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Abstract—Kidney transplantation is typically the most effective
treatment for patients with end-stage renal disease. However, the
supply of kidneys is far short of the fast-growing demand. Kid-
ney paired donation (KPD) programs provide an innovative ap-
proach for increasing the number of available kidneys. In a KPD
program, willing but incompatible donor–candidate pairs may ex-
change donor organs to achieve mutual benefit. Recently, research
on exchanges initiated by altruistic donors (ADs) has attracted
great attention because the resultant organ exchange mechanisms
offer advantages that increase the effectiveness of KPD programs.
Currently, most KPD programs focus on rule-based strategies of
prioritizing kidney donation. In this paper, we consider and com-
pare two graph-based organ allocation algorithms to optimize an
outcome-based strategy defined by the overall expected utility of
kidney exchanges in a KPD program with both incompatible pairs
and ADs. We develop an interactive software-based decision sup-
port system to model, monitor, and visualize a conceptual KPD
program, which aims to assist clinicians in the evaluation of differ-
ent kidney allocation strategies. Using this system, we demonstrate
empirically that an outcome-based strategy for kidney exchanges
leads to improvement in both the quantity and quality of kidney
transplantation through comprehensive simulation experiments.

Index Terms—Kidney exchanges, optimal matches, software.

I. INTRODUCTION

IN comparison to dialysis, kidney transplantation has been
proven to be amore effective treatment formost patients with

end-stage renal disease. However, in response to the growing de-
mand, there is a serious shortage in supply of transplantable kid-
neys. As a result, more than 90 000 patients werewaiting for kid-
ney transplantation by the end of 2011 [11]. Although deceased
donation and living donation are the two sources of kidneys for
transplantation, the number of living-donor transplantation has
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Fig. 1. Illustration of three types of kidney exchanges: (a) two-way cycle-
based exchange, (b) three-way cycle-based exchange, and (c) a chain-based
exchange initiated by an AD. (Top) In the graphs, donors (D) and their willing
but incompatible candidates (C) are shown in the same numbered pairs, and
arrows denote the kidney transplant from donor (D) to the compatible candidate
(C). (Bottom) Graphs are the corresponding graphical representation of three
cases. BD is a bridge donor that triggers another chain-based exchange in a
future run.

increased more rapidly in recent years. This is fortuitous since
transplants from live donors generally have a higher chance
of success than those from deceased ones [13]. Unfortunately,
biological incompatibility, such as ABO blood type mismatch
or the presence of human leukocyte antigen (HLA) antibod-
ies [9], prevents many intended living-donor transplants from
being performed. Therefore, kidney paired donation (KPD) pro-
grams [13], also referred to as kidney exchanges, are established
to circumvent these incompatibilities by allowing incompatible
living paired donors–candidates to swap organs, thus facilitating
the chance of transplantation with the willing donors’ kidneys.
Two and three-way pair exchanges, illustrated in Fig. 1(a)–

(b), are the most common organ allocation exchanges in tradi-
tionalKPDprograms involvedwith only cycle-based exchanges.
In these situations, the candidate (C) of one pair is compatible
with and receives the kidney of the donor (D) from another pair.
Recently, a chain of kidney exchanges triggered by an altruis-
tic donor (AD), shown in Fig. 1(c), has drawn much attention
because chain-based exchanges can be advantageous compared
with the traditional cycle-based exchanges. These chains not
only relax the reciprocal and simultaneous requirements of a
traditional KPD program but also tend to achieve many more
transplants [2], [12].
The goal of kidney exchanges is to make optimal decisions

