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Abstract—Coclustering heterogeneous data has attracted extensive attention recently due to its high impact on various important

applications, such us text mining, image retrieval, and bioinformatics. However, data coclustering without any prior knowledge or

background information is still a challenging problem. In this paper, we propose a Semisupervised Non-negative Matrix Factorization

(SS-NMF) framework for data coclustering. Specifically, our method computes new relational matrices by incorporating user provided

constraints through simultaneous distance metric learning and modality selection. Using an iterative algorithm, we then perform

trifactorizations of the new matrices to infer the clusters of different data types and their correspondence. Theoretically, we prove the

convergence and correctness of SS-NMF coclustering and show the relationship between SS-NMF with other well-known coclustering

models. Through extensive experiments conducted on publicly available text, gene expression, and image data sets, we demonstrate

the superior performance of SS-NMF for heterogeneous data coclustering.

Index Terms—Non-negative matrix factorization, semisupervised clustering, heterogeneous data coclustering.

Ç

1 INTRODUCTION

CLUSTERING or unsupervised learning is a generic name for
a variety of procedures designed to find natural group-

ings or clusters in multidimensional data based on measured
or perceived similarities among the patterns [18], [25]. The
purpose of clustering is to extract useful information from
unlabeled data. Applications of data clustering are found in
many fields, such as text mining, Web analysis, image
grouping, and bioinformatics. In general, clustering algo-
rithms can be categorized into two groups: partitioning (flat)
clustering and hierarchical clustering. Partitioning methods
typically divide the data into a given number of clusters
directly. Some of the popular methods in data partitioning
include k-means [18] and probabilistic clustering using the
Naive Bayes or Gaussian mixture model [2], [33]. Hierarch-
ical clustering aims to obtain a hierarchy of clusters by
building a tree structure that shows how the clusters are
related to each other. The clustering result can be obtained by
cutting the tree at a desired level [39].

Recently, spectral clustering has been widely applied in
various domains [12], in which data objects are modeled as
vertices of a weighted graph with edge weights representing
the similarity between two data objects. Clustering is then
obtained by solving an eigenvalue problem and cutting the
graph vertices into different partitions. More recently,
matrix-factorization-based clustering has emerged as an
effective approach for clustering problems in high-dimen-
sional spaces. In [41], it is shown that Non-negative Matrix

Factorization (NMF) outperforms spectral methods in docu-
ment clustering, achieving higher accuracy and efficiency.

With the fast growth of Internet and computational
technologies in the past decade, many data mining applica-
tions have advanced swiftly from the simple clustering of
one data type to the coclustering of multiple data types,
usually involving high heterogeneity. For example, the
interrelations of words, documents, and categories in text
corpus, Web pages, search queries, and Web users in a Web
search system, papers, keywords, authors, and conferences
in a scientific publication domain can be identified through
simultaneous clustering of several related data types. This is
not achievable by traditional clustering methods. First,
heterogeneous data contain different types of relations.
Processing and interpreting them in a unified way presents
a major challenge. Ad hoc integration or normalization (e.g.,
concatenating different features into a vector of fixed length)
rarely works. Second, various data types are related to each
other. Tackling each type independently will lose these
interactions, which are essential to gain a full understanding
of the data. Consequently, coclustering is introduced in the
data mining literature, for both two data types (pairwise
coclustering), [3], [13], [14], [17], [24], and multiple (more
than two) data types (high-order coclustering) [4], [19], [20],
[34], [35]. Through coclustering, we are able to discover a
hidden global structure in the heterogeneous data, which
seamlessly integrates multiple data types to provide us a
better picture of the underlying data distribution, highly
valuable in many real world applications.

Existing coclustering methods are mostly derived based
on the graph model, which requires solving eigen-problem.
Computationally, they are inefficient and inapplicable to
large-scale data sets. Moreover, they are completely un-
supervised. Accurately coclustering heterogeneous data
without domain-dependent background information is still
a challenging task. In this paper, we propose a Semisuper-
vised NMF (SS-NMF) based framework to incorporate prior
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knowledge into heterogeneous data coclustering. In the
proposed SS-NMF coclustering methodology, users are able
to provide constraints on data samples in the central type,
specifying whether they “must” (must-link) or “cannot”
(cannot-link) be clustered together. Our goal is to improve
the quality of coclustering by learning a new distance metric
based on these constraints. Using an iterative algorithm, we
then perform trifactorizations of the new data matrices,
obtained with the learned distance metric, to infer the
central data clusters while simultaneously deriving the
clusters of related feature modalities. The preliminary
version of this work was first presented in a shortened
form as conference abstracts [8], [10]. The major contribu-
tion of this work is summarized as follows:

1. We propose a novel algorithm for heterogeneous
data coclustering based on NMF. Computationally,
NMF coclustering is more efficient and flexible than
graph-based models and can provide more intuitive
clustering results.

2. To the best of our knowledge, this is the first work
on the semisupervised coclustering of multiple
data types. Through distance metric learning and
modality selection, prior knowledge is integrated
into coclustering, making must-link data points as
tight as possible and cannot-link data points as
loose as possible.

3. From a theoretical perspective, our approach is
mathematically rigorous. The convergence and cor-
rectness are proved. In addition, we show that some
well-established approaches such as probability-
based coclustering, information-theoretical cocluster-
ing, and spectral coclustering can be considered as
variations of our method under certain conditions.

The rest of the paper is organized as follows: We review
related work in Section 2. The SS-NMF coclustering algo-
rithm is derived in Section 3. The proof on the correctness and
convergence of the proposed algorithm is presented in
Section 4, in which we also build the relationship between
SS-NMF with other data coclustering models. Experimental
results appear in Section 5. Finally, we conclude in Section 6.

2 RELATED WORK

In this section, we provide a review of related work. We
first introduce representative coclustering algorithms in the
literature. Then, we briefly overview semisupervised learn-
ing techniques.

In general, coclustering approaches can be divided into
three categories: probability-based models, information-
theory-based models, and graph theoretic approaches. In
the first category, Hoffman and Puzicha [24] proposed the
Probabilistic Latent Semantic Analysis (PLSA) model for
cooccurrence data and used it for collaborative filtering. In
PLSA, the data objects are embedded into a low-dimen-
sional space using Singular Value Decomposition (SVD) for
efficient pairwise coclustering. Later, PLSA was further
developed into a more comprehensive generative model,
Latent Dirichelt Allocation (LDA), to cluster rows and
columns of data simultaneously. Within the framework of
LDA, many pairwise coclustering approaches, such us
Infinite Relational Model [28], Mixed Membership Block-
model [1], and Bayesian coclustering [37], were introduced
recently using different inference engines. Also recently,

Long et al. proposed a high-order coclustering framework,
Mixed Membership Relational Clustering (MMRC) model
[35], in which parametric soft clustering results are derived
using Expectation Maximization (EM) for a large number of
exponential family distributions. MMRC can identify multi-
ple cluster structures for each type of data and interactive
patterns between different types of data.

Concerning the information-theory-based models, Dhil-
lon et al. [14] presented a pairwise coclustering algorithm to
maximize the mutual information between the clustered
random variables subject to the constraints on the number
of row and column clusters. A more general framework was
presented in [3] wherein any Bregman divergence can be
used as the objective function for coclustering. Later, Gao
et al. [19] extended pairwise information theoretic models to
high-order data coclustering. More recently, Bekkerman
and Jeon [4] proposed the Combinatorial Markov Random
Field (CMRF) algorithm for high-order coclustering, in
which each data modality is modeled as a single combina-
torial random variable in Markov Random Field. However,
theoretical proof of the effectiveness and correctness of
information-theory-based models is typically not presented.

