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ABSTRACT 

We analyze the optimal Taylor rule in the standard New Keynesian model when output and 

inflation are imperfectly observed. When the central bank observes inflation and the output gap 

with error, the optimal Taylor rule features tempered responses so as not to impart unnecessary 

volatility to the economy. If the Taylor rule is expressed in terms of estimated output and inflation, 

it is optimal to respond infinitely strongly to estimated deviations from the targets. Because 

filtered estimates are based on current and past observations, such Taylor rules appear to exhibit 

interest rate smoothing even though the monetary authority has no explicit preference for 

smooth interest rates. Under such a Taylor rule, the estimates of inflation and the output gap are 

perfectly negatively correlated. In the data, these gaps are slightly positively correlated, 

suggesting that the central bank is systematically underreacting to estimated inflation and the 

output gap.  
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1. INTRODUCTION 

A key challenge for monetary policy is that the current state of the economy is uncertain. 

Consequentially, policy makers face a tradeoff between aggressively responding to changes in 

economic conditions on the one hand, and imparting unnecessary volatility to the economy due 

to policy errors on the other. This paper seeks to analyze such uncertainty in the standard New 

Keynesian model when monetary policy is governed by a Taylor rule – a simple linear relationship 

between a central bank’s choice of a target interest rate, observed output (or the “output gap”) 

and observed inflation (Taylor, 1993). The Taylor rule is a natural rule to study since it is a common 

feature of macroeconomic models and, suitably parameterized, is a reasonable description of 

how actual central banks set interest rates.  

This paper examines three cases. First, we consider the optimal Taylor rule without target 

uncertainty. In this case, the optimal Taylor rule coefficients are infinite. That is, if there is no 

measurement error, the optimal Taylor rule requires the central bank to respond infinitely 

strongly to deviations in inflation and the output gap. These extreme responses arise because, in 

the absence of measurement error, the central bank faces no costs of responding arbitrarily 

strongly. In contrast, estimated Taylor rules indicate that central banks’ actual responses to 

output and inflation are relatively modest (e.g. Judd and Rudebusch, 1998, Bogdanova and 

Hoffman, 2012). This apparent under-reaction to measured inflation and output is often 

attributed to the fact that the central bank observes output and inflation with error (Orphanides 

2001, 2003).  

We next analyze the optimal Taylor rule when central banks react to the noisy measures of output 

and inflation. If inflation and output are both measured with error, then the Taylor coefficients 

are finite. As the variance of measurement error grows, the optimal coefficients fall and the 

central bank reacts less and less to current measures of economic activity.  

Finally, we consider the case in which monetary policy responds to optimal estimates 

(“nowcasts”) of output and inflation. In this case, the central bank first solves a signal extraction 

problem to estimate the output gap and inflation and subsequently sets the interest rate as a 

function of these estimates. In this setting, it is optimal for the central bank to respond infinitely 

strongly to any deviation of estimated inflation or the estimated output gap from their targets – 

a result that echoes our earlier finding in the model without measurement error. A central bank 

that adopts such a rule will often appear to smooth interest rates. Indeed, there are special cases 

in which a Taylor rule with interest rate smoothing can duplicate the policy of responding to 

estimated inflation and the output gap. The intuition that signal extraction leads to interest rate 

smoothing appears to align with actual experiences of policymakers. In 2004, Ben Bernanke, then 

member of the Board of Governors, noted: “[G]iven the highly uncertain environment in which 

policy operates, a gradual adjustment of rates has the advantage of allowing the FOMC to monitor 
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the evolution of the economy […] making adjustments along the way as needed” (Bernanke, 

2004a).1 

Under an optimal Taylor rule, estimated deviations of output and inflation from their targets 

should be perfectly negatively correlated. Intuitively, the optimal Taylor rule eliminates the 

effects of estimated demand shocks on estimated inflation and the output gap. At the optimum, 

only variation due to estimated cost-push shocks remains, which implies that estimated inflation 

and output move in opposite directions. Actual data on estimates of inflation and the gap are not 

strongly correlated, suggesting that the central bank is not reacting to demand shocks as 

aggressively as it should.  

Our work is related to a large literature on optimal monetary policy and instrument rules (e.g. 

Giannoni and Woodford 2003a, 2003b, Woodford 2003, Ch. 7 and Giannoni, 2014).2 Unlike we do 

in this paper, Giannoni and Woodford (2003b) and Giannoni (2014) assume that the central bank 

has an explicit preference for smooth interest rates. Some of the papers in this literature focus 

on the role of measurement error in tempering the central bank’s reactions. Orphanides (2001, 

2003) shows that real-time measures of inflation and the output gap are sufficiently noisy to 

justify relatively small Taylor rule coefficients. Similarly, Rudebusch (2001), Smets (2002) and Billi 

(2012) all conclude that measurement error naturally encourages central banks to adopt less 

aggressive policy reaction rules.3 While we confirm this finding in the canonical New Keynesian 

model when the central bank responds to noisy measures, we also demonstrate that the optimal 

Taylor rule coefficients remain infinite if the central bank solves a signal extraction problem and 

the Taylor rule is expressed in terms of estimated output and inflation.  

Our paper is also related to the literature on signal extraction and optimal monetary policy. Aoki 

(2003) considers an environment similar to ours, but without shocks to the New Keynesian Phillips 

Curve. Thus, in Aoki’s work, the “divine coincidence” holds: The central bank can eliminate the 

output gap by successfully stabilizing prices (Blanchard and Galí, 2007). Further, while Aoki 

discusses optimal policy under discretion, we intentionally restrict attention to the optimal Taylor 

                                                           
1 Throughout this paper we assume that the private sector has full information. This assumption is common in the 
literature (e.g. Svensson and Woodford, 2004). It simplifies the model solution and focuses attention on the central 
banks uncertainty about the true state of the economy. As we discuss below, a number of alternative informational 
assumptions are plausible. Lubik, Matthes, and Mertens (2016) show that informational assumptions can matter for 
equilibrium determinacy. 
2 While we restrict our attention to Taylor rules in this paper, it is well-known that optimal monetary policy is rarely 
given by a Taylor rule (see Woodford, 1999). See Svensson (2003) for a more general criticism of Taylor rules and 
see Taylor and Williams (2011) for a literature review. 
3 Both Rudebusch (2001) and Smets (2002) numerically analyze optimal policy based on estimated New Keynesian 
systems. Billi (2012) numerically analyzes optimal monetary policy at the zero lower bound. Both Billi and Smets 
assume that the central bank wants to minimize interest rate variation in addition to variation in output and inflation. 
Cateau (2007) considers the implications of model uncertainty on the optimal Taylor rule. Gorodnichenko and 
Shapiro (2007) argue that price-level targeting is preferable to inflation targeting if the central bank faces uncertainty 
about the output gap. See Taylor (1999) for additional work on optimal monetary policy rules.  
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rule – a form of commitment. Finally, when formulating the signal extraction problem, Aoki 

assumes that the central bank learns the true values of output and inflation with a one period lag. 

