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ABSTRACT 
 
This paper argues that there should be less product variety in markets for durable goods 
compared to markets for nondurable goods.  In durable goods markets there are 
incentives to purchase goods that reflect the preferences of the average consumer.  Put 
differently, buyers conform to the average preference.  Thus the distribution of durable 
goods available in markets tends to be compressed relative to the actual diversity of 
consumers’ tastes.  The reason for conformity in these markets is natural: durables (for 
example houses) are often traded and as a result, demand for these goods is influenced by 
resale concerns.  In equilibrium, conformity increases with durability, patience, and the 
likelihood of trade.  Surprisingly, we show that there is often too much product diversity 
– or too little conformity – in markets for durable goods.   
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“Conformity, in terms of size, condition & features, tends to support
your home’s market value more than anything else.” 1

1. Introduction

Durable goods survive for long periods of time and are often possessed by many
different people over the life of the good. Because many durables change hands
from time-to-time, the efficient provision of these goods should to some extent
reflect the preferences of many potential owners. Indeed, if durables are exchanged
very frequently, they should have features that cater to the average preference in
the market rather than the preferences of a single individual. As a result, there
should be less product variety in durable goods markets — the distribution of
varieties available for purchase should be compressed relative to the underlying
distribution of preferences. Put differently, there should be conformity in markets
for durable goods.
Market forces provide incentives for conformity in the provision of durable

goods. These incentives typically arise through resale concerns. Because durables
are often traded in secondary markets, resale concerns influence the original pur-
chase decisions and thus encourage conformity. In contrast, nondurable goods are
consumed by a single person and thus there is no incentive to conform to the
average preference.
For example, new houses often have features and styles that differ only super-

ficially from one house to the next. New housing developments are often derided
because they consist merely of “cookie-cutter” houses or “McMansions.” These
houses are virtually the same — most have cathedral ceilings, walk-in closets,
built-in jacuzzis, mud rooms, and so forth. Of course many of these features are
desirable but it seems unlikely that preferences are so aligned as to justify such
a homogeneous mix of products. The apparent homogeneity among new houses
may instead be an efficient market reaction. Rather than catering to individual
tastes, builders conform to the average taste anticipating the eventual resale of
the house.
Conformity also likely arises for durables other than housing. For example,

since used cars are frequently traded, there may be pressure to conform in au-
tomobile purchases. A new car buyer might purchase a car with an automatic

1Quoted from Accurate Appraisals. See http://www.accurate-appraisal.com/faq.htm.
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transmission even if he prefers manual transmission because of resale concerns.
The used car market, because it is localized and fragmented, creates an incentive
to conform to the average preference. Conformity may also arise in markets for
business capital. In this case, firms face a tradeoff between having capital equip-
ment that fits their specific production purposes and having capital that has a
high resale value. Because capital goods that are valued by many other firms can
be easily resold, firms have some incentive to conform by employing capital that
reflects the needs of other firms. As it does in our model, the incentive to conform
increase with the durability of the capital goods.
We analyze these issues with a matching model in which agents buy and sell

a long-lived durable good that must be resold from time-to-time. Although the
specific function of the durable is not important for the analysis, we refer to the
durable as a house. There are two types of houses and agents differ according to
their preferences over the two types. Frictions in the resale market imply that
agents are not perfectly matched with others who have the same preferences.
Thus, if someone buys an unusual house, he runs the risk that he will not be
able to sell it if he needs to move. Resale concerns can be so strong that the
individual chooses to purchase a good that he dislikes relative to other available
goods. When this occurs we say that the individual is conforming to the market.
In equilibrium, there is a tendency to conform to the average preference.

Rather than being a knife-edge phenomenon, conformity is the typical outcome
in markets for durable goods. Because resale concerns increase with durability
and the incidence of trade, there is greater conformity in markets for long-lived
durables and for people who trade frequently. While agents do not care directly
about the preferences or actions of other agents, in equilibrium they act as though
they do. Because they buy and sell a common set of goods, durability and trade
endogenously align the preferences of the agents.
The equilibrium level of conformity is often not socially optimal. Surprisingly,

the model suggests that there is typically too little conformity in durable goods
markets. There are two reasons for this inefficiency. First, by conforming, agents
reduce search costs. If they have a house that few others want, they will have
difficulty selling it if they need to move. Of course the original builder has an
incentive to conform to reduce the severity of these search costs. However, the
search costs affect both buyers and sellers. Because the original owner only inter-
nalizes his own search costs, he has too little incentive to conform. Second, even
if the house is sold, it is possible that the house will not be an ideal match for the
new owner. The seller typically does not fully internalize the social costs incurred
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when the buyer settles for a house that is not ideal for his needs. Because he
will likely be matched with someone who has typical preferences, by conforming,
the original owner would reduce the number of mismatches. Yet, unless the seller
captures all of the surplus from trade, he does not fully internalize this cost and
again, there is too little incentive to conform.
The rest of the paper is organized as follows: Section 2 presents the model,

describes optimal behavior, and defines and characterizes the equilibrium. Section
3 presents the main results of the paper. We show that conformity increases
with durability and the incidence of trade. Section 3 also considers the welfare
implications of conformity. Section 4 discusses the results and considers several
possible extensions. Section 5 discusses related literature. Section 6 concludes.