Graph theoretical approaches have a well-defined objec-
tive function for data coclustering and, thus, are widely used.
Spectral learning, such as Bipartite Spectral Graph Partition-
ing (BSGP) [13], was proposed and applied to cocluster
documents and words. BSGP formulates the data matrix as a
bipartite graph and seeks to find the optimal normalized cut
for the graph. With a similar philosophy, Gao et al. proposed
Consistent Bipartite Graph Copartitioning (CBGC) using
semidefinite programming for high-order data coclustering
and applied it to hierarchical text taxonomy preparation [20].
Due to the nature of graph partitioning theory, these
algorithms have the restriction that clusters from different
types of objects must have one-to-one associations. More
recently, Long et al. [34] proposed Spectral Relational
Clustering (SRC), in which they formulated heterogeneous
coclustering as collective factorization on related matrices
and derived a spectral algorithm to cluster multitype
interrelated data objects simultaneously. SRC provides more
flexibility by lifting the requirement of one-to-one associa-
tion in graph-based coclustering. However, to obtain data
clusters, all the aforementioned graph theoretical ap-
proaches require solving an eigen-problem, which compu-
tationally is not efficient for large-scale data sets.

In many practical learning domains, there is a large
supply of unlabeled data but limited labeled data, and in
most cases it can be expensive to generate large amounts of
labeled data. Consequently, semisupervised learning, i.e.,
learning from a combination of both labeled and unlabeled
data, has become a topic of significant recent interest. The
framework of semisupervised learning is applicable to both
classification and clustering.

In semisupervised classification, some unlabeled data are
frequently exploited in addition to the category-labeled
training data to improve the classification accuracy. Popular
approaches include cotraining [6], Transductive Support
Vector Machines (TSVM) [27], and using EM to incorporate
unlabeled data into training [21]. On the other hand,
semisupervised clustering uses class labels or pairwise
constraints on examples to aid unsupervised clustering. It
can group data using the categories of the initial labeled
data as well as the unlabeled data in order to modify the
existing set of categories and reflect the whole regularities
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in the data. Two sources of information are usually
available to a semisupervised clustering method: the
similarity distance measurement in unsupervised clustering
and the class labels or pairwise constraints (must-link or
cannot-link) provided by users. For semisupervised cluster-
ing to be profitable, these two sources of information should
not completely contradict each other. Existing methods for
semisupervised clustering based on source information
generally fall into two categories: constraint-based and
distance-based methods. In constraint-based approaches, the
clustering algorithm itself is modified so that the available
labels or constraints are used to bias the search for an
appropriate clustering of the data [23]. In distance-based
approaches, an existing clustering algorithm that uses a
distance measure is employed; however, the distance
measure is first trained to satisfy the labels or constraints
in the supervised data [40]. Recent research in semisuper-
vised clustering tends to combine the constraint-based with
distance-based approaches.

Noticeable efforts on semisupervised clustering include
Semisupervised Kernel K-means (SS-KK) [29], Semisuper-
vised Spectral Normalize Cuts (SS-SNC) [26], and SS-NMF
[9]. SS-KK transforms the clustering distance measure by
weighted kernel k-means with reward and penalty con-
straints to perform semisupervised clustering of data given
either as vectors or as a graph. SS-SNC utilizes supervision
to change the clustering distance measure with pairwise
information by spectral methods. In [11], it is shown that SS-
NMF provides a unified framework for semisupervised
clustering. Existing algorithms, such us SS-KK and SS-SNC,
can be considered as special cases of SS-NMF. In addition,
experiments show that SS-NMF is able to generate sig-
nificantly better clustering results by quickly learning from
a few constraints.

Even though the research on data coclustering and
semisupervised clustering have attracted substantial atten-
tion in the past years, to date, most semisupervised
clustering models are only applicable to homogeneous
data, in which must-link and cannot-link constraints are
directly incorporated into the similarity matrix of homo-
geneous clustering. On the other hand, integrating domain
knowledge into coclustering is still a largely unsolved
problem due to the existence of multiple data types.
Recently, Bekkerman and Sahami proposed a semisuper-
vised CMRF model (SS-CMRF) for pairwise coclustering [5]
under the information theoretic framework. However,
without proof of correctness and convergence, their
approach is not mathematically rigorous. In the following,
we will derive a theoretically sound algorithm based on SS-
NMF and apply it to heterogeneous data coclustering.

3 SS-NMF FOR DATA COCLUSTERING

In this section, we propose an SS-NMF model for hetero-
geneous data coclustering. Specifically, we will discuss
1) how to incorporate prior knowledge into data cocluster-
ing through distance metric learning and modality selec-
tion, and 2) how to efficiently infer clusters of different data
types simultaneously using NMF.

3.1 Model Formulation

NMF is initially proposed for “parts-of-whole” decom-
position [31] and later extended to a general framework
of data clustering [17]. It can model widely varying data

distributions and do both hard and soft clustering. Let
X ¼ ðx1; . . . ;xnÞ 2 Rd�n be the data matrix with non-
negative elements. NMF factorizes X into two non-
negative matrices,

X � FGT ; ð1Þ

where F 2 Rd�k is the cluster centroid, G 2 Rn�k is the cluster
membership indicator which corresponds to the degree
object xi is associated with cluster k, and k the number of
clusters. The factorization is typically obtained by the least
square minimization. A simple example of NMF clustering is
illustrated as follows:

X ¼

0:185 0:326 0:761 2:799 2:375 2:970 2:585

0:508 0:380 0:884 2:134 2:374 2:342 2:524

0:452 0:887 0:457 2:065 2:484 2:253 2:163

1:486 1:843 1:858 0:566 0:103 0:417 0:269

1:496 1:806 1:610 0:612 0:158 0:560 0:784

26666664

37777775

� FGT ¼

1:7621 0:2165

1:5164 0:3013

1:4388 0:3101

0:0000 1:0424

0:1327 0:9891

26666664

37777775�
0:0000 0:0000 0:0522 0:4740 0:5074 0:5203 0:4944

0:4924 0:6104 0:5686 0:1599 0:0213 0:1244 0:1419

� �
:

ð2Þ

In (2), based on the membership indicator G, clearly the
first three columns form one cluster, and the last four
columns give another.

In our model, given a Star-structured Heterogeneous
Relational Data (SHRD) set, with a central data type X c, and
l feature modalities X 1; . . . ;Xp; . . . ;X l, the goal is to cluster
central data type X c into kc disjoint clusters simultaneously
with feature modality X1 into k1 disjoint clusters, . . . ;X p

into kp disjoint clusters, . . . , and X l into kl disjoint clusters.
Notice that SHRD provides a very good abstraction for
many real-world data mining problems. For example, it can
be used to model words, documents, and categories in text
mining, where the document is the central data type;
authors, conferences, papers, and keywords in academic
publications, where the paper is the central data type; and
images, color, and texture features in image retrieval, where
the image is the central data type. As such, coclustering
SHRD can provide a global data structure, which shows
correlations of various feature modalities, leading to a better
understanding of the underlying process that generates the
data. For instance, through image and low-level feature
coclustering, images can be grouped together with different
kinds of features. By linking certain feature modalities to a
cluster of images, we can perform more efficient and
effective content-based image retrieval.

To derive a solution of the coclustering problem under
matrix factorization framework, we first model SHRD
using a set of relation matrices. That is, a matrix RðcpÞ 2
Rnc�np is used to represent the relation between a central
data type X c and a feature modality Xpð1 � p � lÞ. See
Fig. 1a for an example of SHRD, in which the relations
between the central data type and four feature modalities
are modeled by relational matrices Rðc1Þ, Rðc2Þ, Rðc3Þ, and
Rðc4Þ, respectively. Then, we can formulate the task of
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coclustering as an optimization problem with non-negative
trifactorization of RðcpÞ,

J ¼ min
GðcÞ�0;GðpÞ�0;SðcpÞ�0

Xl
p¼1

��RðcpÞ �GðcÞSðcpÞGðpÞ
��2
; ð3Þ

where GðcÞ 2 Rnc�kc and GðpÞ 2 Rkp�np are the cluster
indicator matrices, and SðcpÞ 2 Rkc�kp is the cluster associa-
tion matrix which provides the relation between the central
data type and each feature modality.