In our formulation, these values are never fully revealed. Methodologically, we draw on results in 

Svensson and Woodford (2003, 2004). Although they do not consider restricted instrument rules 

such as the Taylor rule, several of their findings continue to hold in our setting. 

2. BASELINE MODEL AND EQUILIBRIUM 

Our analysis focuses on a version of the standard New Keynesian framework in which the output 

gap and inflation are both measured with error. The model is described by a Phillips curve and a 

New Keynesian IS curve.4 The Phillips curve relates inflation, 𝜋𝑡, to the output gap, 𝑦𝑡, expected 

future inflation, and a cost-push shock, 𝑢𝑡, 

 𝜋𝑡 = 𝜅𝑦𝑡 + 𝛽𝐸𝑡[𝜋𝑡+1] + 𝑢𝑡 , (1) 
   

where 𝜅 > 0. The New Keynesian IS curve is  

 
𝑦𝑡 = 𝐸𝑡[𝑦𝑡+1] −

1

𝜎
(𝑖𝑡 − 𝜌 − 𝑟𝑡

𝑒 − 𝐸𝑡[𝜋𝑡+1]). 
(2) 

   
Here 𝜌 + 𝑟𝑡

𝑒 is the efficient rate of interest – the interest rate consistent with the level of output 

that would prevail under perfect price flexibility in the absence of all other distortions. We express 

this rate as the sum of the rate of time preference 𝜌 and a shock 𝑟𝑡
𝑒 which is centered at zero. The 

remaining terms are 𝑖𝑡, the nominal interest rate, and 𝜎, the coefficient of relative risk aversion 

(equivalently, the inverse of the intertemporal elasticity of substitution).   

The efficient rate shock and the cost-push shock are assumed to follow the AR(1) processes 

 𝑟𝑡+1
𝑒 = 𝜚𝑟  𝑟𝑡

𝑒 + 𝜀𝑡+1
𝑟 , 𝜚𝑟  ∈ [0,1), (3) 

 
 
 

𝑢𝑡+1 = 𝜚𝑢 𝑢𝑡 + 𝜀𝑡+1
𝑢 .          𝜚𝑢  ∈ [0,1). 

 
(4) 

We close the model by assuming that the monetary authority commits to a Taylor rule,  

 𝑖𝑡 = 𝜌 + 𝜙𝜋𝜋𝑡
𝑚 + 𝜙𝑦𝑦𝑡

𝑚. 

 

(TR1) 

Importantly, we distinguish between the actual output gap and the output gap observed by the 

monetary authority, and similarly between actual inflation and measured inflation. Because the 

central bank can respond only to measured output and inflation, 𝜋𝑡
𝑚 and 𝑦𝑡

𝑚 in (TR1) denote 

                                                           
4 The standard New Keynesian model abstracts from investment in physical capital and durable goods. While this 
assumption is common, it has important consequences for the analysis of the model and for optimal policy. See 
Barsky et al. (2007) and Barsky et al. (2015) for a more detailed discussion of the consequences of this assumption.   
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measured inflation and measured output.5 We assume that 𝜋𝑡
𝑚 = 𝜋𝑡 + 𝑚𝑡

𝜋 and 𝑦𝑡
𝑚 = 𝑦𝑡 + 𝑚𝑡

𝑦
, 

where 𝑚𝑡
𝜋 and 𝑚𝑡

𝑦
 denote the respective measurement errors. Both types of measurement error 

follow AR(1) processes 

 𝑚𝑡+1
𝜋 = 𝜚𝑚𝜋  𝑚𝑡

𝜋 + 𝜀𝑡+1
𝑚𝜋  , 𝜚𝑚𝜋  ∈ [0,1), 

 
(5) 

 𝑚𝑡+1
𝑦

= 𝜚𝑚𝑦  𝑚𝑡
𝑦

+ 𝜀𝑡+1
𝑚𝑦

 .           𝜚𝑚𝑦  ∈ [0,1). 

 

(6) 

All error terms are uncorrelated. While the central bank observes noisy measures of output and 

inflation, we assume for simplicity that households and firms have full information. 

We further assume that the well-known condition for a unique equilibrium,  

 𝜅(𝜙𝜋 − 1) + (1 − 𝛽)𝜙𝑦 > 0 (7) 

   
holds at all times.6 

We characterize the model’s solution in the following lemma.  Proofs of all results are in the 

appendix.  

Lemma 1: The unique locally stable competitive equilibrium of the model is given by the equations 

 
𝜋𝑡 =

𝜅

Φ𝑟 + 𝜙𝑦(1 − 𝛽𝜚𝑟) + 𝜅𝜙𝜋
𝑟𝑡

𝑒 +
𝜙𝑦 + (1 − 𝜚𝑢)𝜎

Φ𝑢 + 𝜙𝑦(1 − 𝛽𝜚𝑢) + 𝜅𝜙𝜋
𝑢𝑡

−
𝜅𝜙𝜋

Φ𝑚𝜋 + 𝜙𝑦(1 − 𝛽𝜚𝑚𝜋) + 𝜅𝜙𝜋
𝑚𝑡

𝜋 −
𝜅𝜙𝑦

Φ𝑚𝑦 + 𝜙𝑦(1 − 𝛽𝜚𝑚𝑦) + 𝜅𝜙𝜋

𝑚𝑡
𝑦

, 

(8) 

   
 

𝑦𝑡 =
1 − 𝛽𝜚𝑟

Φ𝑟 + 𝜙𝑦(1 − 𝛽𝜚𝑟) + 𝜅𝜙𝜋
𝑟𝑡

𝑒 +
𝜚𝑢 − 𝜙𝜋

Φ𝑢 + 𝜙𝑦(1 − 𝛽𝜚𝑢) + 𝜅𝜙𝜋
𝑢𝑡

−
(1 − 𝛽𝜚𝑚𝜋)𝜙𝜋

Φ𝑚𝜋 + 𝜙𝑦(1 − 𝛽𝜚𝑚𝜋) + 𝜅𝜙𝜋
𝑚𝑡

𝜋 −
(1 − 𝛽𝜚𝑚𝑦)𝜙𝑦

Φ𝑚𝑦 + 𝜙𝑦(1 − 𝛽𝜚𝑚𝑦) + 𝜅𝜙𝜋

𝑚𝑡
𝑦

, 

(9) 

   

where Φ𝑗 = 𝜎(1 − 𝜚𝑗)(1 − 𝛽𝜚𝑗) − 𝜅𝜚𝑗, 𝑗 ∈ {𝑟, 𝑢, 𝑚𝜋, 𝑚𝑦}, are constants that are independent 

of monetary policy.  