to achieve the maximum overall benefit for all kidney candi-
dates (patients) in the exchange pool. In the current literature,
most researchers focus on developing optimal matching algo-
rithms for either cyclic pair or chain exchanges. In the field of
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paired donation study, the most well-known algorithm is to use
an integer program (IP) to select the optimal matches among in-
compatible pairs based on the maximum number (or maximum
utility) of transplants [1], [4], [10], [13]–[15], [17]. Accord-
ing to Li et al. [7], in order to determine the best matches for
improving both the quantity and quality of patients’ life after
transplantation, accounting for uncertainty in KPD program is
essential. They proposed a probability-based utility measure to
access a variety of uncertainties in KPD, so that the optimal-
ity is based on the overall expected utility of exchanges. This
paper will apply their method of expected utility to develop an
algorithm and software. Other researchers explore theoretical
analysis and real application issues on chain exchanges, such as
the algorithmic efficiency or optimal length of chains, the bene-
fit and computational limitation of integrating chains into KPD
program, etc. [2], [6]. An overall review of KPD is referenced
in [18]. However, it remains unknown as how best to utilize
all the forms of simultaneous exchange cycles and nonsimulta-
neous exchange chains, given the fact that both paired donor–
candidates and ADs can be added to exchange databases [2]. In
addition, there is an urgent need for public software to evaluate
these KPD strategies and statistical algorithms so as to improve
clinical decision making.
In this paper, we consider a graphical model to determine

optimal matches for KPD program, in which both cycle and
chain exchanges are involved. Through comprehensive simula-
tion experiments performed on our novel computerized decision
support software, we demonstrate and confirm the superior per-
formance of the method of expected utility [7] accounting for
exchange uncertainties, in comparison to the existing strategies
for kidney exchanges. The major contributions of this paper are
summarized as follows.
1) Applying a graph-based maximum expected utility model
proposed by [7], we relax the current strategy of a KPD
program in which optimal matches are selected for both
exchange cycles and chains by allowing both operational
uncertainty and contingency plans.

2) We consider the comparison between two allocation al-
gorithms, termed as MEU-Parallel and MEU-Sequential,
which, respectively, search simultaneously and sequen-
tially for donor–candidate pairs and/or ADs to Maximize
the Expected Utility of exchanges.

3) More importantly, we develop a computerized system
which enables us conveniently to evaluate and compare
different organ allocation strategies and effectiveness of
policy. In particular, we build a user-friendly graphical in-
terface which provides easy communication between clin-
icians and computer tools, thus facilitating convenience
and quality of clinical decision making.

The remainder of the paper is organized as follows. We
first present the relevant mathematical formulation and algo-
rithm for kidney exchanges in detail in Section II. Then, a
descriptive outline of computerized decision support software
is presented in Section III. In Section IV, we discuss ex-
tensive simulation experimental evaluation and results using
this system. Finally, we conclude and propose future work in
Section V.

Fig. 2. Toy kidney exchanges program with six incompatible pairs
(1, 2, 3, 4, 5, 6) and 2 ADs (7, 8), including 5 two-way cycles ({2, 3}, {3,
4}, {4, 5}, {4, 6}, {5, 6}), 4 three-way cycles ({1, 2, 3}, {3, 4, 5}, {4, 5,
6}, {1, 5, 3}), and 17 AD chains with size limited to 3 (〈7, 1〉, 〈7, 2〉, 〈7, 5〉,
〈8, 5〉, 〈8, 6〉, 〈7, 1, 2〉, 〈7, 1, 3〉, 〈7, 1, 5〉, 〈7, 2, 3〉, 〈7, 5, 3〉, 〈7, 5, 4〉, 〈7, 5, 6〉,
〈8, 5, 3〉, 〈8, 5, 4〉, 〈8, 5, 6〉, 〈8, 6, 4〉, 〈8, 6, 5〉). In this example, the cycles and
chains are restricted to size L = 3 or less.