In semisupervised coclustering, we assume that the
supervision is provided as two sets of pairwise constraints
derived from the given labels on the central data type: must-
link constraints M ¼ fðxi;xjÞg and cannot-link constraints
C ¼ fðxi;xjÞg, where ðxi;xjÞ 2M implies that xi and xj are
labeled as belonging to the same cluster, while ðxi;xjÞ 2 C
implies that xi and xj are labeled as belonging to different
clusters. Note that our assumption is made based on the fact
that in practice constraints are much easier to specify on the
central data type (e.g., documents in document-word
coclustering) than on the feature modalities (e.g., words).
Fig. 1b shows a data triplet, the basic element of SHRD,
with constraints on the central data type. The green edges
indicate the must-link constraints M, while the red edges
denote the cannot-link constraints C. The dotted line shows
the optimal coclustering result.

3.2 SS-NMF for Heterogeneous Data Coclustering

In this section, we present an SS-NMF-based data cocluster-
ing algorithm. Specifically, we first discuss how constraints

can be integrated into NMF-based pairwise coclustering
through distance metric learning. Then, we generalize it to
high-order coclustering and give the complete algorithm.

Let Rðc1Þ 2 Rnc�n1 denote the relational matrix. The
objective of pairwise coclustering is to cluster the nc data
points in the central type c along with the n1 features in
feature modality 1 while keeping the constraint violations to
a minimum. In order to accomplish semisupervised
coclustering, it is necessary to discover a new distance
metric over the features based on the constraints provided
by the users on the central data type. Specifically, given two
data points xi and xj of Rðc1Þ, the Mahalanobis distance
between them can be defined as

d
�
x
ðc1Þ
i ;x

ðc1Þ
j

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
x
ðc1Þ
i � x

ðc1Þ
j

�T
Lðc1Þ

�
x
ðc1Þ
i � x

ðc1Þ
j

�q
:

Thus, learning the distance metric Lðc1Þ is equivalent to

finding a linear projective mapping
ffiffiffiffiffiffiffiffiffiffi
Lðc1Þ

p
in the feature

space [40] such that data points ðxðc1Þi ;x
ðc1Þ
j Þ 2M are moved

closer to each other while ðxðc1Þi ;x
ðc1Þ
j Þ 2 C are pushed further

away. That is, we solve the following optimization problem:

max g
�
Lðc1Þ

�
¼

P
ðxðc1Þi ;x

ðc1Þ
j Þ2C

��xðc1Þi ;x
ðc1Þ
j

��
Lðc1ÞP

ðxðc1Þi ;x
ðc1Þ
j Þ2M

��xðc1Þi ;x
ðc1Þ
j

��
Lðc1Þ

; ð4Þ

where k:k is the Frobenius matrix norm. This maximization
problem is equivalent to the generalized Semisupervised
Linear Discriminate Analysis (SS-LDA) problem as follows:

J ¼ min
trace

�
Lðc1ÞW

ðc1Þ
M

�
trace

�
Lðc1ÞB

ðc1Þ
C

� ; ð5Þ

where WM is the within-distance matrix from must-link
constraints, BC is the between-distance matrix from cannot-
link constraints. The solution of (5) can be obtained
accordingly [40].

Through learning, the distance metric Lðc1Þ implicitly
embeds the must-link and cannot-link constraints. Thus, the
original data Rðc1Þ is projected into a new space

eRðc1Þ ¼ ffiffiffiffiffiffiffiffiffiffi
Lðc1Þ

p
Rðc1Þ:

We then perform non-negative trifactorization of the new
matrix eRðc1Þ

J ¼ min
GðcÞ�0;Gð1Þ�0;Sðc1Þ�0

��eRðc1Þ �GðcÞSðc1ÞGð1Þ
��2
: ð6Þ

The minimization of (6) can be done by updating one factor
while fixing others [17].

An example of SS-NMF for pairwise coclustering is

illustrated in Fig. 2. Fig. 2a shows the relational data Rðc1Þ 2
R30�2 with two clusters (15 asterisk points and 15 circle

points), both following Gaussian distributions. The first step

of SS-NMF coclustering, distance metric learning, is shown in

Fig. 2c, in which a new relational data eRðc1Þ is learned through

embedding the distance metric Lðc1Þ into the original Rðc1Þ.

Clearly, with the must-link and cannot-link constraints, the

data points within the same cluster are placed closer while

points in different clusters are moved away. The result of the
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structured triplet coclustering with must-link (M) and cannot-link (C)
constraints.



second step, trifactorization of eRðc1Þ, is illustrated in Fig. 2d.

As a comparison, we also show the result obtained by the

unsupervised NMF coclustering in Fig. 2b. It is clear that the

semisupervised model has a better performance.
In general SHRD coclustering, the central data type has to

be clustered together with all feature modalities. Again, let
RðcpÞð1 � p � lÞ denote a relational matrix between a central
data and each feature modality, the goal of SS-NMF
coclustering is to iteratively cluster the rows and columns of
each RðcpÞ, subject to the M and C constraints. Similar to the
case of pairwise coclustering, the first step in high-order
coclustering is to obtain the new matrix eRðcpÞ. In other words,
we need to learn a distance metric LðcpÞ for each relation based
on the constraints such that the clustering result on the central
type is globally optimized. Moreover, high-order cocluster-
ing introduces an additional layer of complexity: because
feature modalities can play different roles in the grouping of
the central data type, we have to consider the issue of
modality selection. To this end, we introduce a modality
importance factor, a ¼ ½�ðcpÞ�, to denote the relative weighting
of each modality. Specifically, a is computed by solving an
unconstrained linear regression problem. The solution of this
problem has a close form and is easy to obtain. However, such
an unconstrained least square solution may not provide
satisfactory results if considering prediction accuracy and
interpretation. Thus, we further apply the coefficient shrink-
age technique [7] to limit �ðcpÞ in the range of [0, 1]. Note that
the modality selection and distance metric learning are
strongly dependent. This suggests that these two objectives
must be achieved simultaneously. In Algorithm 1, we
propose an algorithm to iteratively learn the optimal distance
metric LðcpÞ and modality importance factor a. Based on these
two variables, we compute a new relational data matrix eRðcpÞ.
Thus, eRðcpÞ incorporates information captured by a and LðcpÞ.

Algorithm 1. Simultaneous Distance Metric Learning and

Modality Selection

INPUT: Original relational matrix RðcpÞð1 � p � lÞ, central

type X c with must-link constraint M, and cannot-link

constraint C

OUTPUT: Optimal distance metric LðcpÞ,
modality importance factor a, and new relational matrixeRðcpÞ
METHOD:

1. Construct the target distance vector eD based on

constraints M and C, where each element edij is 0

if ðxi;xjÞ 2M, and 1 if ðxi;xjÞ 2 C
2. Obtain the initial distance metric LðcpÞ by SS-LDA

with constraints M and C

3. Set the number of iterations t=0

a. Compute the new relational matrix

eRðcpÞ ¼ ffiffiffiffiffiffiffiffiffiffi
LðcpÞ

p
RðcpÞ

b. Compute the distance vector DðcpÞ, which contains

only data points with constraints

c. Obtain the modality importance factor through

the following optimization
aoptt ¼ arg min�k eD�Pl

p¼1 �
ðcpÞDðcpÞk2

d. Let RðcpÞ ¼ �ðcpÞ eRðcpÞ, and learn the new distance

metric LðcpÞ by SS-LDA with constrains M and C

4. If atþ1 � at > ", set t ¼ tþ 1 and repeat steps a-d;

otherwise, stop, let eRðcpÞ ¼ RðcpÞ, and output the

optimal distance metric LðcpÞ, the modality

importance factor a, and the new relational
matrix eRðcpÞ

To achieve high-order coclustering, we again need to
perform non-negative trifactorization of eRðcpÞ shown in (3).
In order to obtain the (local) optimal solution for the above
minimization problem, the cluster structure for each data
type has to be updated iteratively. In Algorithm 2, we derive
an EM style approach that iteratively performs the matrix
decomposition using a set of multiplicative updating rules.