Both sources of measurement error reduce inflation and the output gap. A positive innovation to 

𝑚𝑡
𝜋 makes inflation appear higher than actual inflation. In response, the central bank raises 

interest rates causing both output and inflation to fall. Similar reasoning applies to measurement 

error in the output gap.  

                                                           
5 Bernanke (2004b) described measurement error as creating a “foggy windshield” through which the monetary 
authority sees the economy. For additional discussion, see Orphanides (2001).  
6 The argument in Bullard and Mitra (2002) continues to hold in our setting. 
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3. OPTIMAL TAYLOR RULES  

The central bank seeks to minimize an expected discounted sum of weighted squared inflation 

and the output gap (see Rotemberg and Woodford, 1999, and Woodford, 2003), 

 
(1 − 𝛽)𝐸 [∑ 𝛽𝑡(𝛼𝜋𝑡

2 + 𝑦𝑡
2)

∞

𝑡=0

] = 𝐸[𝛼𝜋𝑡
2 + 𝑦𝑡

2]. 
 

(10) 

   
Here, 𝛼 denotes the relative weight that the central bank places on inflation and 𝐸[∙] is the 

unconditional expectations operator. The optimal policy problem is then to choose 𝜙𝑦 and 𝜙𝜋 to 

minimize (10) subject to (8) and (9). 

MONETARY POLICY WITHOUT UNCERTAINTY 

We begin by considering the optimal Taylor rule in the absence of uncertainty. This is a useful 

benchmark against which to compare the optimal Taylor rule when the central bank faces 

uncertainty about output and inflation. The following proposition characterizes the optimal 

Taylor rule and the equilibrium paths of output and inflation in the standard model. 

Proposition 1  

Suppose the central bank observes output and inflation without error. 

(i) The optimal Taylor rule coefficients in the standard model are given by 𝜙𝑦
∗  and 𝜙𝜋

∗  which satisfy  

 
𝜙𝜋

∗ = 𝜚𝑢 +
𝛼𝜅𝜎(1 − 𝜚𝑢)

1 − 𝛽𝜚𝑢
+

𝛼𝜅

1 − 𝛽𝜚𝑢
𝜙𝑦

∗ . 
(11) 

with 𝜙𝑦
∗ → ∞. 

(ii) Under the optimal Taylor rule, the equilibrium satisfies 

 
𝜋𝑡 =

1 − 𝛽𝜚𝑢

𝛼𝜅2 + (1 − 𝛽𝜚𝑢)2
𝑢𝑡 , 𝑦𝑡 = −

𝛼𝜅

𝛼𝜅2 + (1 − 𝛽𝜚𝑢)2
𝑢𝑡 . 

 

 

We make three observations. First, when the central bank observes output and inflation without 

error, it is optimal for the central bank to respond infinitely strongly to deviations of inflation and 

the output gap relative to their targets.  Reviewing expressions (8) and (9), it is clear that 

arbitrarily aggressive reactions to either inflation or output allow the central bank to completely 

eliminate the effects of shocks to the efficient rate of interest 𝑟𝑡
𝑒. We emphasize that while the 

optimal Taylor rule coefficients given in Proposition 1 are infinite, the nominal interest rate 𝑖𝑡  

remains finite in equilibrium.  
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Second, in the limit as 𝜙𝑦
∗  and 𝜙𝜋

∗  become arbitrarily large, the ratio 𝜙𝜋
∗ 𝜙𝑦

∗⁄  approaches 

𝛼𝜅 1 − 𝛽𝜚𝑢⁄ . This ratio depends on the relative tradeoff between inflation versus output 

stabilization (𝛼), the slope of the Phillips curve (𝜅), and the persistence of the cost-push shock 

(𝜚𝑢). Unlike shocks to 𝑟𝑡
𝑒, cost-push shocks cannot be eliminated through monetary policy. 

Instead, the central bank trades off output stability versus inflation stability (Clarida, Galí, and 

Gertler, 1999). The optimal tradeoff implies a specific ratio of the Taylor rule coefficients.   

Finally, under the optimal Taylor rule, Proposition 1 implies that  

𝜋𝑡 = −
1 − 𝛽𝜚𝑢

𝛼𝜅
𝑦𝑡 = −

𝜙𝑦
∗

𝜙𝜋
∗

𝑦𝑡. 

Hence, for the optimal Taylor rule, equilibrium output and inflation are perfectly negatively 

correlated.7  

MONETARY POLICY WITH UNCERTAIN TARGETS 

The simple New Keynesian framework captures many realistic features of monetary policy. The 

model embodies a tradeoff between inflation and output and suggests that the central bank has 

a particular advantage in minimizing economic instabilities that arise from “demand shocks” 

(shocks to the IS-Curve). Despite these attractive features, the model does not entail any costs to 

excessively strong reactions on the part of the central bank. In stark contrast to the modest 

empirical estimates of actual Taylor rules (see Judd and Rudebusch, 1998, and more recently 

Hofmann and Bogdanova, 2012), the optimal Taylor rule coefficients are typically infinite.  