II. KPD FORMULATION AND ALGORITHM

A. Mathematical Formulation

A kidney exchange problem can be represented as a directed
graph G = (V,E). Fig. 2 shows an example. Let |V | be the
number of vertices (nodes) and |E| the number of edges in the
graph, where |.| denotes cardinality. Each vertex in the graphG
represents an incompatible donor–candidate pair (e.g., vertex 1)
or an AD (e.g., vertex 7). Each directed edge from vertex i to j
indicates that the donor kidney in vertex i is compatible with the
candidate in vertex j (e.g., 7 → 1). In this directed graph, each
edge can be assigned aweight representing the edge utility uij of
the kidney transplant from the donor in vertex i to the candidate
in vertex j. In addition, an edge probability pij can be included
for each edge to characterize the chance of an actual successful
kidney transplant from i to j. In this discussion, we assume that
the probability associated with edges are independent [7]. In
this paper, both uij and pij are assumed given; however, these
utilities and probabilities can be estimated in practice using
clinical data. For example, edge utility uij could be obtained
from medical-outcome-based utility, such as the estimated total
number of incremental years of life from transplant (LYFT)
[19], which was proposed in the allocation policy for deceased
donor kidney transplants.On the other hand, the edge probability
pij can be estimated through a logistic regression modeling
approach, based on clinical data from multiple existing KPD
programs. Detailed discussion regarding edge utility and edge
probability can be found in [7].
The goal of optimization for kidney exchanges is to find a

collection of mutually disjoint cycles and/or chains that achieve
maximum utility on the graphG. Therefore, the task of optimiz-
ing matches on graph can be realized by solving the following
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IP problem:

max
∑

c∈CL

xcEUc (1)

s.t.
xc ∈ {0, 1} ∀c ∈ CL∑

c∈CL (i) xc ≤ 1 ∀i ∈ V

where CL is the set of exchange cycles or chains in graph G
with size limited to L or less, CL (i) is the set of exchange cy-
cles or chains in CL that contain vertex i, and xc is a vector
of indicators representing whether the cycle or chain c is to be
chosen executed for transplant (xc = 1) or not (xc = 0). The
constraints in Equation (1) indicate that no cycle or chain can-
didate can be involved in more than one exchange. Here, EUc

is the expected utility of cycle or chain c. In our setting, the cal-
culation of EUc based on uij and pij for all possible cycles or
chain set configurations has been discussed in [7]. The expected
utility is defined by an example in the following: for a cycle
c = {i, j, k} of length 3, EUc = (uij + ujk + uki)pij pjkpki ;
for a chain < i, j, k >, EUc = (uij + ujk )pij pjk . The opti-
mization problem in (1) is an IP problem that can be solved
to find the optimal matches for different allocation algorithms.
For instance, given all uij = 1 and pij = 0.1 except p71 = 0.5,
p15 = 0.5, p86 = 0.5, p64 = 0.5, p23 = 0.5, and p32 = 0.5, the
optimal solution of cycles and chains can be found by computer
and is highlighted in Fig. 2: {2, 3}, 〈7, 1, 5〉, and 〈8, 6, 4〉. Note
that not all the identified cycles and chains will lead to actual op-
erations. Empirically, over 70% of computer-identified matches
fail to yield transplants [2]. If the lab match run suggests one
transplant fails (e.g., edge 8 → 6 is broken), then the entire chain
exchange 〈8, 6, 4〉 is labeled as a failure in the existing meth-
ods [1]. As an alternative, the authors in [7] suggest a method
with fall-back option; in this case, if 8 → 6 fails, we can try the
kidney exchange between six and four. If all other matches are
successful, transplants now include {2, 3}, 〈7, 1, 5〉, and {6, 4}.

B. Algorithm

Fig. 3 gives a schematic description for a complete process
of kidney exchanges with ADs. The details are described in the
following steps.
1) At time t = 0, there is an initial number of n to form the
pool of kidney exchanges, including PAD% of ADs and
1 − PAD% of incompatible donor–candidate pairs.

2) Construct a directed graph G = (V,E) with each vertex
representing an incompatible donor–candidate pair or an
AD, and each edge from vertex i to j denoting that there
is a possible match between the donor in vertex i to the
candidate in vertex j.

3) Assign edge utility uij and edge probability pij to each
match pair of donor i and candidate j.

