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Introduction NMF (Non-negative Matrix Factorization) Clustering with Accumulated User Feedbacks

Image clustering solely based on visual features without any knowledge
or background information suffers from the problem of semantic gap.
We propose SS-NMF: a Semi-Supervised Non-negative Matrix
Factorization framework for image clustering. Accumulated relevance
feedback in a content-based image retrieval (CBIR) system is treated as
user provided supervision for guiding the image clustering. We show
that supervision derived from the few images marked in the feedback
logs can greatly enhance the image clustering results.

1. NMF was initially proposed for "parts-of-whole" decomposition, and later extended to a
general framework for data clustering. It can model widely varying data distributions and
can accomplish both hard and soft clustering simultaneously.

2. We perform symmetric non-negative tri-factorization of image-image similarity matrix
A=X"XeR™ (where X e R™" is feature-image matrix) to do image clustering:
A=GSG"

where Ge R™ is the cluster indicator matrix, Se R** is the cluster centroid matrix
that gives a compact kxk representation of X, with k being the number of clusters.

Relevance feedback logs (RF)):

1. F;*: denotes the set of positive images marked in the feedback
2. F;:denotes the set of negative images marked in the feedback

Define set of pairwise constraints:

1. Must-Link constraints Cy,.: pair of images ~ (i.i))€ Cy,
together iff (i.i;)e RF,, 1<h<k (total number of logs)

indicating i; and ij must be clustered

2. Cannot-Link constraints Cg, : pair of images (i»i;)€ Co, indicating i; and i; must be clustered
together iff one of the two imagese F," , while the othere F,”, 1<h<k ( total number of logs)
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Experiment Datasets and Evaluation Methodology Experiment Results

Experiment setup Experiment 1:

We perform comparison of three popular unsupervised image clustering methods: KK (Kernel K-

1. Datasets: entire image database consists of 1,500 images with 300 images in each

means), SNC (Spectral Normalized Cuts), and NMF, with SS-NMF.

category, we randomly select 100 images from 5 categories which are lOwIs (Q), Roses ) ) ) ) O-R L-H R-L O-R-L O-R-L-E O-L-E-H
(R), Lions (L), Elephants (E) and Horses (H) to form different combinations of image Right Table : Comparison of image clustering accuracy
categories. between KK, SNC, NMF and , SS-NMF with only 3% KK 0.6933 | 0.6553 | 0.8600 | 0.6750 0.6012 0.5775
+ Must-link: If both the images happen to belong to the same category in the ground truth, pairwise constraints on the images. It shows that SS-
the constraint is assigned maximum weight in the image-image similarity matrix; NMF consistently outperforms other well-established SNC 0.8300 0.7900 0.8750 0.7092 0.6150 0.5975
« Cannot-link: If both images belong to different categories, the minimum weight in the unsupervised image clustering methods. NMF 0.8400 | 0.7950 | 0.8950 | 0.7167 0.6550 0.6525
similarity matrix is used for the constraint.
v SS-NMF | 0.9400 | 0.8500 | 0.9300 | 0.8833 0.7125 0.7095
2. Evaluation accuracy metric:
> 8005 Experiment 2:
c=—=m=ie We compare SS-NMF with the two semi-supervised clustering approaches: SS-KK and SS-SNC.
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Up Figure : Sample images from the image
categories used

From Left to Right Figures : Comparison of image clustering accuracy between SS-KK, SS-SNC, and SS-NMF for different percentages of images pairs constrained (O-R, L-H,
L-E-H, O-R-L-E, O-L-E-H, and O-R-L-E-H). It shows that SS-NMF consistently outperforms other semi-supervised image clustering methods.
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