Measurement error – uncertainty about actual output and inflation – is a natural candidate for 

why central banks do not respond more to observed changes in GDP and inflation. This concern 

was emphasized by Friedman (1953) who pointed out that activist policies might be destabilizing 

if policy actions were not sufficiently correlated with the true policy targets. From (9) and (10) it 

is clear that, for any fixed coefficients 𝜙𝑦 and 𝜙𝜋, greater measurement error reduces the 

correlation between the policy instrument and the targets and thus entails greater unwanted 

variation in output and inflation. Indeed, if measurement error were sufficiently high, it would be 

optimal not to respond to observed variations in inflation and output at all.8 

                                                           
7 Note that under the optimal policy, estimation of a New Keynesian Phillips curve will be particularly problematic. 
Typically, the structural shock 𝑢𝑡 is correlated with the regressors 𝑦𝑡  and 𝐸𝑡[𝜋𝑡+1] but under optimal policy, both 
regressors are functions only of 𝑢𝑡 and are therefore perfectly correlated with the error. The optimal Taylor rule 
eliminates all variation other than variation associated with 𝑢𝑡 making the bias particularly pronounced.  
 
8 This might present a problem for equilibrium determinacy. It is well known that determinacy requires that the 

central bank responds sufficiently strongly to inflation and output. If measurement error is large however, the Fed 
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With arbitrary variation in the efficient rate, the cost-push shock, and both types of measurement 

error, an analytical solution of the optimal policy problem is generally not feasible and so we 

instead use numerical methods to characterize the optimal Taylor rule. To build intuition, 

however, we first consider a special case in which an analytical characterization is possible.  

Proposition 2: Suppose all shocks are white noise, that is, 𝜚𝑟 = 𝜚𝑢 = 𝜚𝑚𝜋 = 𝜚𝑚𝑦 = 0. Then the 

minimization of (10) subject to (8) and (9) yields the following optimal Taylor rule coefficients 

 
𝜙𝑦

∗ =
1

𝜎
∙

𝑉[𝑟𝑡
𝑒]

𝑉[𝑚𝑡
𝑦

]
, 

 

(12) 

 
𝜙𝜋

∗ =
𝜅

𝜎
∙

(𝛼𝜅2 + 1)𝑉[𝑚𝑡
𝑦

] + 𝛼𝑉[𝑢𝑡]

(𝛼𝜅2 + 1)𝑉[𝑚𝑡
𝜋] + 𝑉[𝑢𝑡]

∙
𝑉[𝑟𝑡

𝑒]

𝑉[𝑚𝑡
𝑦

]
+

𝛼𝜅𝜎𝑉[𝑢𝑡]

(𝛼𝜅2 + 1)𝑉[𝑚𝑡
𝜋] + 𝑉[𝑢𝑡]

, 

 

(13) 
 

where 𝑉[∙] denotes the unconditional variance operator. 

There are several striking features of the optimal Taylor rule in this setting. First, the optimal 

Taylor coefficients in this model are finite. The central bank avoids aggressive reactions to 

measured inflation and output because it knows that its actions would cause excessive 

fluctuations in actual output and inflation. As measurement error decreases, the central bank can 

adopt more and more aggressive reactions to inflation and output. It is also worth noting that 

only measurement error in the output gap is necessary for finite Taylor coefficients. Assuming 

that 𝑉[𝑢𝑡] > 0, measurement error in inflation is neither necessary nor sufficient for finite 

coefficients.  

Second, the optimal choice of 𝜙𝑦
∗  depends neither on 𝛼, nor on 𝜅, nor on 𝑉[𝑢𝑡].  Instead, 𝜙𝑦

∗  

depends only on the ratio of the variance of shocks to the efficient rate, 𝑉[𝑟𝑡
𝑒], to the variance of 

measurement error in the output gap, 𝑉[𝑚𝑡
𝑦

], together with the coefficient of relative risk 

aversion, σ. The reader might find the result in (12) somewhat counterintuitive. If risk aversion is 

relatively high, then the household will strongly dislike output variability and presumably prefer 

a stronger output reaction. In contrast, the optimal reaction is decreasing in σ. The reason for this 

apparent contradiction is that we chose to specify the IS shocks as shocks to the efficient rate of 

interest itself (as is common in the literature). If we instead stated the shocks in terms of 

exogenous changes in the efficient growth rate of output, we would have 𝑟𝑡
𝑒 = 𝜎𝐸𝑡[∆𝑦𝑡+1

𝑒 ] =

−𝜎𝑦𝑡
𝑒 (the second equality uses the assumption that the autocorrelation of shocks is zero). In this 

case, the central bank’s choice of 𝜙𝑦
∗  can be written as 

                                                           
could be forced to choose between a locally indeterminate equilibrium on the one hand and destabilization resulting 

from reactions to erroneous signals on the other.  
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𝜙𝑦
∗ = σ

𝑉[𝑦𝑡
𝑒]

𝑉[𝑚𝑡
𝑦

]
, 

which is increasing in σ. 

The optimal response to measured inflation (equation 13) is somewhat more complex. We start 

with its more intuitive properties. First, as with 𝜙𝑦
∗ , a larger variance of the efficient rate 𝑉[𝑟𝑡

𝑒] 

implies a stronger response to inflation. Second, greater measurement error in inflation requires 

more attenuated responses. Third, one can show that 𝜕𝜙𝜋
∗ 𝜕𝛼⁄ > 0 for any choice of model 

parameters so a stronger preference for price stability always implies stronger reactions to 

measured inflation.  

The relationship of 𝜙𝜋
∗  with the remaining parameters is less clear. To see how this coefficient 

depends on the shock variances consider the following limiting cases. Suppose first that cost-push 

shocks are dominant – that is, consider the behavior of 𝜙𝜋
∗  as 𝑉[𝑢𝑡] → ∞. In this case, the optimal 

reaction to inflation approaches  

𝜙𝜋
∗ =

𝜅𝛼

𝜎
∙

𝑉[𝑟𝑡
𝑒]

𝑉[𝑚𝑡
𝑦

]
+ 𝛼𝜅𝜎 = 𝜅𝛼σ (

𝑉[𝑦𝑡
𝑒] + 𝑉[𝑚𝑡

𝑦
]

𝑉[𝑚𝑡
𝑦

]
), 

where we have again used the relationship 𝑟𝑡
𝑒 = −𝜎𝑦𝑡

𝑒. The inflation response is increasing in the 

signal-to-noise ratio for the output gap, the weight the central bank places on inflation stability, 

the slope of the IS curve and the macroeconomic rate of price adjustment.  Notice also that for 

large 𝑉[𝑢𝑡] neither 𝜙𝑦
∗  nor 𝜙𝜋

∗  depend on measurement error in inflation.  