Algorithm 2. SS-NMF for High-Order Coclustering

INPUT: New relational matrix eRðcpÞ
OUTPUT: Cluster indicator matrices GðcÞ, GðpÞ, and

cluster association matrix SðcpÞ

METHOD:

1. Initialize GðcÞ, GðpÞ, and SðcpÞ with non-negative

values

2. Iterate for each ið1 � i � npÞ, hð1 � h � kpÞ, and

pð1 � p � lÞ until convergence

a. Cluster indicator matrices:

G
ðcÞ
ih  G

ðcÞ
ih

Pl

p¼1

�eRðcpÞ GðpÞ
T

SðcpÞ
T
�
ihPl

p¼1

�
GðcÞSðcpÞGðpÞGðpÞ

T
SðcpÞ

T
�
ih

; ð7Þ

G
ðpÞ
ih  G

ðpÞ
ih

�
SðcpÞ

T
GðcÞ

T eRðcpÞ�
ih�

SðcpÞ
T

GðcÞ
T

GðcÞ SðcpÞ GðpÞ
�
ih

: ð8Þ

b. Cluster association matrix:

S
ðcpÞ
ih  S

ðcpÞ
ih

�
GðcÞ

T eRðcpÞGðpÞT �
ih�

GðcÞ
T

GðcÞSðcpÞGðpÞGðpÞ
T
�
ih

: ð9Þ

4 THEORETICAL ANALYSIS

4.1 Algorithm Convergence and Correctness

We now prove the theoretical convergence and correctness
of the SS-NMF coclustering algorithm. Motivated by [17],
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unsupervised NMF. (c) New relational data eRðc1Þ after a linear projection
with distance metric Lðc1Þ. (d) Clustering result of eRðc1Þ with SS-NMF.



[32], we render the proof based on optimization theory,
auxiliary function, and several matrix inequalities.

4.1.1 Correctness

First, we prove the correctness of the algorithm, which can
be stated as,

Proposition 1. If the solution converges based on the updating
rules in (7)-(9), the solution satisfies the KKT optimality
condition.

Proof. Following the standard theory of constrained
optimization, we introduce the Lagrangian multipliers
�0, �p, and �pþl to minimize the lagrangian function,

L
�
GðcÞ;GðpÞ;SðcpÞ; �0; �p; . . . ; �pþl

�
¼
Xl
p¼1

��eRðcpÞ �GðcÞSðcpÞGðpÞ
��2 � Tr

�
�0G

ðcÞT �
� Tr

Xl
p¼1

�
�pS

ðcpÞT �� Tr
Xl
p¼1

�
�pþlG

ðpÞT �:
ð10Þ

Based on the KKT complementarity conditions
@L
@GðcÞ
¼0, @L

@SðcpÞ ¼ 0, and @L
@GðpÞ

¼ 0, we obtain the following

three equations:

Xl
p¼1

�
2eRðcpÞGðpÞT SðcpÞT � 2GðcÞSðcpÞGðpÞGðpÞ

T

SðcpÞ
T �

þ �0 ¼ 0;

2GðcÞ
T eRðcpÞGðpÞT � 2GðcÞ

T

GðcÞSðcpÞGðpÞGðpÞ
T

þ �p ¼ 0;

2SðcpÞ
T

GðcÞ
T eRðcpÞ � 2SðcpÞ

T

GðcÞ
T

GðcÞSðcpÞGðpÞ þ �pþl ¼ 0:

We apply the Hadamard multiplication on both sides
of the three equations by GðcÞ, SðcpÞ, and GðpÞ, respec-
tively. Using KKT conditions of

�0 �GðcÞ ¼ 0; �p � SðcpÞ ¼ 0; �pþl �GðpÞ ¼ 0;

where � denotes the Hadamard product of two
matrices. We can prove that if GðcÞ, SðcpÞ, and GðpÞ

are a local minimizer of the objective function in (10),
the following three equations are satisfied:

Xl
p¼1

� eRðcpÞGðpÞT SðcpÞT ��Xl
p¼1

�
GðcÞSðcpÞGðpÞGðpÞ

T

SðcpÞ
T � !

�GðcÞ ¼ 0;��
GðcÞ

T eRðcpÞGðpÞT ���GðcÞT GðcÞSðcpÞGðpÞGðpÞT ��� SðcpÞ ¼ 0;��
SðcpÞ

T

GðcÞ
T eRðcpÞ�� �SðcpÞT GðcÞT RðcpÞ���GðpÞ ¼ 0:

Based on the above three equations, we derive the
proposed updating rules of (7)-(9). If the updating rules
converge, the solution satisfies the KKT optimality
condition. The proof is completed.

tu

4.1.2 Convergence

Next, we prove the convergence of the algorithm. In
Proposition 2, we show that the objective function decreases
monotonically under the three updating rules of (7)-(9).
This can be done by making use of an auxiliary function
similar to that used in [32].

Proposition 2. If any two of three matrices GðcÞ, SðcpÞ, and GðpÞ

are fixed, J ¼
Pl

p¼1 keRðcpÞ �GðcÞSðcpÞGðcÞk2 decreases mono-

tonically under the updating rules of (7)-(9).

Proof. Assume SðcpÞ and GðpÞ are fixed matrices, a function

F ðGðcÞ
½tþ1�
;GðcÞ

½t�
Þ is called an auxiliary function of

J
�
GðcÞ

½tþ1��
if it satisfies F

�
GðcÞ

½tþ1�
;GðcÞ

½t��
� J

�
GðcÞ

½tþ1��
and F

�
GðcÞ

½tþ1�
;GðcÞ

½tþ1��
¼ J

�
GðcÞ

½tþ1��
for any GðcÞ

½tþ1�
and GðcÞ

½t�
. Define

GðcÞ
½tþ1�
¼ arg min F

�
GðcÞ

½tþ1�
;GðcÞ

½t��
;

then we can construct

J
�
GðcÞ

½t��
¼ F

�
GðcÞ

½t�
;GðcÞ

½t��
� F

�
GðcÞ

½tþ1�
;GðcÞ

½t��
� J

�
GðcÞ

½tþ1��
:

Thus, JðGðcÞ
½t�
Þ is monotonic decreasing (nonincreasing).

The key step is to find an appropriate auxiliary function

F
�
GðcÞ

½tþ1�
;GðcÞ

½t�	
:

Since GðpÞ and SðcpÞ are fixed, we write

J
�
GðcÞ

½tþ1�	
¼
Xl
p¼1

Tr
�
RðcpÞ

T

RðcpÞ � 2RðcpÞGðpÞ
T

SðcpÞ
T

GðcÞ
T

þGðcÞSðcpÞGðpÞGðpÞ
T

SðcpÞ
T

GðcÞ
T �
;

and show that

F
�
GðcÞ

½tþ1�
;GðcÞ

½t�	
¼
Xl
p¼1

(
k RðcpÞ k2

�
X
ih

2
�
RðcpÞGðpÞ

T

SðcpÞ
T �

ih
G
ðcÞ½t�
ih

 
1þ 2log

G
ðcÞ½tþ1�

ih

G
ðcÞ½t�
ih

!

þ
X
ih

�
GðcÞ

½t�
SðcpÞGðpÞGðpÞ

T

SðcpÞ
T �

ih
G
ðcÞ4½tþ1�

ih

G
ðcÞ3½t�
ih

)
ð11Þ

is an auxiliary function of JðGðcÞ
½tþ1�
Þ.