2. Model

We consider a continuous-time matching model in which agents can own one of
two types of a durable good. Although as we discussed above, our analysis holds
for many durable goods markets, we take the good in our model to be a house.
We denote the two types of houses as type a and b. The houses could differ along
many dimensions. For example, type a houses could be “traditional” houses while
type b could be “modern” houses. Alternatively, type a could be a two-story
house with a large yard while type b might be a one-story house with a small
yard. Every agent must have a house in every period.
We normalize the utility functions so that all consumers get a flow utility of

1 from living in the type a house. Consumers have different tastes for the type
b house. Specifically, each consumer has an individual taste parameter z which
quantifies their preference for type b houses. For a consumer with taste parameter
z ∈ R the flow utility from living in a b house is 1 + z. Thus, the flow utility for
an agent with a given z and a given house x ∈ {a, b} is

uz (x) =

½
1 if x = a

1 + z if x = b
.

We assume that z is distributed over the population according to a distribution
function F . The support of F is a nonempty subset of R.
From time to time agents switch houses. Agents may switch their house for one

of two reasons. First, the house may “die.” We think of this as capturing normal
depreciation but it may also include extreme idiosyncratic events such as fires, etc.
When this occurs, the agent must build a new house. We refer to this event as
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the “build shock.” We assume that the build shock obeys a Poisson process with
an exogenous arrival rate δ. An agent who gets the build shock decides which
type of house to build and incurs a building cost c. Since we want to focus on
heterogeneity in tastes, we assume the building cost is the same for all agents and
for either type of house.
Second, the agent may be required to trade his house which we refer to as the

“trade shock.” Agents who get the trade shock must move out of their house and
into a new house. We allow agents to differ in the likelihood of receiving the trade
shock. Thus, some agents move often while others do not. Heterogeneity in the
likelihood of trade allows us to distinguish between individual trade hazards and
aggregate trade hazards. We assume that for each agent, the trade shock obeys a
Poisson process with an exogenous arrival rate γ. The arrival rate is distributed
over the agents according to the distribution G. The support of G is restricted
to the interval [0,∞]. Here γ = 0 corresponds to an individual who never needs
to trade and γ = ∞ implies that the individual trades continuously. Individual
trade hazards (γ) and preferences (z) are independent.
To better motivate the trade shock, we imagine that each agent lives and works

in one of two cities of equal size. Agents who get the trade shock have to move
from one city to the other. When this happens the agent first has an opportunity
to trade his house. The agent is matched randomly with a trading partner who
is moving in the opposite direction. If both agents agree to trade, they simply
exchange houses, otherwise the trade is rejected. If the trade fails, the agents are
forced to scrap their old houses and build new houses of their choice. Let π be
the difference between the build cost c and the scrap value of their old house. It
is important to emphasize that agents are not trading because their preferences
over houses change. They trade simply because they have to move from one city
to the other. Thus, in the trade state, some agents will exchange houses of the
same type (e.g., an a for an a) as well as houses of different types.
Because π is only incurred by agents who fail to trade, we refer to π as the

“trade penalty.” One can alternatively interpret the trade penalty as reflecting
other costs of buying and selling a house. For instance, one could think of π as
the expected cost of engaging in a protracted search in an environment with the
possibility of re-matching. Under this interpretation π would include the cost of
renting while traders search for new houses and would also include the forgone
interest on the sale price while a house waits to be sold. Sales commissions,
vacancy costs, fees and the costs of renovations could also be included in the
trade penalty.
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If agents do not get the build shock or the trade shock they simply continue
residing in their current house. Agents seek to maximize the discounted sum of
flow utilities less costs. The discount rate is r > 0. The next section analyzes
optimal behavior in this model.

2.1. Optimal Policies and Conformity

In this section we analyze the consumer’s maximization problem and present our
definition of conformity. In the next section we turn to equilibrium. Throughout,
we confine our attention to steady state equilibria. In a steady state, the strategies
of the other agents and the distribution of houses are time-invariant. We use
standard dynamic programming techniques to analyze the agent’s optimization
problem. A policy (or strategy) for any agent consists of a decision rule in the
trade state and a decision rule in the building state.
Let V (x; z, γ) be the value of following an optimal policy for an agent with

taste parameter z and trade hazard γ who currently owns a house of type x ∈
{a, b}. Let B (z, γ) be the continuation value of entering the build state and let
T (x; z, γ) be the continuation value of entering the trade state when the agent has
a type x house. Because we focus on the behavior of a single agent, we suppress
the arguments z and γ in the following discussion. The value function satisfies

rV (x) = u (x) + δ [B − V (x)] + γ [T (x)− V (x)] . (1)