Alternatively, suppose there are no cost-push shocks at all.  In this case,  

𝜙𝜋
∗ =

𝜅

𝜎
∙

𝑉[𝑟𝑡
𝑒]

𝑉[𝑚𝑡
𝜋]

= 𝜅𝜎
𝑉[𝑦𝑡

𝑒]

𝑉[𝑚𝑡
𝜋]

. 

Analogous to equation (12), the ratio of the variance of the efficient rate of output to that of 

measured inflation governs the strength of the reaction. In particular, as 𝑉[𝑢𝑡] approaches zero, 

𝜙𝜋
∗  becomes independent of measurement error in the output gap. Finally, a larger 

macroeconomic rate of price adjustment, 𝜅, raises the policy response.   

Much of the optimal monetary policy literature assumes a quadratic objective function and linear 

constraints. In these settings the globally optimal policy exhibits certainty equivalence. That is, 

the presence and nature of additive stochastic disturbances does not affect optimal policy (see, 

e.g. Sargent and Ljungqvist, 2004, Ch. 5). However, when optimal policy is restricted to a Taylor 

rule of the form (TR1), equations (9) and (10) show that the constraints are no longer linear in the 

choice variables. Hence, it is not surprising that certainty equivalence breaks down in our setting. 

This result is consistent with earlier findings (see, e.g. Smets, 2002).  
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In Figure 1 we use a calibrated version of the model to illustrate how the optimal Taylor 

coefficients change as we vary the degree of measurement error. For these numerical illustrations 

we make the following parametric choices: Each time period is a quarter. We assume logarithmic 

utility (σ = 1). The discount factor 𝛽 is set to 0.99 and the effective rate of price adjustment is 

𝜅 = 0.34.9 We choose an autoregressive parameter of the efficient rate 𝜚𝑟  equal to 0.9, similar 

to calibrations of trend stationary productivity shocks in the real business cycle literature. 

Following Galí (2008, Ch. 5) we set the persistence of the cost-push shocks 𝜚𝑢 to 0.5. The variances 

of the innovations to the efficient rate and the cost-push shocks are chosen so that the annual 

unconditional variances of 𝑟𝑡
𝑒  and 𝑢𝑡  are 1.00.  

Orphanides (2003) provides estimates for the measurement error processes. Based on his 

calculations, measurement error in inflation is best approximated by a white noise process with 

a quarterly standard deviation of roughly 0.5. In contrast, measurement error in the output gap 

has a quarterly autoregressive coefficient of rougly 0.95 and an innovation standard deviation of 

0.66.  

Finally, we assume that the monetary authority dislikes inflation and the output gap equally so 

𝛼 = 1. Table 1 summarizes the baseline calibration. Under these parameter values, the optimal 

Taylor rule coefficients are 𝜙𝜋
∗ = 2.00 and 𝜙𝑦

∗ = 0.61.10 

Figure 1 plots the coefficients for the optimal Taylor rule as we vary the amount of measurement 

error in the model. The figure shows that as uncertainty about current inflation (the left panel) 

and uncertainty about the output gap (the right panel) increase, optimal policy is less aggressive. 

It is worth noting that, at least for our baseline calibration, measurement error in the output gap 

is substantially more influential than measurement error in inflation. This is consistent with the 

analytical result in Proposition 2.  

MONETARY POLICY WITH SIGNAL EXTRACTION 

To this point, we have assumed that the central bank directly responds to current measured 

inflation 𝜋𝑡
𝑚  and the measured gap 𝑦𝑡

𝑚. Here, we consider a modified Taylor rule in which the 

central bank sets the interest rate as a function of estimated inflation and the estimated output 

gap.11 

                                                           
9 This value of 𝜅 can be derived from a Calvo model with a probability of price rigidity of 2/3 per quarter, together 
with our calibrated value of 𝛽, a Frisch labor supply elasticity of 1.00 and a linear production function.   
10 Whenever we report numerical values for the coefficient on the output gap, we annualize it by multiplying the 
quarterly value by four. 
11 Among others, Orphanides (2001) has advocated this specification. A number of researchers have examined signal 
extraction problems of central banks. Our approach draws on the results of Svensson and Woodford (2003, 2004). 
See also Swanson (2000), Smets (2002), Aoki (2003).  
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We assume the central bank uses the Kalman filter to estimate the output gap and the inflation 

rate. For a generic variable 𝑥𝑡, we let 𝑥𝑡|𝑡 denote the central bank’s estimate of the variable given 

the information available at date t.12 Having solved the signal extraction problem, the central 

bank sets the interest rate according to the modified Taylor rule 

 𝑖𝑡 = 𝜌 + 𝜓𝜋𝜋𝑡|𝑡 + 𝜓𝑦𝑦𝑡|𝑡   . 

 

(TR2) 

𝜓𝜋  and 𝜓𝑦 are the Taylor rule coefficients which operate on the “nowcast” estimates 𝜋𝑡|𝑡  and 

𝑦𝑡|𝑡. We list this Taylor rule as (TR2) to distinguish it from the more conventional Taylor rule (TR1). 

The remaining model equations are unchanged. 

Lemma 2 characterizes the estimates 𝜋𝑡|𝑡  and 𝑦𝑡|𝑡. This lemma is analogous to Lemma 1 when 

there is no measurement error.  

Lemma 2:  The central bank’s estimates of inflation and the output gap satisfy 

 
𝜋𝑡|𝑡 =

𝜅

Φ𝑟 + 𝜓𝑦(1 − 𝛽𝜚𝑟) + 𝜅𝜓𝜋
𝑟𝑡|𝑡

𝑒 +
𝜓𝑦 + (1 − 𝜚𝑢)𝜎

Φ𝑢 + 𝜓𝑦(1 − 𝛽𝜚𝑢) + 𝜅𝜓𝜋
𝑢𝑡|𝑡 , 

(14) 

   
 

𝑦𝑡|𝑡 =
1 − 𝛽𝜚𝑟

Φ𝑟 + 𝜓𝑦(1 − 𝛽𝜚𝑟) + 𝜅𝜓𝜋
𝑟𝑡|𝑡

𝑒 +
𝜚𝑢 − 𝜓𝜋

Φ𝑢 + 𝜓𝑦(1 − 𝛽𝜚𝑢) + 𝜅𝜓𝜋
𝑢𝑡|𝑡, 

(15) 

   
where Φ𝑟  and Φ𝑢 are defined as in Lemma 1.  