First, we show that the inequality

F
�
GðcÞ

½tþ1�
;GðcÞ

½t�	
� J

�
GðcÞ

½tþ1�	
holds. We can see the second term in F ðGðcÞ

½tþ1�
;GðcÞ

½t�
Þ

(aside from the negative sign) is always smaller than the

second term in JðGðcÞ
½tþ1�
Þ because of the inequality

G
ðcÞ½tþ1�

ih

G
ðcÞ½t�
ih

� 1þ 2log

 
G
ðcÞ½tþ1�

ih

G
ðcÞ½t�
ih

!
; 8G

ðcÞ½tþ1�

ih

G
ðcÞ½t�
ih

> 0:

In addition, the third term in F ðGðcÞ
½tþ1�
;GðcÞ

½t�
Þ is always

bigger than the third term in JðGðcÞ
½tþ1�
Þ [17]. Thus, the

condition

F
�
GðcÞ

½tþ1�
;GðcÞ

½t�	
� J

�
GðcÞ

½tþ1�	
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holds. Second, we show the equality

F
�
GðcÞ

½tþ1�
;GðcÞ

½tþ1�	
¼ J

�
GðcÞ

½tþ1�	
holds. It is obvious when GðcÞ

½t�
¼ GðcÞ

½tþ1�
, the equality

F
�
GðcÞ

½tþ1�
;GðcÞ

½tþ1�	
¼ J

�
GðcÞ

½tþ1�	
holds:

Therefore, F ðGðcÞ
½tþ1�
;GðcÞ

½t�
Þ is an auxiliary function of

J
�
GðcÞ

½tþ1�	
:

Since we have

GðcÞ
½tþ1�
¼ arg minGðcÞF

�
GðcÞ

½tþ1�
;GðcÞ

½t�	
;GðcÞ

½tþ1�

is given by the minimum of F ðGðcÞ
½tþ1�
;GðcÞ

½t�
Þ while fixing

GðcÞ
½t�

. The minimum value is obtained by setting

@F
�
GðcÞ

½tþ1�
;GðcÞ

½t��
@G

ðcÞ½tþ1�

ih

¼
Xl
p¼1

(
�
X
ih

4
�
RðcpÞGðpÞ

T

SðcpÞ
T
	
ih

G
ðcÞ½tþ1�

ih

G
ðcÞ½tþ1�

ih

þ 4
X
ih

�
GðcÞ

½t�
SðcpÞGðpÞGðpÞ

T

SðcpÞ
T
	
ih

G
ðcÞ3½tþ1�

ih

G
ðcÞ3½t�
ih

)
¼ 0:

Thus, we can derive the updating rule of (7) as

G
ðcÞ
ih  G

ðcÞ
ih

Pl
p¼1

�
RðcpÞGðpÞ

T

SðcpÞ
T �

ihPl
p¼1

�
GðcÞSðcpÞGðpÞGðpÞ

T

SðcpÞ
�
ih

:

Under this updating rule, JðGðcÞ
½t�
Þ decreases mono-

tonically.
Alternatively, we can assume that SðcpÞ and GðcÞ, or

GðcÞ and GðpÞ, are fixed matrices. In both cases, we can
render a similar proof for the updating rules of (8) and
(9). The proof is completed. tu

4.2 Relationship with Other Data Coclustering
Models

We now discuss the relationship between NMF-based

coclustering and other well-known coclustering algorithms

(e.g., probability based, information-theory-based, and

graph-theory-based coclustering). We show that existing

methods can be considered as variations of our model

under certain conditions.

4.2.1 Probability-Based Coclustering

In real world data sets, objects may belong to multiple clusters

with varying degrees. Consequently, probability-based co-

clustering models have emerged as a flexible modeling tool

for complex relational data, where each row and column have

a mixed (soft) membership. MMRC, a unified framework for

probability-based coclustering, is proposed recently in [35].

Assuming that Rð12Þ is the relational matrix, with rows and

columns representing two variables x1 and x2, respectively,

the objective of MMRC for pairwise coclustering is to

maximize the likelihood as,

JMMRC ¼ max
Yn1

i¼1

Yn2

j¼1

R
ð12Þ
ij log pðx1i; x2jÞ

¼ min
Yn1

i¼1

Yn2

j¼1

R
ð12Þ
ij log

R
ð12Þ
ij

pðx1i; x2jÞ
;

ð12Þ

where the joint occurrence probability is factorized as
R
ð12Þ
ij ¼ pðx1i; x2jÞ ¼ pðx1ijzkÞpðzkÞpðx2jjzkÞ, and zk is a set of

cluster indicators.
On the other hand, NMF-based pairwise coclustering

using the KL-divergence (NMF-KL) as the cost function is
to minimize,

JNMF�KL ¼ min
Yn1

i¼1

Yn2

j¼1

R
ð12Þ
ij

�
log

R
ð12Þ
ij

pðx1i; x2jÞ
�R

ð12Þ
ij þ

�
Gð1ÞSð12ÞGð2Þ

�
ij

�
:

ð13Þ

It can be shown that (12) is identical to (13), i.e., JMMRC ¼
�JNMF�KL þ constant, by setting ðGð1ÞSð12ÞGð2ÞÞij ¼ pðx1i;

x2jÞ [16]. Thus, we have G
ð1Þ
ik ¼ pðx1ijzkÞ, G

ð2Þ
jk ¼ pðx2jjzkÞ,

and S
ð12Þ
kk ¼ pðzkÞ. In other words, the coclustering solution

is similar even though different inference engines are

used by the two methods. The relationship between high-

order coclustering using NMF-KL and MMRC can be

derived similarly.

4.2.2 Information-Theory-Based Coclustering

The representative algorithms for information-theory-based
coclustering include Information-Theoretic for pairwise
Coclustering (ITCC) [14] and high-order coclustering [19],
CMRFs for pairwise coclustering [5] and high-order
coclustering [4].

ITCC was proposed in [14] to maximize the mutual
information between the clustered random variables subject
to the constraints on the number of row and column clusters.
Let X1 and X2 be discrete random variables that take values
in the sets fx11; . . . ; x1n1

g and fx21; . . . ; x2n1
g, respectively,

and X̂1 and X̂2 be the cluster (partition) random variables
that take values in the sets fx̂11; . . . ; x̂1n1

g and fx̂21; . . . ; x̂2n2
g,

respectively. The objective of ITCC is to minimize the mutual
information loss IðX1;X2Þ � IðX̂1; X̂2Þ. CMRF is to max-
imize the Most Probable Explanation IðX̂1; X̂2Þ based on the
basic principles in MRF graph inferences. It is clear to see that
CMRF is a simplified version of ITCC, assuming that
IðX1;X2Þ is a constant.

In our NMF model, the joint distribution of X1 and X2

can be formulated as Rð12Þ by assigning the probability

pðx1n1
; x2n2

Þ as the weight on the edge between the node

n1 of the central data type X 1, and the node n2 of the

feature modality X 2. After the trifactorization, Rð12Þ is

decomposed into three parts: Sð12Þ, Gð1Þ, and Gð2Þ. The

association matrix Sð12Þ can be considered as the joint

probability pðx̂s1
; x̂s2
Þ of hidden variables s1 and s2, while

the indicator matrix Gð1Þ or Gð2Þ can be considered as the

conditional probability of the hidden variables in Sð12Þ:

pðxn1
j x̂s2
Þ or pðxn2

j x̂s2
Þ. Based on this formulation, we

can see that the objective function of pairwise NMF is a

variation of ITCC (CMRF).
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If the multiinformation IðX̂1; . . . ; X̂lÞ is introduced into
ITCC (CMRF) as the combinations of several pairwise
relations, it can be extended to coclustering involving
more than two random variables. The similarity between
high-order NMF and high-order ITCC (CMRF) can be
derived accordingly.

4.2.3 Graph-Theory-Based Coclustering

Some of the well-known graph-theory-based coclustering
algorithms include BSGP [13] for pairwise coclustering and
SRC [34] for high-order coclustering.

BSGP was proposed for pairwise data coclustering in
[13]. BSGP formulates the data as a bipartite graph; its
adjacency matrix can be written as

0 Rðc1Þ

Rðc1Þ
T

0

� �
;

where Rðc1Þ 2 Rnc�n1 is a relational matrix. It was shown
that spectral partitioning on the bipartite graph can be
converted to a partial SVD problem. That is

min
GðcÞ

T
GðcÞ¼I;Gð1Þ

T
Gð1Þ¼I;Sðc1Þis diag

��Rðc1Þ �GðcÞSðc1ÞGð1Þ
��2
:

On the other hand, NMF-based pairwise coclustering is to
minimize the following objective function:

min
GðcÞ�0;Gð1Þ�0;Sðc1Þ�0

��Rðc1Þ �GðcÞSðc1ÞGð1Þ
��2
:

The advantage of NMF over BSGP has been discussed in [34].
SRC is proposed in [34] for high-order data coclustering.

