CHAPTER 4
PRINCIPLES OF QUANTUM MECHANICS

In this Chapter we will continue to develop the mathematical formalism
of quantum mechanics, using heuristic arguments as necessary. This will
lead to a system of postulates which will be the basis of our subsequent
applications of quantum mechanics.

Hermitian Operators

An important property of operators is suggested by considering the Hamil-
tonian for the particle in a box:
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Let f(z) and g(x) be arbitrary functions which obey the same boundary
values as the eigenfunctions of H, namely that they vanish at x = 0 and
x = a. Consider the integral
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Now, using integration by parts,
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The boundary terms vanish by the assumed conditions on f and g. A second
integration by parts transforms (3) to
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It follows therefore that
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An obvious generalization for complex functions will read

[ r@is@an= ([ @) (5)

In mathematical terminology, an operator A for which

/f*Ang:(/g*Ade)* (6)

for all functions f and g which obey specified boundary conditions is classi-
fied as hermitian or self-adjoint. Evidently, the Hamiltonian is a hermitian
operator. It is postulated that all quantum-mechanical operators that rep-
resent dynamical variables are hermitian.

Properties of Eigenvalues and Eigenfunctions

The sets of energies and wavefunctions obtained by solving any quantum-
mechanical problem can be summarized symbolically as solutions of the
eigenvalue equation

I:I Yn = Ep ¥y (7)
For another value of the quantum number, we can write
Hpm = Ep o (8)

Let us multiply (7) by ¢ and the complex conjugate of (8) by . Then
we subtract the two expressions and integrate over d7. The result is
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But by the hermitian property (5), the left-hand side of (9) equals zero.
Thus

(B — E) / U dr = 0 (10)

Consider first the case m = n. The second factor in (10) then becomes the
normalization integral [ X, dr, which equals 1 (or at least a nonzero
constant). Therefore the first factor in (10) must equal zero, so that

E* = E, (11)
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implying that the energy eigenvalues must be real numbers. This is quite
reasonable from a physical point of view since eigenvalues represent possible
results of measurement. Consider next the case when F,, # E,,. Then it is
the second factor in (10) that must vanish and

/ U by dr =0 when FE,, # E, (12)

Thus eigenfunctions belonging to different eigenvalues are orthogonal. In
the case that 1, and 1, are degenerate eigenfunctions, so m # n but
E,, = FE,, the above proof of orthogonality does not apply. But it is always
possible to construct degenerate functions that are mutually orthogonal. A
general result is therefore the orthonormalization condition

It is easy to prove that a linear combination of degenerate eigenfunc-
tions is itself an eigenfunction of the same energy. Let

Hns = Ep ¥y, k=1,2...d (14)

where the v, represent a d-fold degenerate set of eigenfunctions with the
same eigenvalue F,,. Consider now the linear combination

Y =c1¥n1 + c2Vp2+ ...+ Cqt¥n.a (15)

Operating on ¢ with the Hamiltonian and using (14), we find

ﬁ¢ = Clﬁ¢n,1 + C2I:Iwn,2 + ...
= En(c1¥n1 + c2na+...) = Epy (16)

which shows that the linear combination ¢ is also an eigenfunction of the
same energy. There is evidently a limitless number of possible eigenfunc-
tions for a degenerate eigenvalue. However, only d of these will be linearly
independent.



Dirac Notation [OPTIONAL]

The term orthogonal has been used both for perpendicular vectors and for
functions whose product integrates to zero. This actually connotes a deep
connection between vectors and functions. Consider two orthogonal vectors
a and b. Then, in terms of their x,y, 2z components, labelled by 1, 2, 3,
respectively, the scalar product can be written

a-b=aib; + asby +aszbz =0 (17)

Suppose now that we consider an analogous relationship involving vectors
in n-dimensional space (which you need not visualize!). We could then write

a-b=> arby=0 (18)
k=0

Finally let the dimension of the space become nondenumerably infinite,
turning into a continuum. The sum (18) would then be replaced by an
integral such as

/ a(z) b(z) dz = 0 (19)

But this is just the relation for orthogonal functions. A function can there-
fore be regarded as an abstract vector in a higher-dimensional continuum,
known as Hilbert space. This is true for eigenfunctions as well. Dirac de-
noted the vector in Hilbert space corresponding to the eigenfunction 1, by
the symbol |n). Correspondingly, the complex conjugate 1, is denoted by
(m|. The integral over the product of the two functions is then analogous
to a scalar product of the abstract vectors, written

/ Wt Y dr = (m] - |n) = (min) (20)

The last quantity is known as a bracket, which led Dirac to designate the
vectors (m| and |n) as a “bra” and a “ket,” respectively. The orthonormality
conditions (13) can be written

(m|n) = dmn (21)
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The integral of a “sandwich” containing an operator A can be written very
compactly in the form

/ W, Aty dr = (] Aln) (22)

The hermitian condition on A [cf. Eq (6)] is therefore expressed as

(m|Aln) = (n|AJm)” (23)

