Supplement 6

Curvilinear Coordinates

Applications of quantum mechanics to atomic structure require expressions for the volume element and the Laplacian operator in spherical polar coordinates. We can actually derive more general results applicable to all systems of orthogonal curvilinear coordinates. Consider therefore a set of curvilinear coordinates $\left(q_{1}, q_{2}, q_{3}\right)$ such that the elements of length in the three coordinate directions are given by $d s_{i}=Q_{i} d q_{i}$ for $i=1,2,3$, as shown in Fig. 1. The element of volume is then given by

$$
\begin{equation*}
d \tau=Q_{1} Q_{2} Q_{3} d q_{1} d q_{2} d q_{3} \tag{1}
\end{equation*}
$$

where the Q_{i} can be functions of q_{1}, q_{2} and q_{3}.

Figure 1. Volume element in curvilinear coordinates.

The components of the gradient vector represent directional derivatives of a function. For example, the change in the function $f\left(q_{1}, q_{2}, q_{3}\right)$ along the q_{1}-direction is given by the ratio of $d f$ to the element of length $Q_{1} d q_{1}$. Thus the gradient in curvilinear coordinates can be written

$$
\begin{equation*}
\nabla f=\frac{\hat{\mathbf{u}}_{1}}{Q_{1}} \frac{\partial f}{\partial q_{1}}+\frac{\hat{\mathbf{u}}_{2}}{Q_{2}} \frac{\partial f}{\partial q_{2}}+\frac{\hat{\mathbf{u}}_{3}}{Q_{3}} \frac{\partial f}{\partial q_{3}} \tag{2}
\end{equation*}
$$

where the $\hat{\mathbf{u}}_{\mathbf{i}}$ are unit vectors in the q_{i} directions.
The divergence $\nabla \cdot \mathbf{A}$ represents the limiting value of the net outward flux of the vector quantity A per unit volume. Referring to Fig. 2, the net flux of the component A_{1} in the q_{1}-direction is given by the difference bet-

Figure 2. Evaluation of divergence in curvilinear coordinates.
ween the outward contributions $Q_{2} Q_{3} A_{1} d q_{2} d q_{3}$ on the two shaded faces. As the volume element approaches a point, this reduces to

$$
\frac{\partial\left(Q_{2} Q_{3} A_{1}\right)}{\partial q_{1}} d q_{1} d q_{2} d q_{3}
$$

Adding the analogous contributions from the q_{2} - and q_{3}-directions and diving by the volume $d \tau$, we obtain the general result for the divergence in curvilinear coordinates

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=\frac{1}{Q_{1} Q_{2} Q_{3}}\left[\frac{\partial}{\partial q_{1}} Q_{2} Q_{3} A_{1}+\frac{\partial}{\partial q_{2}} Q_{3} Q_{1} A_{2}+\frac{\partial}{\partial q_{3}} Q_{1} Q_{2} A_{3}\right] \tag{3}
\end{equation*}
$$

The Laplacian is the divergence of the gradient:

$$
\nabla^{2} f=\nabla \cdot \nabla f
$$

Thus, substitution of (2) into (3) gives the operator relation

$$
\begin{equation*}
\nabla^{2}=\frac{1}{Q_{1} Q_{2} Q_{3}}\left[\frac{\partial}{\partial q_{1}} \frac{Q_{2} Q_{3}}{Q_{1}} \frac{\partial}{\partial q_{1}}+\frac{\partial}{\partial q_{2}} \frac{Q_{3} Q_{1}}{Q_{2}} \frac{\partial}{\partial q_{2}}+\frac{\partial}{\partial q_{3}} \frac{Q_{1} Q_{2}}{Q_{3}} \frac{\partial}{\partial q_{3}}\right] \tag{4}
\end{equation*}
$$

For spherical polar coordinates, we identify

$$
q_{1}=r, q_{2}=\theta, q_{3}=\phi
$$

and

$$
Q_{1}=1, Q_{2}=r, Q_{3}=r \sin \theta
$$

Therefore, we obtain the volume element

$$
\begin{equation*}
d \tau=r^{2} \sin \theta d r d \theta d \phi \tag{5}
\end{equation*}
$$

and the Laplacian operator

$$
\begin{equation*}
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r} r^{2} \frac{\partial}{\partial r}+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} \tag{6}
\end{equation*}
$$

