Supplement 5. Gaussian Integrals

An apocryphal story is told of a math major showing a psychology major the formula for the infamous bell-shaped curve or gaussian, which purports to represent the distribution of intelligence and such:

The formula for a normalized gaussian looks like this:

$$
\rho(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-x^{2} / 2 \sigma^{2}}
$$

The psychology student, unable to fathom the fact that this formula contained π, the ratio between the circumference and diameter of a circle, asked "Whatever does π have to do with intelligence?" The math student is supposed to have replied, "If your IQ were high enough, you would understand!" The following derivation shows where the π comes from.

Laplace (1778) proved that

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{1}
\end{equation*}
$$

This remarkable result can be obtained as follows. Denoting the integral by I, we can write

$$
\begin{equation*}
I^{2}=\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2}=\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \tag{2}
\end{equation*}
$$

where the dummy variable y has been substituted for x in the last integral. The product of two integrals can be expressed as a double integral:

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

The differential $d x d y$ represents an elementof area in cartesian coordinates, with the domain of integration extending over the entire $x y$-plane. An alternative representation of the last integral can be expressed in plane polar coordinates r, θ. The two coordinate systems are related by

$$
\begin{equation*}
x=r \cos \theta, \quad y=r \sin \theta \tag{3}
\end{equation*}
$$

so that

$$
\begin{equation*}
r^{2}=x^{2}+y^{2} \tag{4}
\end{equation*}
$$

The element of area in polar coordinates is given by $r d r d \theta$, so that the double integral becomes

$$
\begin{equation*}
I^{2}=\int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2}} r d r d \theta \tag{5}
\end{equation*}
$$

Integration over θ gives a factor 2π. The integral over r can be done after the substitution $u=r^{2}, d u=2 r d r$:

$$
\begin{equation*}
\int_{0}^{\infty} e^{-r^{2}} r d r=\frac{1}{2} \int_{0}^{\infty} e^{-u} d u=\frac{1}{2} \tag{6}
\end{equation*}
$$

Therefore $I^{2}=2 \pi \times \frac{1}{2}$ and Laplace's result (1) is proven.
A slightly more general result is

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-\alpha x^{2}} d x=\left(\frac{\pi}{\alpha}\right)^{1 / 2} \tag{7}
\end{equation*}
$$

obtained by scaling the variable x to $\sqrt{\alpha} x$.
We require definite integrals of the type

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{n} e^{-\alpha x^{2}} d x, \quad n=1,2,3 \ldots \tag{8}
\end{equation*}
$$

for computations involving harmonic oscillator wavefunctions. For odd n, the integrals (8) are all zero since the contributions from $\{-\infty, 0\}$ exactly cancel those from $\{0, \infty\}$. The following stratagem produces successive
integrals for even n. Differentiate each side of (7) wrt the parameter α and cancel minus signs to obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{2} e^{-\alpha x^{2}} d x=\frac{\pi^{1 / 2}}{2 \alpha^{3 / 2}} \tag{9}
\end{equation*}
$$

Differentiation under an integral sign is valid provided that the integrand is a continuous function. Differentiating again, we obtain

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{4} e^{-\alpha x^{2}} d x=\frac{3 \pi^{1 / 2}}{4 \alpha^{5 / 2}} \tag{10}
\end{equation*}
$$

The general result is

$$
\begin{equation*}
\int_{-\infty}^{\infty} x^{n} e^{-\alpha x^{2}} d x=\frac{1 \cdot 3 \cdot 5 \cdots|n-1| \pi^{1 / 2}}{2^{n / 2} \alpha^{(n+1) / 2}}, \quad n=0,2,4 \ldots \tag{11}
\end{equation*}
$$