It iteratively embeds each type of data into low-dimensional
spaces and benefits through the interactions in the hidden
structure of different data types. The underlying objective
function is

min
GðcÞ

T
GðcÞ¼I;GðpÞ

T
GðpÞ¼I

Xl
p¼1

��RðcpÞ �GðcÞSðcpÞGðpÞ
��2
:

On the other hand, NMF-based high-order coclustering is to
minimize the following function:

min
GðcÞ�0;GðpÞ�0;SðcpÞ�0

Xl
p¼1

��RðcpÞ �GðcÞSðcpÞGðpÞ
��2
:

The advantage of NMF or SS-NMF over SRC can best be
illustrated using an example. We construct a synthetic data
set which has 30 data points in the central type X c with two
feature modalities X1 (300 features) and X2 (2 features).
Each data type has two clusters of equal size. That is, we
build two relational matrices: Rðc1Þ of size 30� 300 and Rðc2Þ

of size 30� 2, both binary matrices with two-by-two block
structures generated by the Bernoulli distribution. Specifi-
cally, Rðc1Þ is generated based on the block structure

0:8 0:1
0:2 0:9

� �
;

and Rðc2Þ is based on the block structure

0:9 0:1
0:3 0:7

� �
:

Unlike SRC, NMF or SS-NMF maps the data into a non-
negative latent semantic space which is not required to be
orthogonal. Panels (a)-(c), (d)-(f), and (g)-(i) in Fig. 3 show the
clustering results obtained by SRC, NMF, and SS-NMF, in
which the two clusters are denoted by the red stars and the
blue triangles, respectively. For NMF or SS-NMF, we plot the
data points in the subspace of the first two column vectors of
GðcÞ, Gð1Þ, and Gð2Þ, while for SRC we use the subspace of the
first two singular vectors. Note that for either NMF or SS-
NMF, each data point takes a non-negative value on both
axes. In the NMF subspace, each axis corresponds to a cluster,
and all the data points belonging to the same cluster are
nicely located close to the axis. In the SS-NMF subspace, the
data points belonging to the same cluster almost spread
along each axis. This indicates that SS-NMF can provide
better clustering accuracy than unsupervised NMF because
the cluster label for a data point is determined by finding the
axis with which the data point has the largest projection
value. On the other hand, in the SRC subspace, we observe no
direct relationship between the axes (singular vectors) and
the clusters.

5 EXPERIMENTS AND RESULTS

In this section, we empirically demonstrate the performance
of SS-NMF coclustering. We first conduct pairwise coclus-
tering on documents (i.e., documents and words) and gene
expressions (i.e., conditions and genes). In these experi-
ments, we compare the performance of SS-NMF cocluster-
ing with six representative clustering algorithms, including
KK, BSGP, CMRF, NMF, SS-KK, and SS-CMRF. In addition,
we also compare our model with a well-known semisu-
pervised classification method, TSVM. Then, we perform
high-order coclustering for text corpus (i.e., words, docu-
ments, and categories, in which the document is the central
data type) and image data (i.e., color and texture features
associated with images). Similarly, on these data sets, we
compare SS-NMF coclustering with four algorithms, i.e.,
SRC, CMRF, NMF, and SS-CMRF. Through these compar-
isons, we demonstrate the relative position of our method
with respect to existing approaches on (semisupervised)
data clustering/classification and show the benefits of
integrating prior knowledge into coclustering.

5.1 Data Description and Preprocessing

5.1.1 Text Coclustering

We primarily utilize the data sets used in [22].1 Data sets
oh5 and oh15 are from OHSUMED collection, a subset of
MEDLINE database, which contains 233,445 documents
indexed using 14,321 unique categories. Data set WAP is
from the WebACE Project, and each document corre-
sponds to a web page listed in the subject hierarchy of
Yahoo. Data set re0 is the Reuters-21578 text categorization
collection (distribution 1.0). We also use the Newsgroup
data which contains about 2,000 articles from 20 news-
groups [30].2 In our experiments, we intermix some of the
data sets mentioned above. Tables 1 and 2 give the details
of the data sets we use for pairwise (e.g., document-word)
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and high-order (e.g., word-document-category) cocluster-

ing, respectively.
We use the term frequency to build a document-word

matrix. To compare the algorithms on the same ground and

make our results consistent with others [17], [34], we carry

out feature selection to choose the top 1,000 words by

descending values of the mutual information between a

word w and a document label y:

IðW;Y Þ ¼
X
Y

X
W

pðw; yÞlog



pðw; yÞ
p1ðwÞp2ðyÞ

�
;

where W and Y are random variables, denoting word and
document labels, respectively. The Document-category matrix
is constructed by computing the probability of each docu-
ment belonging to each category. The following technique is
used: 1) For each class of documents, select the top
1,000 words based on mutual information. 2) For each
document, if any of the top 1,000 word occurs, the amount of
occurrence is 1, otherwise 0. 3) The probability of one
document belonging to a category is the ratio of the sum of
occurrence of the top 1,000 words in this document to 1,000.
Thus, every element of document-category matrix is in the
range ½0; 1�. In addition, for semisupervised clustering, we

CHEN ET AL.: NON-NEGATIVE MATRIX FACTORIZATION FOR SEMISUPERVISED HETEROGENEOUS DATA COCLUSTERING 1467

Fig. 3. (a)-(c) Clustering results by SRC in the subspace of the first two singular vectors of GðcÞ, Gð1Þ, and Gð2Þ. There is no direct relationship
between the axes and the clusters. (d)-(f) Clustering results by NMF in the subspace of the first two column vectors of GðcÞ, Gð1Þ, and Gð2Þ. The data
points from the two clusters are distributed closely to the two axes. (g)-(i) Clustering results by SS-NMF (with 5 percent constraints) in the subspace
of the first two column vectors of GðcÞ, Gð1Þ, and Gð2Þ. The data points from the two clusters are distributed exactly along the two axes.

TABLE 1
Data Sets for Text Pairwise (Document-Word) Coclustering



define the percentage (percent) of pairwise constraints with
respect to all the possible document pairs, which is ðtotal docs

2 Þ.
The document constraints are generated by randomly
selecting documents from each class of the data set. Other
data sets also use similar defined constraints for the central
data type.

5.1.2 Gene Expression Coclustering

We utilize seven data sets from Kent Ridge Biomedical Data
Repository3 for gene expression coclustering, including
ALL/AML Leukemia, Breast Cancer, Central Nervous System,
Colon Tumor, Lung Cancer, Ovarian Cancer, and ALL/MLL/
AML Leukemia. In our experiment, we compute the first
principal component u1 based on Principal Component
Analysis. Since u1 is a linear combination of genes, the
magnitude of u1ðiÞ is indicative of the variance of gene i

[15]. We sort all genes in a descending order based on the
variances and retain only the top 2,000 genes. The details of
these data sets are given in Table 3.

5.1.3 Image Coclustering

The image data used in our experiments is chosen from Corel
CDs, which contains 31,438 general-purpose images of
various contents, such as plants, animals, buildings, human
society, etc. To evaluate our algorithm, we construct a data set
with 1,000 images from 10 categories: “eggs,” “decoys,”
“firearms,” “cards,” “buses,” “abstract,” “foliage,” “dawn,”
“texture,” and “wave.” Some examples from each category

are shown in Fig. 4. In our experiment, we mix up some of the
aforementioned categories with details in Table 4.

For image coclustering, a large number of visual contents
are extracted from each image [36], [38], belonging to two
modalities: color and texture. Specifically, color features
include color channels (RGB, 9 features, including mean,
variance, and skewness of R, G, and B channels), color
histogram (CH, 12 features), and color coherence vector
(CCV, 24 features). Texture features include Gabor wavelet-
based texture (Gab, 24 features), edge direction histogram
(EDH, 9 features), and edge direction coherence vector
(EDCV, 9 features). Based on the extracted visual features,
we build two relational matrices image-color and image-
texture, and each element in the matrices is normalized into
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Fig. 4. Image samples for high-order coclustering.