4) Invoke one of the kidney allocation algorithms:
I)MEU-Parallel: do the following steps a–e for all cycles
and chains simultaneously;
II) MEU-Sequential: do the following steps a–e for all
cycles or chains sequentially. It includes two versions: i)
MEU-Sequential-1: first perform steps a–e for cycles, then

Fig. 3. Flow diagram of process for kidney exchanges.

for chains; ii) MEU-Sequential-2: first perform steps a–e
for chains, then for cycles.
The algorithmic steps proceed as follows.
a) Find set of exchange cycles and/or chains c in graph

G using the depth-first search algorithm, and then
compute the expected utility uc according to the
combination configuration of set c.

b) Solve (1) with respect to indicator xc representing
the optimal virtual (i.e., computer identified) donor–
candidate matches.

c) In the real lab match, a virtual transplant may not
be viable. Simulate such uncertainty via a Bernoulli
trial with the probability of success equal to that
edge probability. If such a Bernoulli trial yields oc-
currence of 1, the transplant is determined as a suc-
cessful operation; otherwise it fails.

d) Compute the number of successful transplants and
associated utility of kidney transplants.

e) Remove the vertices of donor–candidate pairs and/or
ADs of successful transplants and remove edges for
failed matches returning to the pool from graph G,
thus the resulting end vertices of chains become
bridge donors (BDs) [12] as new ADs in the next
match run.

5) Given arrival rateλ and departure rateμ based on a Poisson
process at time t = t + 1, generate the new incompatible
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Fig. 4. Flowchart of computerized decision support system for kidney exchange program.

donor–candidate pairs and ADs, then go back to step 1 for
the next match run.

Intuitively, MEU-Parallel obtains the optimal matches in
terms of maximum expected utility in a global view, but the
associated computational time is expensive. MEU-Sequential
finds the solution in a two-step procedure to achieve optimal re-
sult, but runs faster.Wewill further show the difference between
them through experiments in Section IV.

III. KPD COMPUTERIZED SUPPORT SYSTEM

A. Computerized System

In order to implement and compare different kidney alloca-
tion algorithms, we developed a novel computerized decision
support system that appropriately reflects real world kidney ex-
change programs. A flowchart of such a system is illustrated in
Fig. 4. In the system, we defined three basic components:
1) Data Input: The system deals with a collection of data
records and files from different input sources, including a)
individual user’s input data, b) the existing secured KPD
database, such as from the University of Michigan’s KPD
database that can only be accessed by specified approval,
and (c) simulation data generated from statistical models
based on a list of relative features, such as blood type,
HLA antigens, etc.

2) Optimal Decision Model: Utilizing donor and candidate
input data, the system launches inquiries to a computation
server in an independent process tomake optimal solutions
as described in Section II.

3) Output Data: The system produces, displays, and visu-
alizes results, such as optimal matches between donors
and patients, number of transplants, and patients’ waiting
time, in a user-friendly graphical interface through tables,
figures, and texts.

B. Graphical User Interface Software

We also developed a graphical user interface (GUI) to support
easy communication between front-end inputs or outputs and
back-end computation algorithms of our computerized decision
support system. In detail, the current GUI supports the following
features:
1) Data extraction and save: It currently allows displaying
all input or output data in a file or from a database.

2) Data simulation: It allows simulating KPD pools based
on characteristics of donors and candidates following cer-
tain probability distributions described in the literature or
derived from real data.

3) Parameter definition: It allows multiple parameters to be
used and defined by users in the algorithms, including the
initial total number of pairs and ADs, percentage of ADs,
arrival rate, departure rate, edge probability, edge utility,
etc. Also, the types, maximal and minimal bounds of all
parameters are checked by certain validation rules.

4) Multiple allocation algorithms selection: It holds multi-
ple built-in KPD allocation algorithms discussed in Sec-
tion IV-C to be selected based on user’s interests. Different
models can share the same parameters and therefore the
system allows the user to easily compare and evaluate
results.

5) Simulation execution: The system can compile an alloca-
tion algorithm and graphical interface using a unified C++
program so as to efficiently compute and generate results.

