
Supplement 6

Curvilinear Coordinates

Applications of quantum mechanics to atomic structure require expressions
for the volume element and the Laplacian operator in spherical polar co-
ordinates. We can actually derive more general results applicable to all
systems of orthogonal curvilinear coordinates. Consider therefore a set of
curvilinear coordinates (q1, q2, q3) such that the elements of length in the
three coordinate directions are given by dsi = Qi dqi for i = 1, 2, 3, as shown
in Fig. 1. The element of volume is then given by

dτ = Q1Q2Q3 dq1dq2dq3 (1)

where the Qi can be functions of q1, q2 and q3.
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Figure 1. Volume element
in curvilinear coordinates.

The components of the gradient vector represent directional derivatives
of a function. For example, the change in the function f(q1, q2, q3) along
the q1-direction is given by the ratio of df to the element of length Q1 dq1.
Thus the gradient in curvilinear coordinates can be written

∇f =
û1
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(2)

where the ûi are unit vectors in the qi directions.

The divergence ∇ · A represents the limiting value of the net outward
flux of the vector quantity A per unit volume. Referring to Fig. 2, the net
flux of the component A1 in the q1-direction is given by the difference bet-
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Figure 2. Evaluation of
divergence in curvilinear
coordinates.

ween the outward contributions Q2Q3A1 dq2dq3 on the two shaded faces.
As the volume element approaches a point, this reduces to

∂(Q2Q3A1)
∂q1

dq1dq2dq3

Adding the analogous contributions from the q2- and q3-directions and div-
ing by the volume dτ , we obtain the general result for the divergence in
curvilinear coordinates
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The Laplacian is the divergence of the gradient:

∇2f = ∇ · ∇f

Thus, substitution of (2) into (3) gives the operator relation
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For spherical polar coordinates, we identify

q1 = r, q2 = θ, q3 = φ

and
Q1 = 1, Q2 = r, Q3 = r sin θ

Therefore, we obtain the volume element

dτ = r2 sin θ drdθdφ (5)

and the Laplacian operator
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