The continuation value of receiving the build shock is simply

B = max {V (a) , V (b)}− c. (2)

In the trade stage, agents observe each other’s houses but do not observe their
taste parameters or their trade hazards. They then simultaneously choose to
either accept or reject the trade. If they both accept, they swap houses. If either
disagrees, the trade is rejected, both traders pay the trade penalty π and get new
houses of their choice.
To compute T (x), consider an agent who receives the trade shock and cur-

rently possesses a type x house. Suppose he is matched with someone with a
type y house. If the trade occurs, the first agent gets the type y house and
thus his payoff is simply V (y). If either one rejects the trade then his payoff is
max {V (a) , V (b)}−π. Notice that the agent’s trade decision is only relevant if his
trading partner accepts the trade. We assume that agents accept trades whenever
V (y) > max {V (a) , V (b)}−π and reject otherwise.2 Note that neither V (y) nor

2This rules out the trivial and uninteresting equilibrium in which agents reject every trade.
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max {V (a) , V (b)}−π depend on x. Thus, trade decisions are independent of the
type of house the agent possesses when he enters the trade stage.
It is easy to show that if an agent builds type x ∈ {a, b} then he also accepts

x in trade. To see this, first note that if an agent chooses to build type x, then
V (x) = max {V (a) , V (b)}. As a result, he also chooses x whenever he gets the
trade shock and the trade is rejected. If he is offered x in trade, he gets V (x) if
he accepts and V (x)− π if he declines. We present this observation as a Lemma.
Proofs of all propositions are in the appendix.

Lemma 1. If an agent builds type x ∈ {a, b}, then he also accepts x in trade.

Because an agent’s trading decisions are independent of the house he owns and
also independent of his trading partner’s taste parameter and trade hazard, there
are only three relevant trading rules to consider: (1) accept a only; (2) accept b
only; or (3) accept either a or b. We denote these trading rules simply as a, b,
and ab.We refer to agents who accept only a particular type of house (either a or
b but not both) as exclusive traders. Agents who play ab and thus accept both
types are said to be inclusive traders.
Define λ (y, τ) as the probability of being matched with someone who has a

type y house and who follows trading rule τ ∈ {a, b, ab}. For example, λ (a, ab)
is the probability of meeting someone who possesses a type a house and fol-
lows trading rule ab. Agents who accept type x ∈ {a, b} houses in trade either
follow the exclusive trading rule x or the inclusive trading rule ab. The prob-
ability of meeting an agent who accepts a type x house in trade is thereforeP

τ∈{x,ab}
P

y∈{a,b} λ (y, τ). We can now write the expected value of entering the
trading state with a type x house as

T (x) =
X

τ∈{x,ab}

X
y∈{a,b}

(λ (y, τ)max {V (y) ,max {V (a) , V (b)}− π}) (3)

+

⎛⎝1− X
τ∈{x,ab}

X
y∈{a,b}

λ (y, τ)

⎞⎠ (max {V (a) , V (b)}− π)

Given any set of values V (a) and V (b) , and fixed matching probabilities,
equation (3) implies values T (a) and T (b) and equation (2) implies B. Equation
(1) then implies a new set of values V̂ (a) , V̂ (b). It is straightforward to show that
this mapping satisfies Blackwell’s sufficient conditions for a contraction mapping
and thus has a unique fixed point.
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Lemma 2. Given matching probabilities λ (x, τ) for x ∈ {a, b} and τ ∈ {a, b, ab}
with

P
τ∈{a,b,ab}

P
y∈{a,b} λ (y, τ) = 1 there exist unique values V (a) , V (b) , T (a) ,

T (b) , and B satisfying (1), (2), and (3).

We now characterize the optimal policy. An optimal policy consists of a build-
ing rule (whether to build a or b) and a trading rule (whether to accept a, b or
both). There are only four relevant policies. To see this note that if an agent
follows the trade rule a then by Lemma 1 he must build type a in the build stage.
Similarly, if he is an exclusive b trader, he builds type b. Thus, without loss of
generality we can confine our attention to the following policies: build a and fol-
low trade rule a; build a and follow trade rule ab; build b and follow trade rule
b or build b and follow trade rule ab. We write these policies compactly as (x, τ)
where x ∈ {a, b} and τ ∈ {a, b, ab}.
Agents with different taste parameters z and different trade hazards γ choose

different policies. Intuitively, for a fixed γ, agents with sufficiently negative z’s
(who strongly dislike type b houses) build type a houses and accept only type a
houses in trade. Similarly, agents with sufficiently positive z’s (who have strong
preferences for b houses) build type b and accept only type b in trade. Agents with
intermediate values of z do not have strong preferences for either type and thus
accept either a or b in trade. The following proposition formalizes this intuition.