TABLE 2
Data Sets for Text High-Order (Word-Document-Category) Coclustering

TABLE 3
Data Sets for Gene Expression Pairwise (Condition-Gene) Coclustering

3. http://datam.i2r.a-star.edu.sg/datasets/krbd/.



the range ½0; 1�. Coclustering is then performed on images,
color features (45 dimensions), and texture features
(42 dimensions) simultaneously.

5.2 Evaluation Method

We evaluate the clustering results using the accuracy rate
AC, which measures how accurately a learning method
assigns label ŷi to a data point with the ground truth yi. The
AC metric is defined as

AC ¼
Pn

i¼1�ðyi; ŷiÞ
n

; ð14Þ

where n denotes the total number of data points or features
in the experiment and � is the delta function that equals one
if ŷi ¼ yi; otherwise, it is zero. Since an iterative algorithm is
not guaranteed to find the global minimum, it is beneficial
to run the algorithm several times with different initial
values and choose the average of all the test runs as the final
accuracy value. In our experiments, for each given cluster
number k, we conduct 10 test runs, and the final AC value is
the average of all runs.

5.3 Pairwise Coclustering

5.3.1 Text Pairwise Coclustering

First, we conduct pairwise coclustering experiments on the
text data sets with document-word matrices and compare the
performance of SS-NMF with the following six clustering
methods:

1. KK [29],
2. BSGP [13],

3. CMRF [5],
4. NMF (i.e., SS-NMF with 0 percent constraints),
5. SS-KK [29], and
6. SS-CMRF [5].

The first four are popular unsupervised methods,
whereas SS-KK and SS-CMRF are representative semisu-
pervised ones. Moreover, we also compare with a well-
known semisupervised classification method: TSVM [27].

The top half of Table 5 shows the AC values of document
clustering obtained by unsupervised methods: KK, BSGP,
CMRF, and NMF, the semisupervised classification method:
TSVM, and three semisupervised clustering methods: SS-
KK, SS-CMRF, and SS-NMF. All of semisupervised methods
are reported based on incorporating 10 percent constraints
into the central data. AveragedAC values over all eight data
sets are also computed. In the four unsupervised approaches,
KK has the lowest average AC. This is mainly due to the fact
that the document-word relation is not formulated and
utilized in one-way KK clustering. AC values of BSGP or
CMRF, on average, are about 10 percent lower than NMF,
which is the best among the unsupervised methods.
However, all unsupervised methods get a low AC value
(around 30 percent) for the data set CT8, which has a large
number of clusters (k ¼ 10). That is, no meaningful clustering
results are produced. Table 5 also shows that semisupervised
clustering methods provide at least a 15 percent increase on
the average AC values when compared with the correspond-
ing unsupervised ones. This indicates that a semisupervised
clustering method can generally benefit from additional
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TABLE 4
Data Sets for Image High-Order (Color-Image-Texture) Coclustering

TABLE 5
Comparison of Accuracy among Unsupervised Clustering KK, BSGP, CMRF, NMF, Semisupervised Classification TSVM, and

Semisupervised Clustering SS-KK, SS-CMRF, SS-NMF with 10 Percent Constraints on Text (Document-Word) Data Sets
(CT1-CT8) and Gene Expression (Condition-Gene) Data Sets (BT1-BT7)



constraints, and thus greatly improve the clustering results.
Moreover, SS-NMF outperforms SS-KK and SS-CMRF,

especially in the data sets with more than two clusters, i.e.,

data sets CT5-CT8. It is also worth noting that the AC values
of SS-NMF are as high as 99 percent on the data sets CT2,

CT5, and CT7. In other words, SS-NMF provides near perfect

clustering results on these data sets. Another important
observation is that all the semisupervised clustering ap-

proaches outperform TSVM on average AC due to very

limited background knowledge (up to 10 percent). In these
cases, the known labels are simply too few to initiate a good

classifier training. Overall, the superior performance of SS-

NMF is evident in terms of the average accuracy.
In Fig. 5a, we plot the average AC value on all eight

data sets against the increasing percentage of pairwise
constraints for TSVM, SS-KK, SS-CMRF, and SS-NMF. We
clearly see that SS-NMF significantly outperforms TSVM,
SS-KK, and SS-CMRF in all cases, gaining at least
12 percent higher clustering accuracy. Another important
observation is that the average accuracy of all four
methods consistently increases with the gradual increase
of the pairwise constraints (from 0.5 to 10 percent).
Particularly, SS-NMF is able to generate significantly
better results (over 10 percent) by quickly learning from
just a few constraints (0.5 percent). Therefore, document
clustering performance can be greatly improved even with
very limited prior knowledge.

5.3.2 Gene Expression Pairwise Coclustering

Second, we conduct coclustering on gene expressions with
condition-gene matrix and compare the performance of SS-
NMF with the same set of algorithms used in Section 5.3.1.

The bottom half of Table 5 shows the AC values of
condition clustering obtained by both unsupervised meth-
ods and semisupervised ones with 10 percent constraints.
Overall, it is evident that SS-NMF provides the best
clustering result on average when compared with other
unsupervised or semisupervised methods. As the results
demonstrate, the clustering accuracy gain of SS-NMF over
unsupervised methods is over 20 percent on most data sets
even though unsupervised NMF is not the best among
unsupervised approaches. This clearly indicates the out-
standing benefits brought by the partial supervision
integrated in SS-NMF. It is also worth pointing out that
the AC values of SS-NMF are (nearly) 100 percent on the
data sets BT5 and BT6.

Fig. 5b illustrates the average AC values against the
increasing percentage of pairwise constraints for semisuper-
vised condition clustering/classification. Overall, SS-NMF
provides the highest accuracy among the four semisuper-
vised methods. Not surprisingly, we see that more con-
straints on the patient conditions lead to higher accuracy for
all four approaches. Again, substantial performance im-
provement is achieved by SS-NMF, up to 20 percent accuracy
increase, with very limited prior knowledge (e.g., 0.5 percent
constraints).

5.4 High-Order Coclustering

5.4.1 Text High-Order Coclustering

First, we conduct experiments to cocluster words, docu-
ments, and categories and compare the performance of SS-
NMF with three unsupervised approaches and one semi-
supervised method, namely,

1. SRC [34],
2. CMRF [4],
3. NMF (i.e., SS-NMF with 0 percent constraints), and
4. SS-CMRF (the high-order SS-CMRF is directly

extended from the prior work in [4] and [5]).

Coclustering accuracy. The top half of Table 6 shows
document coclustering accuracy obtained by SRC, CMRF,
NMF, SS-CMRF, and SS-NMF (both with 15 percent
constraints). Averaged AC values over all nine data sets
are also reported. In our experiment, we observe that the
relations among multiple data types in some text data sets
are highly complicated (e.g., HT8 and HT9). To achieve
reasonable clustering results, more domain knowledge is
required. Thus, up to 15 percent constraints are used in
high-order coclustering experiments (recall that we use up
to 10 percent constraints in pairwise coclustering).

From Table 6, it is obvious that NMF outperforms other
unsupervised methods in six out of nine text data sets. In
general, SRC performs the worst among the three unsu-
pervised ones. Specifically, its accuracy on the data set HT7
with three categories and six document clusters is only
19 percent. Also from Table 6, semisupervised methods
provide significantly better results than the corresponding
unsupervised ones. The average AC of SS-CMRF increases
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Fig. 5. Comparison of average accuracy for semisupervised classifica-
tion TSVM, and pairwise coclustering SS-KK, SS-CMRF, and SS-NMF,
with different amounts of constraints on (a) text data and (b) gene
expression data.



15 percent over CMRF, while up to 20 percent is gained by
SS-NMF over NMF. We also observe that SS-NMF can
achieve high clustering accuracy (over 80 percent) in five
out of the nine data sets. The average AC of SS-NMF is
72.43 percent, about 10 percent higher than that of SS-
CMRF. In Fig. 6a, we plot the average AC values against
increasing percentage of pairwise constraints for SS-CMRF
and SS-NMF. Again, when more prior knowledge is
available, the performance of SS-CMRF and SS-NMF clearly
gets better. It is also obvious that on average SS-CMRF is
consistently outperformed by SS-NMF with varying
amounts of constraints.

