Outline

- Overview of Gene Expression Clustering
- Graph Partitioning Model
 - Graph Partitioning Theory
 - Spectral Graph Partitioning
- Isoperimetric Graph Partitioning for Gene Analysis
 - Isoperimetric Graph Partitioning Model
 - Algorithm Derivation
 - Feature Selection via Two-way Ordering of Gene Expression
- Experiments and Results

Gene Expression Data from Microarray

	Sample 1	Sample J	Sample m
Gene 1	A ₁₁	A _{1J}	A _{1M}
Gene			
Gene I	A _{I1}	A _{IJ}	A _{IM}
Gene			
Gene N	A _{N1}	A _{NJ}	A _{NM}
		'	

Could be time, environmental, source (tissue /organ /cancerous) etc..

Usually log of relative expression with respect to Control. +/- tells whether over or under expressed.

IJCNN 2007 (2)

Gene Expression Data Clustering

- Gene Clustering: Grouping genes with similar expression patterns based on the samples
 - Unravel relations between genes
 - Deduce the function of genes
 - Reveal the underlying regulatory gene network
- Sample Clustering: Grouping samples corresponding to particular phenotypes (Normal vs. Tumor)
 - Classify different samples
 - Discover new subtypes of samples

NOTE: Few samples (~50) and large dimension (~10,000) of genes, samples clustering is more difficult than genes clustering.

Graph Partitioning Theory

- Clustering can be viewed as partitioning a weighted graph
- Bi-partitioning task:
 - Divide vertices into two disjoint groups (V_1, V_2)
- Graph Cut: find the minimal cut between groups

$$Cut(V_1, V_2) = \sum_{i \in v_1, j \in v_2} A_{ij}$$

where, A is adjacency (affinity matrix) represents edge weights

Vertex: samples in gene expression data Edge weights: similarity between samples

Spectral Graph Partitioning Algorithm

- Identify an optimal partition is NP-hard
- Find Min-Cut between V_1 and V_2 with balance weights (Normalized Cuts):

$$\min_{x \neq 0} \frac{x^T L x}{x^T D x}, s.t. x^T D e = 0$$

where, x is clustering membership indicator vector, L is Laplacian matrix, D is degree matrix, $e = [1,1,...1]^T$

 Normalized cuts solution can be solved by a simple eigenvector x:

$$Lx = \lambda Dx$$

Isoperimetric Graph Partitioning Model

· Optimization of an isoperimetric constant:

$$h = \inf_{S} \frac{\left| \partial S \right|}{Vol_{S}}$$

where, h is the infimum of the ratio over all possible, S is a region in the manifold, Vol_s denotes the volume of region S, $|\partial S|$ is the area of the boundary of region S.

- Find minimum isoperimetric ratio (isoperimetric constant) is NP-hard
- Minimum isoperimetric ratio can be solved by a parse system of linear equations

Isoperimetric Graph Partitioning Algorithm

Isoperimetric ratio can be written as:

$$h = \min_{x} \frac{x^{T} L x}{x^{T} d}$$

where, x is clustering membership indictor vector, L is Laplacian matrix, d is degree vector.

Minimizing cost function:

$$Q(x) = x^{T} L x - \Lambda(x^{T} d)$$

where, Λ is lagrange multiplier

Linear system solution:

$$Lx = \Lambda d$$

Isoperimetric Graph Partitioning Algorithm (Cont.)

- Challenge: matrix L is singular--all rows and columns sum to zero.
- Find a unique solution x_0 for a nonsingular system of equations:

$$L_0 x_0 = d_0$$

where, L_0 comes from L by removing the vertex of largest degree, x_0 and d_0 come from x and d by removing corresponding rows of x and d.

Feature Selection via Two-way Ordering

Why need unsupervised feature selection?