Proposition 1. Given non-negative λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) sum-
ming to 1, define z1 (γ), z2 (γ), and z3 (γ) as follows:

z1 (γ) = −π {r + δ + γ [1− λ (a, a)]}

z2 (γ) = γπ [λ (a, a)− λ (b, b)]

z3 (γ) = π {r + δ + γ [1− λ (b, b)]}
Then, for an agent with taste parameter z and trade hazard γ, if z ≤ z1 (γ) then
(a, a) is an optimal strategy; if z1 (γ) ≤ z ≤ z2 (γ), (a, ab) is an optimal strategy;
if z2 (γ) ≤ z ≤ z3 (γ), (b, ab) is an optimal strategy and if z3 (γ) ≤ z, (b, b) is an
optimal strategy.

Notice that the cutoffs depend only on the number of exclusive traders of each
type. The precise distribution of tastes of other traders is not relevant once λ (a, a)
and λ (b, b) are given. In particular, the average taste parameter is unimportant.
The building decisions of the other agents are also irrelevant. Given λ (a, a), z1 (γ)
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is closer to zero the closer r, δ and γ are to 0. Thus, given z, an agent is more
likely to be exclusive if the object is very durable (low δ), if the agent is very
patient (low r), or if it is unlikely that the agent will trade (low γ). Naturally, if
the object is very durable and you are not likely to trade it, and you care a lot
about the future, then you don’t want to get stuck with the wrong house.
It is important to understand the intuition behind this proposition. Because

the logic is identical for the b cutoff (z3 (γ)) we focus on the a cutoff (z1 (γ)). Con-
sider an agent with a taste parameter z < 0 who optimally follows an (a, a) policy.
Suppose that upon receiving the trade shock and being matched with someone
who has a b, he deviates from his optimal policy. Specifically, suppose he decides to
accept the b house but then revert to the trade rule a for subsequent trade shocks.
He benefits by avoiding the trade penalty π. There are two costs however. First,
he will reside in a house other than his preferred type for some time. This ex-
pected loss is z/ (r + δ + γ) (recall z < 0). Second, he may encounter someone
who follows an exclusive a trading rule while he still has the b house. In this case
he pays the trade penalty π.3 This expected cost is πγλ (a, a) / (r + δ + γ). The
discount rate (r + δ + γ) reflects both the agents impatience and the likelihood
of moving out of the type b house (which occurs if the house dies or if he gets
another trade shock). There are no additional costs because the trade penalties
in every other circumstance are the same as if he continued to follow policy (a, a).
The net benefit of this deviation is

π +
z

r + δ + γ
− π

γλ (a, a)

r + δ + γ
≤ 0 (4)

The inequality follows because we assumed that it was optimal to follow (a, a).
If the agent is indifferent between (a, a) and (a, ab), this expression would hold
with equality. Rearranging this expression shows that the expression is zero only
if z = z1 (γ) as given in Proposition 1.
The z2 (γ) cutoffs are of special interest because they determine the equilibrium

number of houses of each type built. If z2 (γ) > 0 for instance, there may be people
who prefer b houses but choose to build a’s. If an agent builds a house other than
the type dictated by his taste parameter z, then we say the agent is conforming
to the market.

Definition 1. If z2 (γ) 6= 0 for some γ then we say that there is conformity in the
market. If z2 (γ) > 0 for all γ then the market conforms on type a houses, and if

3He would not pay this trade penalty if he did not deviate from the (a, a) strategy.
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z2 (γ) < 0 for all γ then the market conforms on type b houses. If z2 (γ) = 0 for
all γ then we say that there is no conformity.

Like the trading cutoffs z1 (γ) and z3 (γ) the building cutoffs z2 (γ) are deter-
mined by the number of extreme traders. In particular, z2 (γ) are determined by
the difference λ (a, a)−λ (b, b). If λ (a, a) > λ (b, b) then z2 (γ) > 0 for all γ. Only
if λ (a, a) and λ (b, b) are exactly equal will z2 (γ) = 0.
We now define and characterize the equilibrium.

2.2. Equilibrium

We analyze steady state equilibria. In a steady state, the matching probabilities
and the distribution of existing houses remain constant over time. Because the
matching probabilities are constant, in a steady state equilibrium, the optimal
policies described in the previous section are also constant over time.
To find steady state equilibria we solve a fixed point problem. Given perceived

matching probabilities λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab), agents follow op-
timal policies. The policies, in turn, imply matching probabilities. This leads to
a mapping from perceived probabilities to implied probabilities. A steady state
equilibrium is a fixed point of this mapping. The first step of the mapping is
described in Proposition 1. The second step takes the cutoffs z1 (γ), z2 (γ), and
z3 (γ) and derives the implied matching probabilities.
Computing λ (a, a) and λ (b, b) is relatively straightforward as they are simply