In the left panel of Table 7, we report the accuracy of
text categorization by SRC, CMRF, NMF, SS-CMRF, and
SS-NMF. In six out of nine text data sets, the AC value of
SS-NMF either ranks the best or the second with exceptions
on the data sets: HT3, HT8, and HT9. This result shows

that even though the original document-category matrix is

biased in the distance metric learning toward the con-

straints on the documents, SS-NMF still can provide

competitive results on category clustering.
In high-order coclustering, we also obtain the clusters of

words simultaneously with the clusters of documents and
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TABLE 7
Text Categorization: Clustering Accuracy of Categories and Text Representation: Top 10 Words for Each Category

Fig. 6. Comparison of average clustering accuracy between SS-CMRF

and SS-NMF with different amounts of constraints for (a) text high-order

coclustering and (b) image high-order coclustering.

TABLE 6
Comparison of Clustering Accuracy between Unsupervised

SRC, CMRF, NMF, and Semisupervised SS-CMRF, SS-NMF
with 15 Percent Constraints on Text High-Order

(Word-Document-Category) Coclustering (Data Sets HT1-HT9)
and Image High-Order (Color-Image-Texture) Coclustering

(Data Sets IT1-IT7)



categories. However, for text representation, there is no
ground truth available to compute an AC value. Here, we
select the “top” 10 words based on mutual information for
each word cluster associated with a category cluster and list
them in the right panel of Table 7. These words can be used
to represent the underlying “concept” of the corresponding
category cluster.

Modality selection. As described in Section 3.2, distance
metric and modality importance are learned iteratively in

Algorithm 1. First, modality selection can provide addi-
tional information on the relative importance of various

relations (e.g., “word” and “category”) for grouping the
central data type (e.g., “document”). Moreover, from a

technical point of view, it also acts like feature selection
when computing the new relational data matrix. The left

panel of Table 8 lists the modality importance for the two
relations: document-word and document-category in SS-NMF

with 1 percent constraints. A higher value in the table
indicates more importance. It is clear that the significance of

“word” and “category” are quite different in different data
sets. Specifically, the document-word relation seems to play a

more important role for document coclustering in all the
data sets except HT3, HT5, and HT7, while the document-

category relation is more important in the remainder. This
information provides a better understanding of the under-

lying process that generates the document clusters.

5.4.2 Image High-Order Coclustering

Second, we present the experimental results on coclustering

image data.
Coclustering accuracy. The bottom half of Table 6 lists

image clustering accuracy obtained by SRC, CMRF, NMF,

SS-CMRF, and SS-NMF (both with 15 percent constraints)
for each data set, together with averaged AC value over all

seven data sets. Among the three unsupervised approaches,
on average NMF achieves slightly better results. Moreover,

both of the semisupervised methods obtain 20 percent
accuracy gain when compared with the corresponding

unsupervised ones, and they perform equally well on most
of the data sets. SS-NMF is slightly better than SS-CMRF on

average. Fig. 6b shows that the quality of the clustering
improves when the amount of constraints increases. Note

that while we observe better performance of SS-NMF over
SS-CMRF in text data sets, it is clear to see that the

performance of SS-CMRF and SS-NMF is very close in
image data sets regardless of the amount of constraints. This

is mainly due to better performance of NMF in clustering

high-dimensional data. The highest feature dimension is
1,000 in the text data, and only 45 for the image data.

Modality selection. The semantic gap between the low-
level features and the high-level semantic concepts poses
great challenge in content-based image retrieval. To this
end, modality selection in coclustering is particularly
beneficial because it not only provides the clusters of
images, but also shows why certain images are grouped
together. That is, important visual features are identified
through simultaneous grouping with images. Specifically,
the modality factor obtained by SS-LDA in our algorithm
reflects the relative importance of various feature modalities
such as color, texture, and shape in image grouping. The
right panel of Table 8 lists the weights associated with color
and texture given by SS-NMF with 3 percent constraints.
Usually, images in the categories eggs, decoys, buses, firearms,
and cards have strong edges. This visual observation is
confirmed by our results, showing a larger weight for the
texture features (e.g., Gab, EDH, and EDCV) than colors
(e.g., RGB, CH, and CCV) in the data sets IT1 and IT4. On
the other hand, we observe that colors may be better suited
for clustering images in dawn, foliage, wave, abstract, and
texture. In these categories, colors are relatively constant.
For example, dawn usually has a red hue, while foliage has a
dominate green hue. In these cases (data sets IT2 and IT5),
the modality factors are also consistent with our visual
judgment, with a larger value for color. Moreover, when we
have many categories mixed together (e.g., data set IT7), we
obtain relative balanced weights between color and texture.
The result indicates that both modalities are important. If
additional information regarding the image clusters is
desired, it can be gained by examining the corresponding
feature clusters obtained in the coclustering.

5.5 Time Complexity

Finally, we compare the computational speed of three
unsupervised approaches: SRC, CMRF, and NMF, and two
semisupervised approaches: SS-CMRF and SS-NMF. In a
nutshell, the time complexity of SRC is Oðtlðmaxðnc; npÞ3 þ
kncnpÞÞ, unsupervised CMRF and SS-CMRF are
Oðtlðmaxðn3

c ; n
3
pÞÞÞ, SS-NMF is Oðtlðn3

p þ kncnpÞÞ, and un-
supervised NMF is OðtlkncnpÞ, where t is the number of
iterations, l is the number of data types, k ¼ maxðkc; kpÞ is
the maximum number of clusters in all data types, nc is
the number of samples in the central data type, and np is
the maximum feature dimension for all feature modalities.
So, given t, l, and k, the actual computational speed is
usually determined by nc or np. Fig. 7a illustrates the
computational speed for all five methods with increasing
number of samples in the central data type nc for a fixed
np, while Fig. 7b shows the computational speed with
increasing feature dimensions np for a fixed nc. The
experiments are performed on a machine with Dual 3
GHz Intel Xeon processors and 2 GB RAM. All algorithms
are implemented using MATLAB 7.0.

In both cases, unsupervised NMF is the quickest
among the five approaches as it uses an efficient iterative
algorithm to compute the cluster indicator and cluster
association matrices. SS-NMF ranks second as nc increases
while close to CMRF and SS-CMRF when np increases.
The difference between SS-NMF and unsupervised NMF
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TABLE 8
Modality Importance for Text High-Order Coclustering:

Word versus Category and for Image High-Order
Coclustering: Color versus Texture



is mainly due to the additional computation required to
learn the new distance metric through SS-LDA, in which
we need to solve a generalized eigen-problem. We
observe that in Fig. 7a, the computing time for SS-NMF
is close to unsupervised NMF because both methods have
a linear complexity of nc when np is fixed. On the other
hand, as shown in Fig. 7b, time for SS-NMF increases
more quickly (Oðtln3

pÞ) when nc is fixed. In addition, the
speed of CMRF and SS-CMRF is between NMF and SRC.
The computing time of these two algorithms increases
quickly in both cases since their complexity is either
(Oðn3

cÞ) or (Oðn3
pÞ) when the other is fixed. Moreover, we

observe that SRC is the slowest in both cases. Even
though SRC is completely unsupervised, it needs to solve
a computationally more expensive constrained eigen-
decomposition problem and requires additional postpro-
cessing (k-means) to infer the clusters. From these results,
it is obvious that SS-NMF provides an efficient way for
semisupervised data coclustering.

6 CONCLUSIONS

In this paper, we present a novel semisupervised approach
for data coclustering: SS-NMF. In the proposed SS-NMF
coclustering model, users are able to provide supervision in
terms of must-link and cannot-link constraints on the central
data type, which are used to derive new relational matrices

through iterative distance metric learning and modality
selection. Trifactorizations of the new matrices are then
performed to obtain the simultaneous grouping of central
data type and multiple feature modalities. Theoretically, we
prove the convergence and correctness of the proposed
coclustering algorithm and show the relationship between
SS-NMF with other data coclustering models. Our experi-
mental results on publicly available data sets in text mining,
bioinformatics, and image grouping show the superior
performance of SS-NMF over existing methods for hetero-
geneous data coclustering.
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