not a butadiene molecule!),
9.1×10−31 Kg, and L is the effective length of the box, 4 × 1.40 × 10−10 m.
By the Bohr frequency condition

∆E = hν =
h c

λ
(30)

The wavelength is predicted to be 207 nm. This compares well with the
experimental maximum of the first electronic absorption band, λmax ≈ 210
nm, in the ultraviolet region.

We might therefore be emboldened to apply the model to predict
absorption spectra in higher polyenes CH2=(CH-CH=)n−1CH2. For the
molecule with 2n carbon atoms (n double bonds), the HOMO → LUMO
transition corresponds to n → n + 1, thus

hc

λ
≈ [(n + 1)2 − n2]

h2

8m(2nLCC)2
(31)
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A useful constant in this computation is the Compton wavelength h/mc =
2.426 × 10−12m. For n = 3, hexatriene, the predicted wavelength is 332
nm, while experiment gives λmax ≈ 250 nm. For n = 4, octatetraene, FEM
predicts 460 nm, while λmax ≈ 300 nm. Clearly the model has been pushed
beyond it range of quantitative validity, although the trend of increasing
absorption band wavelength with increasing n is correctly predicted. Inci-
dentally, a compound should be colored if its absorption includes any part
of the visible range 400–700 nm. Retinol (vitamin A), which contains a
polyene chain with n = 5, has a pale yellow color. This is its structure:

Particle in a Three-Dimensional Box
A real box has three dimensions. Consider a particle which can move freely
with in rectangular box of dimensions a × b × c with impenetrable walls.
In terms of potential energy, we can write

V (x, y, z) =
{ 0 inside box

∞ outside box

(32)

Again, the wavefunction must vanish everywhere outside the box. By the
continuity requirement, the wavefunction must also valish in the six surfaces
of the box. Orienting the box so its edges are parallel to the cartesian
axes, with one corner at (0,0,0), the following boundary conditions must be
satisfied:

ψ(x, y, z) = 0 when x = 0, x = a, y = 0, y = b, z = 0 or z = c (33)

Inside the box, where the potential energy is everywhere zero, the Hamil-
tonian is simply the three-dimensional kinetic energy operator and the
Schrödinger equation reads

− h̄2

2m
∇2ψ(x, y, z) = E ψ(x, y, z) (34)
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subject to the boundary conditions (33). This second-order partial diffential
equation is separable in cartesian coordinates, with a solution of the form

ψ(x, y, z) = X(x) Y (y) Z(z) (35)

subject to the boundary conditions

X(0) = X(a) = 0, Y (0) = Y (b) = 0, Z(0) = Z(c) = 0 (36)

Substituting (35) into (34) and dividing through by (35), we obtain

X ′′(x)
X(x)

+
Y ′′(y)
Y (y)

+
Z ′′(z)
Z(z)

+
2mE

h̄2 = 0 (37)

Each of the first three terms in (37) depends on one variable only, indepen-
dent of the other two. This is possible only if each term separately equals
a constant, say, −α2, −β2 and −γ2, respectively. These constants must be
negative in order that E > 0. Eq (37) is thereby transformed into three
ordinary differential equations

X ′′ + α2X = 0, Y ′′ + β2Y = 0, Z′′ + γ2Z = 0 (38)

subject to the boundary conditions (36). The constants are related by

2mE

h̄2 = α2 + β2 + γ2 (39)

Each of the equations (38), with its associated boundary conditions
in (36) is equivalent to the one-dimensional problem (13) with boundary
conditions (11). The normalized solutions X(x), Y (y), Z(z) can therefore
be written down in complete analogy with (24):

Xn1(x) =
(

2
a

)1/2

sin
n1πx

a
, n1 = 1, 2 . . .

Yn2(y) =
(

2
b

)1/2

sin
n2πy

b
, n2 = 1, 2 . . .
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Zn3(x) =
(

2
c

)1/2

sin
n3πz

c
, n3 = 1, 2 . . . (40)

The constants in Eq (39) are given by

α =
n1π

a
, β =

n2π

b
, γ =

n3π

c
(41)

and the allowed energy levels are therefore

En1,n2,n3 =
h2

8m

(
n2

1

a2 +
n2

2

b2
+

n2
3

c2

)
, n1, n2, n3 = 1, 2 . . . (42)

Three quantum numbers are required to specify the state of this three-
dimensional system. The corresponding eigenfunctions are

ψn1,n2,n3(x, y, z) =
(

8
V

)1/2

sin
n1πx

a
sin

n2πy

b
sin

n3πz

c
(43)

where V = abc, the volume of the box. These eigenfunctions form an
orthonormal set [cf. Eq (26)] such that

∫ a

0

∫ b

0

∫ c

0
ψn′

1,n′
2,n′

3
(x, y, z) ψn1,n2,n3(x, y, z) dx dy dz

= δn′
1,n1 δn′

2,n2 δn′
3,n3 (44)

Note that two eigenfunctions will be orthogonal unless all three quantum
numbers match. The three-dimensonal matter waves represented by (43)
are comparable with the modes of vibration of a solid block. The nodal
surfaces are planes parallel to the sides, as shown here:

Figure 5. Nodal planes for particle
in a box, for n1 = 4, n2 = 2, n3 = 3.
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When the box has the symmetry of a cube, with a = b = c, the energy
formula (42) simplifies to

En1,n2,n3 =
h2

8ma2 (n2
1 + n2

2 + n2
3), n1, n2, n3 = 1, 2 . . . (45)

Quantum systems with symmetry generally exhibit degeneracy in their en-
ergy levels. This means that there can exist distinct eigenfunctions which
share the same eigenvalue. An eigenvalue which corresponds to a unique
eigenfunction is termed nondegenerate while one which belongs to n different
eigenfunctions is termed n-fold degenerate. As an example, we enumerate
the first few levels for a cubic box, with En1,n2,n3 expressed in units of
h2/8ma2:
E1,1,1 = 3 (nondegenerate)
E1,1,2 = E1,2,1 = E2,1,1 = 6 (3-fold degenerate)
E1,2,2 = E2,1,2 = E2,2,1 = 9 (3-fold degenerate)
E1,1,3 = E1,3,1 = E3,1,1 = 11 (3-fold degenerate)
E2,2,2 = 12 (nondegenerate)
E1,2,3 = E1,3,2 = E2,1,3 = E2,3,1 = E3,1,2 = E3,2,1 = 14 (6-fold degenerate)

The particle in a box is applied in statistical thermodynamics to model
the perfect gas. Each molecule is assumed to move freely within the box
without interacting with the other molecules. The total energy of N mole-
cules, in any distribution among the energy levels (45), is proportional to
1/a2, thus

E = constV −2/3

From the differential of work dw = −p dV , we can identify

p = −dE

dV
=

2
3

E

V

But the energy of a perfect monatomic gas is known to equal 3
2nRT , which

leads to the perfect gas law

pV = nRT
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