the numbers of people who follow policies (a, a) and (b, b). Unfortunately, the
numbers of people who follow policy (a, ab) and policy (b, ab) are not necessarily
equal to λ (a, ab) and λ (b, ab). While some people in λ (a, ab) follow policy (a, ab),
others follow policy (b, ab) and have traded for a type a house in the past. To
clarify this distinction we introduce the following notation: Let Ps (x) denote the
number of people who follow policy s and hold a type x house where x ∈ {a, b}
and s ∈ {(a, a) , (b, b) , (a, ab) , (b, ab)}. Using this notation, λ (a, ab) = Pa,ab (a) +
Pb,ab (a) and λ (b, ab) = Pb,ab (b) + Pa,ab (b). The complication arises because the
number of people who follow policy (a, ab), which is Pa,ab (a)+Pa,ab (b) is different
than λ (a, ab) = Pa,ab (a)+Pb,ab (a) , the number of people who follow an inclusive
trading rule but possess an a.
Given the cutoff functions z1 (γ), z2 (γ), and z3 (γ), one can compute Ps (x) for

all s and x and thus solve for λ (a, ab) and λ (b, ab) . As it turns out, only λ (a, a)
and λ (b, b) are necessary for the characterization of the equilibrium. The following
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lemma completes the description of the fixed point mapping by showing that, given
the cutoff functions, there is a unique set of implied matching probabilities.

Lemma 3. Let z1 (γ) , z2 (γ) and z3 (γ) be given. The implied steady state match-
ing probabilities λ (a, a) and λ (b, b) are given by

λ (a, a) =

Z ∞

0

F (z1 (γ)) dG (γ) and λ (b, b) =

Z ∞

0

[1− F (z3)] dG (γ) .

Also, there exist unique nonnegative numbers Pa,ab (a) , Pa,ab (b), Pb,ab (a) and
Pb,ab (b) such that λ (a, ab) = Pa,ab (a)+Pb,ab (a) and λ (b, ab) = Pa,ab (b)+Pb,ab (b) .

Once we have the matching probabilities, we can find the composition of types
in the steady state housing stock. Specifically, the number of type a houses is
λ (a, a) + λ (a, ab) and the number of type b houses is λ (b, b) + λ (b, ab) . The
distribution of types in the housing stock is the same as the distribution of types
for sale.4 However, the distribution of houses built differs from the distribution in
the housing stock. The reason these numbers differ is that typically one type of
house is rejected more often than the other type. When a trade is rejected, agents
effectively transform their current house into the type of house they want (at cost
π). In reality, houses that are difficult to sell remain vacant for some time, which
causes the distribution of houses built to differ from the distribution of houses for
sale. Vacancy costs are one interpretation of the trade penalty π.
Below we present a formal definition of a steady state equilibrium.

Definition 2. A steady state equilibrium consists of four non-negative numbers
λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) summing to one, and three cutoff functions
z1 (γ) , z2 (γ) and z3 (γ) such that

1. Given λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) , Proposition 1 implies the
cutoff functions z1 (γ), z2 (γ) and z3 (γ).

2. Given z1 (γ) , z2 (γ) and z3 (γ), Lemma 3 implies λ (a, a) , λ (b, b) , λ (a, ab) ,
and λ (b, ab).

4This follows because houses for sale are a random selection from existing houses and because
houses do not stay on the market after their initial match.
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To prove that an equilibrium exists, recall that the cutoff functions for the
exclusive a and b traders (z1 (γ) and z3 (γ)) each depend only on the number of
exclusive a and b traders. More precisely, z1 (γ) is completely determined once
λ (a, a) is given and λ (a, a) depends only on the cutoff function z1 (γ). Similarly
z3 (γ) depends only on λ (b, b) and vice versa. As a result, we can analyze the
determination of these cutoffs separately. Define two mappings La,a : [0, 1]→ [0, 1]
and Lb,b : [0, 1]→ [0, 1] as

La,a (λ (a, a)) =

Z ∞

0

F (−π {r + δ + γ [1− λ (a, a)]}) dG (γ) ∈ [0, 1] (5)

Lb,b (λ (b, b)) =

Z ∞

0

[1− F (π {r + δ + γ [1− λ (b, b)]})] dG (γ) ∈ [0, 1] . (6)

While these mappings may not be continuous (if F has mass points), they are
both increasing functions on a compact set which implies (by Tarski’s fixed point
theorem) that each has at least one fixed point.

Lemma 4. The mappings La,a and Lb,b defined by (5) and (6) each have at least
one fixed point.

Any combination of fixed points of these mappings corresponds to equilibrium
values of λ (a, a) and λ (b, b). To complete the construction of an equilibrium,
given any fixed points λ (a, a) and λ (b, b) , define z1 (γ) , z2 (γ) and z3 (γ) as in
Proposition 1. Then λ (a, ab) and λ (b, ab) are given uniquely by Lemma 3. The
resulting probabilities λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab), and cutoffs z1 (γ) ,
z2 (γ) and z3 (γ) satisfy the definition of a steady state equilibrium. This estab-
lishes the following proposition:

Proposition 2. Given any distribution of types F and distribution of trade haz-
ards G, there exists at least one steady state equilibrium.