Expectation Values

One of the extraordinary features of quantum mechanics is the possibility
for superpositions of states. The state of a system can sometimes exist as
a linear combination of other states, for example,

Y = c191 + a1y (24)

Assuming that all three functions are normalized and that 17 and 15 are
orthogonal, we find

/ e = e+ |eof? = 1 (25)

We can interpret |c;|? and |c3|? as the probabilities that a system in a state
described by v can have the attributes of the states 11 and 5, respectively.
Suppose 11 and 1o represent eigenstates of an observable A, satisfying the
respective eigenvalue equations

Ay = arih and Apy = agiy (26)

Then a large number of measurements of the variable A in the state v
will register the value a; with a probability |c;|? and the value ay with a
probability |c2]?. The average value or expectation value of A will be given
by

<A> = \cl|2a1 + |CQ|2CL2 (27)

This can be obtained directly from ¢ by the “sandwich construction”

(A) = / W* Anp dr (28)



or, if 1 is not normalized,

[ Aydr

W= T

(29)

Note that the expectation value need not itself be a possible result of a
single measurement (like the centroid of a donut, which is located in the
hole!). When the operator Ais a simple function, not containing differen-
tial operators or the like, then (28) reduces to the classical formula for an
average value:

(A) :/ApdT (30)

More on Operators

An operator represents a prescription for turning one function into another:
in symbols, Ajp = ¢. From a physical point of view, the action of an
operator on a wavefunction can be pictured as the process of measuring
the observable A on the state 1. The transformed wavefunction ¢ then
represents the state of the system after the measurement is performed. In
general ¢ is different from 1), consistent with the fact that the process of
measurement on a quantum system produces an irreducible perturbation
of its state. Only in the special case that ¢ is an eigenstate of A, does a
measurement preserve the original state. The function ¢ is then equal to
an eigenvalue a times 1.

The product of two operators, say AB, represents the successive action
of the operators, reading from right to left-ie., first B then A. In general,
the action of two operators in the reversed order, say B A, gives a different
result, which can be written AB;H? A. We say that the operators do not
commute. This can be attributed to the perturbing effect one measurement
on a quantum system can have on subsequent measurements. An example
of non-commuting operators from everyday life. In our usual routine each
morning, we shower and we get dressed. But the result of carrying out these
operations in reversed order will be dramatically different!

The commutator of two operators is defined by

A A

A, B]

AB—-BA (31)
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When [A, B] = 0, the two operators are said to commaute. This means
their combined effect will be the same whatever order they are applied (like
brushing your teeth and showering).

The uncertainty principle for simultaneous measurement of two observ-
ables A and B is closely related to their commutator. The uncertainty Aa
in the observable A is defined in terms of the mean square deviation from
the average:

(Aa)® = (A~ (4))%) = (4?) - (4)? (32)

It corresponds to the standard deviation in statistics. The following inequal-
ity can be proven for the product of two uncertainties:

Ba b > S|(A,B) (33)

The best known application of (33) is to the position and momentum op-
erators, say & and p,. Their commutator is given by

so that
Az Ap > h/2 (35)

which is known as the Heisenberg uncertainty principle. This fundamental
consequence of quantum theory implies that the position and momentum
of a particle cannot be determined with arbitrary precision—the more ac-
curately one is known, the more uncertain is the other. For example, if
the momentum is known exactly, as in a momentum eigenstate, then the
position is completely undetermined.

If two operators commute, there is no restriction on the accuracy of
their simultaneous measurement. For example, the x and y coordinates of
a particle can be known at the same time. An important theorem states
that two commuting observables can have simultaneous eigenfunctions. To
prove this, write the eigenvalue equation for an operator A

A Yy = ap Py (36)
then operate with B and use the commutativity of A and B to obtain
BAy, =AB, =a, B, (37)
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This shows that B, is also an eigenfunction of A with the same eigenvalue
an. This implies that

B Y, = const Y, = by Py (38)

showing that v, is a simultaneous eigenfunction of A and B with eigenvalues
an, and b,,, respectively. The derivation becomes slightly more complicated
in the case of degenerate eigenfunctions, but the same conclusion follows.

After the Hamiltonian, the operators for angular momenta are proba-
bly the most important in quantum mechanics. The definition of angular
momentum in classical mechanics is L = r x p. In terms of its cartesian
components,

L, =yp. — zpy
Ly = ZPx — TP,
L, = TPy — YPx (39)

In future, we will write such sets of equation as “L, = yp, — zpy, et cyc,”
meaning that we add to one explicitly stated relation, the versions formed
by successive cyclic permutation * — y — z — x. The general prescrip-
tion for turning a classical dynamical variable into a quantum-mechanical
operator was developed in Chap 2. The key relations were the momentum
components

. G . L0 .0
Dy = _Zhé‘_x’ Dy = —zha—y D, = —zh& (40)

with the coordinates x, y, z simply carried over into multiplicative oper-
ators. Applying (40) to (39), we construct the three angular momentum
operators

. 0 0
L, = —ih (y— — z—) et cyc (41)
Y
while the total angular momentum is given by
r2 72 72, 72
L* =L, + L, + L; (42)

The angular momentum operators obey the following commutation rela-
tions:

A

Lx,f) :ihﬁz et cyc 43
y
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but o
(L2, L,] =0 (44)

and analogously for L, and f) This is consistent with the existence of

simultaneous eigenfunctions of L2 and any one component, conventionally
designated L. But then these states cannot be eigenfunctions of either L,
or L

Postulates of Quantum Mechanics

Our development of quantum mechanics is now sufficiently complete that
we can reduce the theory to a set of postulates.