Conditions:

- high dimensionality of feature spaces (many genes are irrelevant or redundant)
- without prior knowledge of cluster structure (some genes correspond to new phenotypes or subtypes)

Objective: Improve performance

- Two-way ordering genes/samples
 - Bipartite graph to represent gene expression data
 - Using SVD (singular value decomposition) to re-ordering genes/samples
 - Discard irrelevant genes

Two-way Ordering Algorithm

Symmetric weighted adjacency matrix W for the bipartite graph:

$$W = \begin{pmatrix} 0 & A \\ A^T & 0 \end{pmatrix}$$

• Compute the second largest principle components u_2 and v_2 from:

$$\widetilde{A} = D_g^{-1/2} A D_s^{-1/2}$$

where $D_g(i,i) = \sum_j W_{ij}, D_s(i,i) = \sum_i W_{ij}$ and g is an index permutation of genes , and s is an index permutation of samples

Two-way Ordering Algorithm (cont.)

Get index permutation for genes

$$g_2 = D_g^{-1/2} u_2$$

and index permutation for samples

$$s_2 = D_s^{-1/2} v_2$$

- Sort g_2 and s_2 to increasing order to reorder genes and samples to get reordering matrix A'
- Discard genes in the middle of matrix A'

Isoperimetric Graph Partitioning Clustering Algorithm

- Combines two-way ordering for feature selection with isoperimetric graph partitioning to improve performance:
 - Feature selection via two-way ordering: eliminate irrelevant or redundant genes
 - Isoperimetric graph partitioning: group gene expression samples through a graph theoretical approach

Experiments

- Colon tumor tissues:
 - 62 samples:
 - 40 tumor biopsies from tumors (negative)
 - 22 normal biopsies from healthy parts of colons (positive)
 - 2000 out of around 6500 genes are selected based on the confidence in the measured expression levels
- Leukemia Subtypes:
 - 38 bone marrow samples
 27 from acute lymphoblastic leukemia (ALL)
 11 from acute myeloid leukemia (AML)
 - 7129 probes from 6817 human genes

Data comes from Kent Ridge Bio-medical Data Set Repository (http://sdmc.lit.org.sg/GEDatasets/Datasets.html)

Results I

- Clustering results are evaluated by
 - Q-accuracy (the higher, the better):

$$\sum_{i} t_{ii} / N$$

- Isoperimetric ratio (the lower, the better):

$$h = \min_{x} \frac{x^{T} L x}{x^{T} d}$$

IGP: Isoperimetric Graph Partitioning

SGP: Spectral Graph Partitioning

	SGP		IGP	
m genes	Q-accuracy	Iso. ratio	Q-accuracy	Iso. ratio
2000	0.5806	0.9892	0.6290	0.5156
800	0.5968	0.9563	0.7258	0.4984
400	0.7258	0.9132	0.7419	0.4897
200	0.8065	0.8669	0.8226	0.4852

Table I. The comparison of Q-accuracy and Isoperimetric ratio of IGP and SGP for clustering colon cancer/normal samples based on selective genes through two-way ordering.

	SGP		IGP	
m genes	Q-accuracy	Iso. ratio	Q-accuracy	Iso. ratio
7122	0.5263	1.0165	0.6842	0.5314
3000	0.5263	0.9995	0.7895	0.5144
2000	0.5526	0.9905	0.7895	0.5106
1000	0.6053	0.9730	0.7895	0.5023
400	0.7105	0.9423	0.7368	0.5040
200	0.7105	0.9027	0.7368	0.4696

Table II. The comparison of Q-accuracy and Isoperimetric ratio of IGP and SGP for clustering ALL/AML leukemia subtypes based on selective genes through two-way ordering.

Results II

Fig. 1. Comparison of clustering accuracy between IGP (dot line) and SGP (dark line) on colon cancer/normal samples.

Fig. 2. Comparison of clustering accuracy between IGP (dot line) and SGP (dark line) on ALL/AML leukemia subtypes samples.

Conclusion

- Isoperimetric graph partitioning model to group biological samples from gene expression data:
 - outperforms spectral graph partitioning with higher accuracies and lower isoperimetric ratios
- Integrated with unsupervised feature selection via two-way ordering of gene expression data, accuracies of clustering are improved significantly.