We now present two examples. Example 1 illustrates a case with a unique
equilibrium. Example 2 shows that conformity may arise due to multiplicity of
equilibria even when the distribution F is symmetric around zero. Both examples
consider the case in which all agents have a common trade hazard γ.

Example 1: Suppose F is uniform on [−q + μ, q + μ].5 Figure 1 shows the fixed
5The figure is drawn under the assumption that −q + μ < −π (r + δ + γ).
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point mappings La,a and Lb,b for two different values of the mean taste μ. The
light dashed line corresponds to μ = 0. In this case, the distribution is symmetric
around zero and thus La,a = Lb,b. In equilibrium λ (a, a) = λ (b, b), z2 = 0 and
there is no conformity. The dark lines correspond to μ > 0. Because F has shifted
to the right, Lb,b has shifted up while La,a has shifted down. In the new equilibrium
λ (a, a) < λ (b, b) and z2 < 0 so the market conforms on b.

Example 2: Suppose F is symmetric about 0 but not uniform. Symmetry implies
that the mappings La,a and Lb,b are identical. Figure 2 shows an example with
three fixed points: λ∗1 < λ∗2 < λ∗3. By setting λ (a, a) = λ∗i and λ (b, b) = λ∗j with
i, j = 1, 2 or 3 we can construct nine possible equilibria. Three of these are non-
conforming equilibria (when λ (a, a) = λ (b, b)) while the other six are conforming
equilibria (when λ (a, a) 6= λ (b, b)).

Notice that conformity is a generic property of equilibrium. Non-conforming
equilibria occur only in knife-edge cases in which λ (a, a) = λ (b, b).

3. Comparative Statics and Welfare

In this section we analyze the relationship between conformity and the underly-
ing parameters of the model. We pay particular attention to durability and the
frequency of trade. We then discuss the welfare properties of the equilibrium.

3.1. Comparative Statics

We use comparative statics to highlight several features of the equilibrium. Specif-
ically, we consider how variations in the durability of the good and the subjective
time discount factor affect the equilibrium. The frequency of trade also matters
both for individual behavior and for the equilibrium. We consider variations in
the individual trade hazards holding the aggregate distribution of trade hazards
fixed. We also consider shifts in the distribution of trade hazards itself.
To facilitate the analysis, we place restrictions on the distribution F to rule

out multiple equilibria. The following assumption provides sufficient conditions
for a unique equilibrium.

Assumption 1. F has a density function f which is symmetric about the mean
μ, and quasi-concave with f (μ) < 1

πγ̄
where γ̄ is the mean trade hazard.

Under assumption 1, we can now present the following proposition:

13



Proposition 3. If F satisfies Assumption 1 then

1. The equilibrium is unique.

2. The market conforms to the mean taste whenever μ 6= 0 (i.e., the market
conforms on a if μ < 0 and conforms on b if μ > 0 ).

3. If μ 6= 0, an increase in durability (lower δ) or patience (lower r) increases
conformity (i.e., z2 (γ) increases for all γ if μ < 0 and decreases for all γ if
μ > 0 ).

4. Agents with a greater likelihood of trade conform more.

Part 1 of the proposition (uniqueness) follows from the bound on f in As-
sumption 1 which ensures that the fixed point mappings La,a and Lb,b never have
slopes greater than 1. Part 2 of the proposition demonstrates that conformity is
a generic property within this class of distributions.
The third result in the proposition demonstrates that there is more conformity

for goods that are more durable and when consumers care more about the future.
Trading for a good that you don’t prefer is costly if the good is expected to survive
for a long time and if you care about the future. Consequently, if the good is
more durable or if people are more patient, more agents follow exclusive trading
strategies. Our distributional assumptions guarantee that the increase in exclusive
trading is greatest for the good that the market conforms to. Because conformity
depends on the relative number of exclusive traders, conformity increases as the
good becomes more durable or as people become more patient.
The final part of the proposition says that agents who trade frequently conform

more. If an agent finds himself in the trade stage often, he will reduce the incidence
of the trade penalty by conforming. Agents who rarely trade can indulge in goods
that satisfy their idiosyncratic tastes.
The last result suggests that regions with high turnover (i.e., where everyone

has a high trade hazard) may also be regions of greater conformity. Below, we
show that this is not necessarily true. The heterogeneity in trade hazards γ allows
us to distinguish between individual trade hazards and aggregate trade hazards.
Holding aggregate trade hazards fixed, an increase in an individual’s trade hazard
necessarily increases conformity for that agent. While increases in aggregate trade
hazards must increase conformity for some agents, it need not increase conformity
for all.

14



To formalize this, we consider a rightward shift of the distribution G. Specif-
ically, write each agent’s trade hazard as (γ + θ) where θ ≥ 0 is common to all
agents and γ is the agent’s idiosyncratic trade hazard. We can then associate a
marginal increase in the aggregate trade frequency with a marginal increase in
θ at θ = 0. Differentiating the z2 (γ) cutoff with respect to θ and evaluating at
θ = 0 gives the following expression:

∂z2 (γ)

∂θ

¯̄̄̄
θ=0

=
z2 (γ)

γ| {z }
“Exposure Effect”

+ γπ

∙
∂λ (a, a)

∂θ

¯̄̄̄
θ=0

− ∂λ (b, b)

∂θ

¯̄̄̄
θ=0

¸
| {z }

“Composition Effect”

.