6) Graph visualization manipulation: Through GUI, the in-
formation of optimalmatches between patients and donors
will be visualized in a main window. The user can high-
light every compatible donor–candidate pair, emphasize
different vertices and edges using versatile colors, shapes
or sizes (e.g., a red vertex could indicate an AD, and a
red edge represents a cycle or chain match), mark the cor-
responding original input data in separate subwindows,
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and zoom in to view details or zoom out to see the entire
graph. Moreover, unselected matches can be muted, and
leave matches of interest being highlighted.

7) Dynamics match run monitor: If desired, any number of
match runs may be performed, providing useful informa-
tion for further exploration and visualization of a KPD
program.

These features clearly show that our developed GUI system
provides a very powerful tool to help clinicians more easily
analyze and assess the kidney exchanges program.

IV. ILLUSTRATIVE SIMULATION AND RESULTS

A. Input Data and Parameters

To illustrate our computerized support system, we present
some simulation results in this section. First, we generated
candidate and donor data separately for the following exper-
iments in order to investigate our algorithm. Candidates are
sampled at random with replacement from the University of
Michigan (UM) KPD database, which had 115 incompatible
donor–candidate pairs. This database provides us the represen-
tative patients’ ABO blood type and HLA sensitivities useful
to characterize each sampled candidate. Donors, on the other
hand, are generated following population distributions of ABO
blood types andHLAgene types. The distribution of ABOblood
types is drawn from the U.S. population distribution: O(44%),
A(42%), B(10%), and AB(4%) [16]; the distribution of an
HLA is derived from HLA haplotypes frequencies of the U.S.
population [8]. Through random sampling, we can appoint ADs
directly from the set of drawn donors as well as create an incom-
patible donor–candidate pair if either their ABO blood types are
mismatched or there is anHLA incompatibility. In this way, can-
didate and donor samples reflect the real-world data. Second,
parameters needed for data generation, including an initial num-
ber of n with percentage of ADs PAD and percentage of pairs
1−PAD , are specified for the first match run. Third, a directed
graphG = (V,E) involving edge utility and edge probability is
created by simulating characteristics of candidates and donors.
For purpose of example, the edge utility is simulated from a
uniform distribution on interval U [min,max]. In this paper, also
for illustrative convenience, we simulated values of edge utility
from U [1, 1], U [10, 20], or U [10, 30] and edge probability from
U [0.1, 0.5], respectively. Then, for a given graph, we applied the
depth-first search method to find all cycles and chains with size
restricted up to 3 because longer cycles or chains result in sub-
stantial logistic burden and expensive computational cost, and
do not in reality lead to significantly more transplants [1], [6].
Then, we obtained the optimal solution to (1). Finally, whether
or not each selected match would in fact yield a transplant is
determined by computer simulation. This accounts for the un-
certainty in the actual cross match and other friction such as
sickness and donor/recipient preferences.

B. Evaluation and Optimal Decision Model

In practice, there exist other considerations of clinical im-
portance for KPD program, such as avoiding long waiting time

TABLE I
COMPARISON OF AVERAGE NUMBER OF TRANSPLANTS (ANT) AND AVERAGE
NUMBER OF TRANSPLANTS INITIATED BY ADS (ANTAD) BY FOUR METHODS
1)MN, 2)MEU-Parallel, 3)MEU-Sequential-1, AND 4)MEU-Sequential-2
FOR STATIC KIDNEY EXCHANGE IN VARIOUS DATA POOL SIZES (n) AND

PERCENTAGE OF ADS (PAD ) OVER 100 RUNS

for donors or candidates, considering Blood type O donors for
Blood type O candidates as priority, etc. [3], [18]. We here in
use maximizing the number or utility of transplants for our il-
lustration. Thus, we evaluated the kidney exchange results using
two criteria: the number of transplants to reflect the quantity of
patient’s life years saved and the claimed utility to indicate the
quality of patient’s life after transplants. The higher the number
of transplants or the claimed utility, the higher the benefits for
the kidney transplant patients. For each allocation algorithm, we
conducted 100 replicates, and reported, the averaged number of
transplants and the averaged claimed utility.