The lemma shows that, with a suitable reinterpretation of the shocks, the equilibrium paths of 

the filtered variables 𝑦𝑡|𝑡  and 𝜋𝑡|𝑡 obey the same equilibrium conditions as the actual underlying 

variables 𝑦𝑡  and 𝜋𝑡 (see equations 8 and 9).   

The optimal coefficients {𝜓𝑦
∗ , 𝜓𝜋

∗ } minimize (10) subject to (1) - (6), (TR2), and the central bank’s 

informational constraints. The following proposition presents a result for the i.i.d. case in which 

we can obtain a closed-form solution.  

Proposition 3: Suppose all shocks are contemporaneously uncorrelated with each other and i.i.d 

over time. Then the coefficients {𝜓𝑦
∗ , 𝜓𝜋

∗ } satisfying   

 
𝜓𝜋

∗ = 𝛼𝜅(𝜓𝑦
∗ + 𝜎) + (1 + 𝛼𝜅2)

𝐶𝑜𝑣[𝑟𝑡|𝑡
𝑒 , 𝑢𝑡|𝑡]

𝑉[𝑢𝑡|𝑡]
 

(11’) 

and 𝜓𝑦
∗ → ∞ are optimal. 

                                                           
12 Formally, the central bank’s information set is 𝐼𝑡

𝐶𝐵 = {Θ, 𝜋𝑡−𝑗
𝑚 , 𝑦𝑡−𝑗

𝑚 : 𝑗 ≥ 0} where Θ is a vector of all model 

parameters. Then, for any variable 𝑥𝑡, the central bank’s date t estimate is  𝑥𝑡|𝑡 = 𝐸[𝑥𝑡|𝐼𝑡
𝐶𝐵]. The observation 

equations are 𝜋𝑡
𝑚 = 𝜋𝑡 + 𝑚𝑡

𝜋  and 𝑦𝑡
𝑚 = 𝑦𝑡 + 𝑚𝑡

𝑦
.   
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Proposition 3 shows that, there is an optimal Taylor rule in terms of filtered output 𝑦𝑡|𝑡  and 

inflation 𝜋𝑡|𝑡 which embodies similar properties as Proposition 1 with 𝜚𝑢 = 0. In particular, the 

optimal Taylor rule coefficients are again infinitely large and 𝜓𝜋
∗ /𝜓𝑦

∗  converges to 𝛼𝜅. Notice the 

following subtle difference: Since we assumed that all exogenous shocks are uncorrelated, there 

is no covariance term in equation (11) of Proposition 1. Here, in equation (11’), the correlation 

between the estimates 𝑟𝑡|𝑡
𝑒

 and 𝑢𝑡|𝑡  in Proposition 3 arises endogenously even though the 

underlying shocks 𝑟𝑡
𝑒 and 𝑢𝑡  are uncorrelated.  

The correlation between 𝑟𝑡|𝑡
𝑒

 and 𝑢𝑡|𝑡 comes from the central bank’s effort to infer the true shocks. 

For example, suppose the central bank observes positive inflation and a negative output gap. A 

negative supply shock (𝑢𝑡 > 0) is a natural candidate for such observations. Another possibility is 

the occurrence of a positive demand shock together with a negative innovation to measurement 

error in the output gap. Because the central bank attaches positive probability to many potential 

combinations of shocks, its estimates 𝑟𝑡|𝑡
𝑒

 and 𝑢𝑡|𝑡 will typically be correlated. For the optimal 

Taylor rule, the induced correlation is immaterial. Equations (14) and (15) with 𝜚𝑢 = 𝜚𝑟 = 0 imply 

that only the limit of 𝜓𝜋
∗ /𝜓𝑦

∗  affects the central bank’s estimates of inflation and the output gap. 

We next turn to the general case in which all shocks have arbitrary autocorrelation. Since the 

analytical solution of the optimal policy problem is difficult, we use numerical methods to 

characterize the optimal Taylor rule. 

Figure 2 shows level curves of the central bank’s objective function when all parameters are set 

to the values of our baseline calibration summarized in Table 1. As we have seen in Proposition 

3, stronger responses to both expected inflation and the expected output gap reduce the central 

bank’s loss function (10). This continues to be the case when there are persistent innovations. 

Again, the optimal Taylor rule coefficients are infinitely large.13 

As the Taylor rule coefficients approach infinity, (14) and (15) imply that expected inflation and 

the expected output gap depend only on the estimated supply shock. In particular, 𝜋𝑡|𝑡 = 𝐴𝑢𝑡|𝑡 

and 𝑦𝑡|𝑡 = −𝐵𝑢𝑡|𝑡 for some strictly positive constants 𝐴 and 𝐵. Eliminating 𝑢𝑡|𝑡 yields 

 𝑦𝑡|𝑡 = −𝐵𝐴−1𝜋𝑡|𝑡. 

 

 

The central bank acts to neutralize the effect of estimated demand shocks on 𝜋𝑡|𝑡 and 𝑦𝑡|𝑡 so that 

under the optimal Taylor rule, only the effects of cost-push shocks (i.e., “supply shocks”) remain. 

As a consequence, the central bank’s best estimates of current inflation and output should be 

perfectly negatively correlated.  

                                                           
13 We have experimented with alternative calibrations. In all cases the optimal Taylor rule coefficients approach 
infinity. 



12 
 

SIGNAL EXTRACTION AND INTEREST RATE SMOOTHING 

There is a close connection between the Taylor rule given by (TR2) and interest rate smoothing. 

Interest rate smoothing can be captured by a policy rule of the form 

 𝑖𝑡 = 𝜌 + 𝜙𝜋𝜋𝑡
𝑚 + 𝜙𝑦𝑦𝑡

𝑚 + 𝜈𝑖𝑡−1 . 

 

(TR3) 

In this specification the central bank sets the interest rate as a function of measured inflation, 

measured output, and the lagged interest rate.14 The parameter 𝜈 governs the extent to which 

the central bank anchors its current policy with the interest rate from the previous quarter.  