The change in z2 (γ) depends on two terms. The first term always has the same
sign as z2 (γ) and thus always serves to increase conformity. Using our expression
for z2 (γ) we can rewrite this term as π [λ (a, a)− λ (b, b)] which is independent of
γ. This term captures the change in z2 (γ) from an increase in the trade hazard
holding the number of exclusive traders (λ (a, a) and λ (b, b)) fixed. Because the
agent trades more frequently, he encounters exclusive traders more often and thus
chooses to conform more. We refer to this term as the “exposure effect.”
The second term, the “composition effect,” captures the effects on z2 (γ) hold-

ing a given agent’s trade hazard fixed but considering variations in the number
of exclusive traders caused by the shift in the distribution G. It turns out that
the composition effect can be either positive or negative depending on the distri-
butions F and G. Notice however, the importance of composition effect depends
positively on γ. Thus, for agents with sufficiently small trade hazards, the expo-
sure effect dominates and conformity increases. For agents with sufficiently high
trade hazards, the composition effect dominates and thus they may or may not
conform more. If the composition effect is the same sign as z2 (γ) then conformity
increases with the general frequency of trade. Rather than encouraging market
diversity, increased trade in durable goods encourages conformity.
We summarize this result in the following proposition.

Proposition 4. Assume that agents trade hazards are written as (γ + θ) as de-
scribed above and consider an F which satisfies Assumption 1. Then, for a mar-
ginal increase in θ at θ = 0, there exists γ̂ ∈ (0,∞] such that conformity increases
for all agents with γ < γ̂ and decreases for all agents with γ > γ̂.

Similar arguments hold for changes in the trade penalty π. There are two
effects, an exposure effect and a composition effect. The exposure effect always
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causes conformity to increase while the composition effect may cause conformity
to increase or decrease.6

3.2. Welfare

In markets for durable goods, conformity is the rule rather than the exception.
Here, we consider the welfare implications of conformity. While conformity has an
obvious cost — people live in houses that they don’t prefer — it also has benefits.
First, conformity lowers search costs. Naturally, social welfare is lower when
houses are vacant or when people are forced to conduct protracted searches for a
good match. Second, when houses are exchanged, the new owner may not be an
ideal match for the house. The potential mismatch of preferences and allocations
is another cost to society that conformity mitigates. Thus, a social planner may
desire some conformity in durable goods markets.
Below, we explore the welfare implications of conformity in our model. To

facilitate the exposition, we simplify the model first by restricting attention to
situations in which all agents have the same trade hazard and all are perfectly
patient (i.e., r = 0). This second assumption allows us to restrict our attention
to the steady state flow of total welfare.7 The following Lemma provides an
expression for the flow of social welfare in the steady state when all agents have
a common trade hazard. Because there is a single trade hazard, we can consider
a single set of cutoffs z1, z2, and z3.

Lemma 5. For any given cutoffs z1, z2 and z3, let Pa,ab (a) , Pb,ab (a) , Pa,ab (b) and
Pb,ab (b) be given as in Lemma 3 and define ψa,ab = Pa,ab (a) / (F (z2)− F (z1)) and
ψb,ab = Pb,ab (b) / (F (z3)− F (z2)) . Then, the flow of social welfare is

W (z1, z2, z3) = {1− πγ [λ (b, b) + λ (b, ab)]}F (z1) (7)

+

Z z2

z1

©
ψa,ab [1− πγλ (b, b)] +

¡
1− ψa,ab

¢
[1 + z − πγλ (a, a)]

ª
dF (z)

+

Z z3

z2

©¡
1− ψb,ab

¢
[1− πγλ (b, b)] + ψb,ab [1 + z − πγλ (a, a)]

ª
dF (z)

+

Z ∞

z3

{1 + z − πγ [λ (a, a) + λ (a, ab)]} dF (z)− δc.

6Our model assumes that π is common to all agents. If we allowed for heterogeneity in trade
penalties we would obtain a result similar to Proposition 4 for trade penalties.