C. Output Results

In this section, we discussed four allocation algorithms avail-
able in the computerized support system that incorporate ADs
into KPD program. Algorithm MN [1] searches the cycles and
chains simultaneously so as to obtain theMaximum Number of
transplants (i.e., with all uij = 1) or maximum utility of trans-
plants. On the other hand, MEU-Parallel, MEU-Sequential-1,
and MEU-Sequential-2 are executed according to the steps,
described in Section II, to maximize the expected utility of
transplants. Notice that the difference between MN-based and
MEU-based methods lies in the fact that the former does not
consider uncertainty and fall-back option, while the latter does.
Since each algorithm has more than one parameter to vary, we
ran the four algorithms under same parameter settings in order
to compare them fairly.
In the first illustrative experiment, we investigated a static

KPD program for only one time match run (i.e., k = 1). Table I
reports the average number of transplants for the four methods
with two varying parameters, initial size of the KPD pool (n),
and percentage of ADs PAD . Here, we used U [1, 1] for the dis-
tribution of edge utility and U [0.1, 0.5] for the distribution of
edge probability. To understand the effect of the initial size of the
KPD pool (n) on the number of transplants while holding PAD
constant, Table I clearly suggests that the number of transplants
increases by about 100% as the size of the initial KPD pool dou-
bles. On the other hand, to investigate the number of transplants
with respect to the percentage of ADs (PAD ) while keeping n
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Fig. 5. Comparison of cumulative claimed utility over time in month (number of match runs) among five allocation algorithms: MN-Base, MN, MEU-Parallel,
MEU-Sequential-1 andMEU-Sequential-2. Different edge utility uniform distribution U , arrival rate λ and, departure rate μ are set as follows: (a) U [1, 1], λ = 10
and μ = 5, (b) U [10, 20], λ = 10 and μ = 5, (c) U [10, 30], λ = 10, and μ = 5, (d) U [1, 1], λ = 20 and μ = 10, (e) U [10, 20], λ = 20 and μ = 10, (f)
U [10, 30], λ = 20 and μ = 10.

fixed, Table I shows that the average number of donor–candidate
matches rises by at least 50%when the percentage of ADs is 5%.
Theoretically, if PAD = 0%, the average number of transplants
is almost the same for all threeMEU-based methods. The result
is verified in Table I. Again with PAD = 5%, the average num-
ber of transplants generated by ADs, shown in parentheses of
Table I, indicates that more than 40% of matches are produced
by exchange chains. For example, using theMEU-Sequential-1
method, 3.7/8.3 = 44.58% of transplants are produced by ADs
initiated chains when n = 200 and PAD = 5%. It is clear that
involving ADs in the KPD program can significantly improve
the quantity of transplants. Additionally, all MEU-based meth-
ods outperform methodMN in all the cases because such meth-
ods incorporate operational uncertainties and allow contingency
plans when the virtual match run fails [7].
In the second illustrative experiment, we focused on the dy-

namics of kidney exchanges. In an evolving KPD program,
some new pairs or ADs will enter into the KPD pool and
some will leave the pool due to transplantation refusal, ill-
ness, or willing withdrawal. Thus, new match runs are fre-
quently and regularly performed over time. Using a Markov
process, we considered that a dynamic KPD program has an
arrival rate λ and a departure rate μ. We conducted k = 12
match runs, mimicking the scenario that there is one match
run per month within a year. Fig. 5(a)–(f) display the cumu-
lative claimed utility obtained by five methods implemented
in the computerized support system, over the situations where
arrival rate varies from λ = 10–20 and departure rate changes