Postulate 1. The state of a quantum-mechanical system is com-
pletely specified by a wavefunction ¥ that depends on the co-
ordinates and time. The square of this function W*W gives the
probability density for finding the system with a specified set of
coordinate values.

The wavefunction must fulfill certain mathematical requirements because of
its physical interpretation. It must be single-valued, finite and continuous.
It must also satisfy a normalization condition

/ T dr = 1 (45)

Postulate 2. Every observable in quantum mechanics is repre-
sented by a linear, hermitian operator.

The hermitian property was defined in Eq (6). A linear operator is one
which satisfies the identity

A<C1”¢1 + co1po) = lelwl + 02121% (46)

which is required in order to have a superposition property for quantum
states. The form of an operator which has an analog in classical mechanics
is derived by the prescriptions

f=r, p=—ihV (47)



which we have previously expressed in terms of cartesian components [cf.
Eq (40)].

Postulate 3. In any measurement of an observable A, associated
with an operator A, the only possible results are the eigenvalues
a,, which satisfy an eigenvalue equation

A@Dn = Gp Yn (48)

This postulate captures the essence of quantum mechanics—the quantiza-
tion of dynamical variables. A continuum of eigenvalues is not forbidden,
however, as in the case of an unbound particle.

Every measurement of A invariably gives one of the eigenvalues. For
an arbitrary state (not an eigenstate of A), these measurements will be
individually unpredictable but follow a definite statistical law, which is the
subject of the fourth postulate:

Postulate 4. For a system in a state described by a normalized
wave function ¥ | the average or expectation value of the observ-
able corresponding to A is given by

(A%:/GFAWdT (49)
Finally,

Postulate 5. The wavefunction of a system evolves in time in
accordance with the time-dependent Schrodinger equation

) 2
iher = HY (50)

For time-independent problems this reduces to the time-independent Schro-
dinger equation
Hy=Ey (51)

which is the eigenvalue equation for the Hamiltonian operator.
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The Variational Principle

Except for a small number of intensively-studied examples, the Schrodinger
equation for most problems of chemical interest cannot be solved exactly.
The variational principle provides a guide for constructing the best possible
approximate solutions of a specified functional form. Suppose that we seek
an approximate solution for the ground state of a quantum system described
by a Hamiltonian H. We presume that the Schrodinger equation

Hpo = Eotho (52)

is too difficult to solve exactly. Suppose, however, that we have a function @Z
which we think is an approximation to the true ground-state wavefunction.
According to the variational principle (or variational theorem), the following
formula provides an upper bound to the exact ground-state energy FEjy:

~:f&*ﬁ@2d7'
B 2 b (53)

Note that this ratio of integrals has the same form as the expectation value
(H) defined by (29). The better the approximation 1, the lower will be the
computed energy E, though it will still be greater than the exact value. To
prove Eq (53), we suppose that the approximate function can, in concept, be
represented as a superposition of the actual eigenstates of the Hamiltonian,

analogous to (24),

W = cothg + crhy + .. (54)

This means that ¢, the approximate ground state, might be close to the
actual ground state 1)y but is “contaminated” by contributions from excited
states ¢, ... Of course, none of the states or coefficients on the right-hand
side is actually known, otherwise there would no need to worry about ap-
proximate computations. By Eq (25), the expectation value of the Hamil-
tonian in the state (54) is given by

E: |Co|2E0+ ‘01’2E1 + - (55)

Since all the excited states have higher energy than the ground state,
E17E2 R 2 E(), we find

E > (leo]? +|e1]* + - -) Eo = Eo (56)
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assuming @Z has been normalized. Thus F must be greater than the true
ground-state energy Ey, as implied by (53)

As a very simple, although artificial, illustration of the variational prin-
ciple, consider the ground state of the particle in a box. Suppose we had
never studied trigonometry and knew nothing about sines or cosines. Then a
reasonable approximation to the ground state might be an inverted parabola
such as the normalized function

i@ = (%) e (57)

Fig. 1 shows this function along with the exact ground-state eigenfunction

T

di(e) = <—>1/251n T (59)

a
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Figure 1. Variational approximation for particle in a box.

A variational calculation gives

. a A2\ -
B [ i) (5 ) 9 de =
0 2m
5 h? 10
——— = —F; =1.01321F 59
A2 ma® w2 ! (59)
in terms of the exact ground state energy F; = h?/8ma?. In accord with
the variational theorem, £ > F;. The computation is in error by about

1%.
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