Taylor rules with interest rate smoothing are similar to Taylor rules based on filtered output and 

inflation. In fact, there are special cases in which the two rules exactly coincide. To see this, 

consider the model in the previous section given by equations (1) to (6) and (TR2), in which the 

central bank observes 𝜋𝑡
𝑚 = 𝜋𝑡 + 𝑚𝑡

𝜋 and 𝑦𝑡
𝑚 = 𝑦𝑡 + 𝑚𝑡

𝑦
 and uses the Kalman filter to estimate 

the output gap and inflation. Suppose further that there are no cost-push shocks (𝑉[𝑢𝑡] = 0) and 

that the persistence of the measurement error shocks is zero (𝜚𝑚𝑦 = 𝜚𝑚𝜋 = 0). For this special 

case, we have the following result.  

Proposition 4: Given the assumptions above, for any Taylor rule (TR2) with coefficients 𝜓𝑦 and 

𝜓𝜋, there exist coefficients {𝜙̃𝑦, 𝜙̃𝜋, 𝜈} such that the policy rule (TR3) generates the same 

equilibrium paths for all variables. 

Thus, if there are no cost-push shocks and measurement error is i.i.d., the Taylor rule in which the 

central bank responds to the estimates  𝑦𝑡|𝑡 and 𝜋𝑡|𝑡 can be implemented exactly by a Taylor rule 

with interest rate smoothing of the form (TR3).15  

While exact equivalence between interest rate smoothing and Taylor rules of the form (TR2) 

requires strong assumptions, the spirit of Proposition 4 extends to very general settings. As long 

as the central bank follows Taylor rule (TR2) and forms its estimates 𝑦𝑡|𝑡 and 𝜋𝑡|𝑡  using the Kalman 

filter, the interest rate will change gradually because the estimates of the output gap and inflation 

change gradually. In such a setting, an econometrician would continue to conclude that lagged 

interest rates play an important role in shaping policy. To demonstrate this claim quantitatively, 

we again consider the model consisting of equations (1) to (6), the central bank’s informational 

constraints described above and Taylor rule (TR2). When we estimate the interest rate smoothing 

rule (TR3) on data simulated from this model using the benchmark calibration summarized in 

Table 1, we obtain a smoothing parameter 𝜈 of about 0.7.  

                                                           
14 See Sack and Wieland (2000), Williams (2003), and Rudebusch (2006) for discussions of interest rate smoothing. 
15 Aoki (2003) reaches a similar conclusion in a setting where the central bank optimizes under discretion.   
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COMPARING THE TAYLOR RULES 

Table 2 reports the value of the objective function (equation 8), as well as the associated variance 

of inflation and the output gap for the three Taylor rules (TR1), (TR2), and (TR3). For rules (TR1) 

and (TR3) the optimal coefficients are shown in the bottom rows of the table. Not surprisingly, 

the simple Taylor rule in which the central bank responds to measured inflation and measured 

output (equation TR1) is inferior to both alternatives.  For our baseline calibration, Taylor rule 

(TR2) outperforms the interest rate smoothing rule (TR3) though we note that it is possible to 

construct cases in which optimal interest rate smoothing outperforms Taylor rule (TR2).16  

Figures 3 and 4 report impulse response functions for the four structural shocks (𝑟𝑡
𝑒 , 𝑢𝑡 , 𝑚𝑡

𝑦
, 𝑚𝑡

𝜋). 

The top panels of Figure 3 show the impulse response functions of the output gap, inflation, and 

the interest rate to a shock to the efficient rate 𝑟𝑡
𝑒 (a ‘demand’ shock). When the central bank 

follows the simple Taylor rule (TR1), the output gap is remarkably close to zero. However, inflation 

jumps up substantially and only slowly converges back to its steady state value of zero. The history 

dependent rules (TR2) and (TR3) are superior in this regard.  

Impulse response functions for the cost-push shock are shown in the bottom panels of Figure 4. 

On impact, the output gap is largest for the simple Taylor rule (TR1). No further striking 

differences of the paths of output and inflation are revealed for the different policy rules.  

As in our baseline calibration, Orphanides (2003) estimated that measurement error in the output 

gap is highly persistent. The top panels of Figure 4 show that this persistence is reflected in the 

dynamic reaction to a noise shock. When the central bank solves a signal extraction problem and 

sets the interest rate according to Taylor rule (TR2), it learns gradually that the shock must have 

been measurement error. Although the output gap and inflation drop immediately after the 

shock, optimal state estimation soon reveals that the shock is likely noise and the central bank 

guides the economy back to steady state. When the central bank follows rules (TR1) or (TR3) 

instead, the persistence of the measurement error shock causes the economy to go through a 

protracted period of low inflation.  

Not surprisingly, signal extraction is particularly important when measurement error is persistent. 

Because our baseline calibration features no persistence for measurement error in inflation, 

                                                           
16 Consider a calibration in which all of the structural shocks have no persistence. In this case, the filtered estimates 
𝜋𝑡|𝑡  and 𝑦𝑡|𝑡  are functions of only current observations 𝜋𝑡

𝑚  and 𝑦𝑡
𝑚. As a consequence, the optimized value of the 

objective is the same for the simple Taylor rule (TR1) and for the Taylor rule with filtered data (TR2). However, since 
a central bank following (TR3) can choose an additional parameter it must be able to weakly improve on the restricted 
rules. The interest rate smoothing parameter allows the central bank some ability to commit to future actions which 
is often a feature of the globally optimal policy. See, e.g., Clarida, Galí and Gertler (1999), Woodford (1999) and 
Rotemburg and Woodford (1999). 
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when the economy experiences such a shock, there are only slight differences in output and 

inflation across the policies. This is shown in the bottom panels of Figure 4. While the impact 

response of the output gap is largest for the simple Taylor rule (TR1), the lack of history 

dependence implies a return to the steady state in a single period. Rules (TR2) and (TR3) show a 

somewhat slower convergence rate. 

DOES THE FEDERAL RESERVE FOLLOW AN OPTIMAL TAYLOR RULE?  

If the central bank followed an optimal Taylor rule, then expected inflation and the expected 

output gap should be perfectly negatively correlated. To see whether this prediction holds in the 

data, we examine the Fed’s real time forecasts of current quarter inflation and the output gap. 

These forecasts are produced by the Federal Reserve staff before every meeting of the Federal 

Open Market Committee and made public with a five year lag by Federal Reserve Bank of 

Philadelphia. We take the Fed’s contemporaneous estimate of Core CPI inflation as the empirical 

analogue of 𝜋𝑡|𝑡.  