from μ = 5–10. These five methods are as follows: 1) MN-
Base [1] (i.e., method without considering ADs), 2) MN [1]
(i.e., method incorporating ADs), 3) MEU-Parallel, 4) MEU-
Sequential-1, and 5)MEU-Sequential-2. Other parameters were
set as: n = 200, PAD = 5%, U [0.1, 0.5], U [1, 1], U [10, 20] or
U [10, 30]. From each vertical panel of Fig. 5, it is evident that
the cumulative claimed utility increases if the number of ar-
rivals is more than that of departures in the KPD pool (i.e.,
λ = 10, μ = 5 to λ = 20, μ = 10). Note that the cumulative
claimed utility is equal to the cumulative claimed number of
transplants when edge utility follows U [1, 1]. Additionally, the
cumulative claimed utility for 12 match runs using the four ap-
proaches with ADs is at least 10% higher than that of themethod
without ADs (i.e., MN-base). Moreover, the three MEU-based
methods clearly outperformed the other two MN-based meth-
ods over time. In summary, through the simulation studies on
both static and dynamic programs, the MEU-based methods
incorporating ADs steadily outperformed the other allocation
algorithms in terms of both quantity and quality of kidney ex-
changes.
Finally, in the third illustrative experiment, we compared the

computing time of computerized matching processes as given
by three MEU-based algorithms in one match run. From a the-
oretical perspective, the complexity of IP programming related
to (1) is associated with two parameters: a) size of variables
xc determined by the number of possible exchanges (i.e., num-
ber of cycles and chains), and b) number of constraints deter-
mined by the number of vertices (i.e., size of KPD pool). In all
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TABLE II
COMPARISON OF THE AVERAGE NUMBER OF CYCLE AND CHAIN EXCHANGES
(IN NUMBERS) AND AVERAGE COMPUTATION TIME FOR OPTIMIZATION (IN
SECONDS) BY THREE METHODS MEU-Parallel, MEU-Sequential-1, AND

MEU-Sequential-2 FOR STATIC KIDNEY EXCHANGES WITH ADS PROGRAM IN

VARIOUS KPD POOL SIZES OVER 100 RUNS

experiments, we used Gurobi optimization software [5], and ran
C++ programming on a LinuxUbuntu 10.04machinewithQuad
3-GHz Intel Xeon processors and 4-GB RAM. Table II shows a
summary of computing time with varying numbers of KPD pool
(i.e., number of constraints), and possible exchanges (i.e., size
of variables). It is seen that the total number of cycle and chain
exchanges increases significantly if the KPD pool size increases
from n = 100 to 500. The top three rows of Table II list the
average number of exchanges with cycle/chain size limited to
3 over 100 simulation runs. The results show that the twoMEU-
Sequential methods found a smaller number of exchanges than
MEU-Parallel. The reason is that these two MEU-Sequential
methods first search either cycles or chains so that compatible
matches would be removed from a KPD pool, leading to ap-
proximately a 15% decrease in the total number of exchanges.
It is evident that methodMEU-Parallel is the slowest because it
needs to find the largest number of exchanges. Moreover,MEU-
Sequential-1 runs faster than MEU-Sequential-2. The time re-
quired for optimization in the two MEU-Sequential methods is
about only 45% of the MEU-Parallel method except n = 100.
For example, method MEU-Sequential-1 spends only about
18 min while method MEU-Parallel needs more than 1 h to
find the optimal results at n = 500. It indicates that method
MEU-Sequential may be a more efficient approach to reach for
optimal matches if a relatively large number of incompatible
pairs and ADs are involved in a KPD program, which may be
set up as a default option of allocation algorithm.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated an expected-utility-based graph
model designed to increase the mutual benefits in kidney ex-
changes. The simulations, closely imitating the real application
of a computerized exchange system, have suggested that utiliz-
ing both paired donors–candidates, and ADs can increase both
quantity and quality of kidney transplants. All algorithms dis-
cussed in this paper have been fully integrated into a novel GUI
software package, which will be released to the public through
the necessary Institutional Review Board (IRB) regulations on
the website.
Our future plan will focus on the incorporation of additional

existing and/or new KPD allocation algorithms into the current
system. Also, we plan to develop modeling of some important
system parameters as functions of practical donor or candidate
characteristics, and evaluate the differences and relationships

among these parameters in terms of their impacts on the quan-
tity and quality of transplants. In addition, we will investigate
the evolution of KPD program using an online stochastic opti-
mization algorithm, so the KPD computerized system will have
more flexibility and practicality to facilitate clinical practice.
Another direction of future work is to improve the software
based on feedback from clinical users.
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