Figure 5 plots the current-quarter forecasts of Core CPI inflation and the output gap from 1987Q3 

- 2007Q4. In the figure, ‘initial’ refers to the forecast of the output gap produced for the first 

quarterly meeting and ‘revised’ refers to the forecast for the second meeting. Panel A shows the 

unfiltered series. There is no obvious relationship between the two series in the figure. The 

sample correlation between the initial output gap estimate and the estimate of Core CPI inflation 

is -0.09 (the correlation changes to -0.1 if we use the revised estimate). In contrast, under the 

optimal Taylor rule, the correlation between the two series should be -1.00.  

One concern with using the raw series to compute this correlation is that much of the variation 

in inflation is due to a steady declining trend since the mid 1980’s. In Panel B, we show HP-filtered 

time series for both the estimated output gap and estimated inflation. (We use the standard 

quarterly smoothing parameter of 1600). In this figure, the estimates of inflation and the output 

gap have a modest positive correlation. The correlation coefficient is 0.35 for the initial output 

gap estimate and 0.29 for the revised estimate.  

In neither case is the correlation close to the prediction of negative one. Interpreted through the 

lense of our model the Fed seems to underreact to its own estimates of inflation and output.  

 

4. CONCLUSION 

In this paper, we analyzed optimal Taylor rules in New Keynesian models when the monetary 

authority’s targets are uncertain. In the absence of measurement error, activist monetary policy 

is costless and the optimal Taylor rule coefficients are infinite. When the central bank responds 

to noisy measures of inflation and output, the optimal Taylor rule coefficients are finite. If the 
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central bank sets the interest rate as a function of estimated output and inflation, then the 

optimal coefficients on estimated inflation and the estimated gap are again infinite. Signal 

extraction on the part of the central bank also introduces behavior which mimics history 

dependence in monetary policy. Because the central bank’s beliefs about the state of the 

economy are updated gradually, it will appear that the central bank is practicing interest rate 

smoothing even though it is reacting only to current estimates of inflation and the output gap. 

Optimal monetary policy in the model with signal extraction implies a robust negative correlation 

between estimated inflation and estimated output. In contrast, data on the Federal Reserve’s 

estimates of current inflation and the output gap exhibit either zero correlation or a modest 

positive correlation depending on whether or not they are detrended. When interpreted through 

the lens of the model, this suggests that the Fed is insufficiently aggressive in responding to 

deviations from its targets.  

Our model assumes that the central bank faces uncertainty about fundamentals and learns about 

the true state gradually over time while the private sector knows the true fundamentals. In 

practice, it is likely that the private sector also has imperfect information, and potentially less 

information than the central bank. Indeed, Nakamura and Steinsson (2018) find evidence for an 

“information effect” in which increases in the federal funds rate signal higher growth in the 

future. This partially offsets the contractionary effects of higher interest rates and suggests that 

the private sector has less information than the central bank. While a full discussion of this 

alternative informational structure is beyond the scope of this paper, we speculate that the 

central bank may change its optimal policy in two ways. First, the central bank may try to 

counteract the effects of noisy signals received by households and firms. Second, to the extent 

that the private sector draws inferences about fundamentals from policy actions, the central bank 

may have an incentive to temper its reactions to accurate information. More generally, a number 

of alternative informational assumptions appear plausible.17 We leave such extensions for future 

research. 

 

 

 

 

 

                                                           
17 Svensson and Woodford (2003) study a case with symmetric information in a model in which potential output and 
hence the output gap is unobserved, while inflation is observed without error. Although they do not discuss 
commitment to a Taylor rule, several of their findings are similar to ours.  
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TABLE 1: BASELINE CALIBRATION 

Parameter Value Description 
𝛽 0.99 Discount factor 
𝜎 1 Coefficient of relative risk aversion 
𝜃 2/3 Poisson rate of price stickiness 
𝜂 1 Labor supply elasticity 

(𝜚𝑟 , 𝜚𝑢 , 𝜚𝑚𝜋 , 𝜚𝑚𝑦) (0.9 ,0.5 ,0 ,0.95) Persistence of shock processes 

𝑠𝑑[𝜀𝑟] 0.22 Standard deviation (SD) of innovation to efficient rate 
𝑠𝑑[𝑢] 0.43 SD of innovation to the cost-push shock 
𝑠𝑑[𝜀𝑚𝜋] 0.50 SD of innovation to measurement error in inflation 
𝑠𝑑[𝜀𝑚𝑦] 0.66 SD of innovation to measurement error in the gap 
𝛼 1 Weight on inflation in the policy objective function 

 

 

TABLE 2: EVALUATION OF POLICY RULES 

 Standard Taylor Rule  
(TR1) 

Taylor Rule with 
signal extraction (TR2) 

Interest Rate 
Smoothing (TR3) 

    
Criterion 
(10) 

1.56 1.03 1.16 

𝑉[𝑦] 1.11 0.69 0.86 
𝑉[𝜋] 0.45 0.34 

 
0.30 

𝜙𝑦
∗  0.61 - 0.27 

𝜙𝜋
∗  2.00 - 0.42 

𝜈∗  - - 1.08 
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Figure 1: Parametric Variations in Shock Variance 
 
Notes: Each panel plots the optimal Taylor rule coefficients for inflation (heavy solid line) and the output gap (heavy 

dashed line). The vertical dashed line indicates the parameter value in the baseline calibration. All other parameters 

are held constant at the baseline level. 
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Figure 2: Level curves of the central bank’s loss function 

Notes: The figure uses the baseline calibration summarized in Table 1. 
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Figure 3: Impulse Response Functions 

Notes: All shocks are one standard deviation in size. The unit of the output gap is percentage deviations 

from its steady state value of zero. The units of inflation and the interest rate are annualized percentage 

points. 
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Figure 4: Impulse Response Functions 

Notes: All shocks are one standard deviation in size. The unit of the output gap is percentage deviations 

from its steady state value of zero. The units of inflation and the interest rate are annualized percentage 

points. 
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Figure 5: Inflation and output gap estimates of the Fed 

Notes: The graphs show the current-quarter estimates of Core CPI inflation and the output gap. All series 

in Panel B are HP-filtered with a smoothing parameter of 1600. The Federal Open Market Committee 

meets twice per quarter and two estimates for the output gap are available. “Initial” refers to the estimate 

for the first and “revised” to the estimate for the second meeting.  

Source: Federal Reserve Bank of Philadelphia.  
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