7All of the conclusions in this section hold for r > 0 provided that r is sufficiently small.
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Each term in the welfare function has a natural economic interpretation. The
first term is the flow of welfare to the (a, a) traders. Since they are exclusive
traders, they always hold type a houses and thus they all receive a flow utility of
1. In addition, they sometimes incur the trade penalty by matching with (b, b) and
(b, ab) traders. The second term is the flow of welfare for agents who follow the
(a, ab) policy. These individuals sometimes hold a houses but sometimes hold b’s.
The fraction of time these agents hold the a house is ψa,ab. In this case, their flow
utility is 1 less the trade hazard of meeting an exclusive b trader. The remaining
fraction of time

¡
1− ψa,ab

¢
they hold b houses. In this case, their flow utility is

1+ z less the trade hazard of meeting an exclusive a trader. The remaining terms
have analogous interpretations. All agents are equally likely to experience the
depreciation shock so all welfare flows are reduced by δc.
We now consider the welfare implications of increasing or decreasing confor-

mity. Conformity can increase welfare through two separate channels. First,
increased conformity can reduce the incidence of the trade penalty. Second, in-
creased conformity means that the average type resides in his preferred house
more often. Differentiating expression (7) with respect to z2, one can show that

∂W

∂z2
= z2

∂λ (a, ab)

∂z2
+

½
∂ψa,ab
∂z2

Z z2

z1

[z2 − z] dF (z) +
∂ψb,ab
∂z2

Z z3

z2

[z − z2] dF (z)
¾
.

(8)
Let z∗1 , z

∗
2 and z

∗
3 be equilibrium cutoffs. If ∂W (z∗1 , z

∗
2, z

∗
3) /∂z2 is the same sign as

z∗2, then there is too little conformity in equilibrium. To see this, suppose z
∗
2 > 0

so the market conforms on a. If ∂W/∂z2 > 0 then the flow of social welfare would
increase if z2 were greater, that is, if there were even more conformity.
The first term in (8) gives the change in welfare that arises due to changes

in the incidence of trade penalties caused by an increase in z2. It can be shown
that ∂λ (a, ab) /∂z2 > 0 so the sign of the first term is the same as the sign of
z2. The second term captures the change in welfare due to changes in residence
patterns among the the inclusive traders caused by an increase in z2. Unlike the
first term, the second does not necessarily have the same sign as z2. The following
proposition provides conditions under which the second term has the same sign
as z2 and thus there is too little conformity in equilibrium.

Proposition 5. Let the average preference of the inclusive traders be μab =R z3
z1
zdF (z) / [F (z3)− F (z1)] , let F satisfy Assumption 1, and let z∗1, z

∗
2 and z

∗
3

be equilibrium cutoffs. If either (i) sign (μab) = sign (μ), or (ii) |μ| ≥ π(γ+δ)
2
,
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then sign (∂W (z∗1 , z
∗
2 , z

∗
3) /∂z2) = sign (z∗2) and there is too little conformity in

equilibrium.

In words, if the inclusive traders on average prefer the same type of house as
the society as a whole, or if the average preference is sufficiently strong, there is
too little conformity in equilibrium. Note, while condition (i) is defined in terms
of endogenous variables, (ii) relies only on exogenous parameters μ, π, γ and δ.8

A Numerical Illustration Here we consider the equilibrium and optimal level
of conformity for a continuum of agents when the taste parameter is distributed
normally. We maintain the assumption of a common trade hazard. We numeri-
cally solve for the equilibrium and calculate the optimal level of conformity.
In Figure 3, we plot the optimal the cutoffs and the equilibrium cutoffs for

several different means of the distribution F (z). As mentioned above, we assume
that the distribution of tastes F is normal with unit variance and with mean μ.
The other parameters are r = 0.02, δ = 0.05, γ = 0.10, and π = 5 (the building
cost c matters neither for equilibrium nor for welfare comparisons). The discount
rate and depreciation rate are roughly in line with their real-world counterparts.
The trade hazard rate implies that people move roughly once every ten years.
The figure shows that for μ > 0 there is conformity in equilibrium (z2 < 0).
Not surprisingly, the equilibrium level of conformity rises with the mean. Notice
that the optimal level of conformity rises even faster than the equilibrium level of
conformity. Also, as μ rises, the cutoffs for the exclusive a and b traders both fall.

4. Discussion and Extensions

The model could be extended in a variety of potentially interesting dimensions.
Here we briefly discuss several possible extensions. One extension would be to
allow for more realistic trading mechanisms. Allowing agents to negotiate over
prices or to match repeatedly would change the equilibrium but most features of
our analysis would likely survive. As long as durable goods are held by agents
with different preferences, there is pressure to conform under any trading mecha-
nism. To the extent that bargaining improves efficiency, there would be even more
conformity with such negotiations. The inefficiencies in our model, will also likely

8While environments that do not satisfy the conditions in Proposition 5 often still have too
little conformity, it is possible to construct examples with too much conformity. See House and
Ozdenoren [2006].

18



be present with other trading mechanisms. If preferences are private information,
other mechanisms cannot in general produce efficient allocations (Myerson and
Satterthwaite (1983)). Even if trading mechanisms were efficient (which requires
observable preferences), there would still be inefficiency at the build stage to the
extent that agents receive only some of the surplus in the trade stage and thus do
not fully internalize the value of conformity at the build stage.9

Introducing a rental market would allow agents to enjoy a durable without
worrying about resale. Intuitively, the option to rent is more valuable if one
has unusual tastes. For instance, luxury or exotic cars are often leased while
more mainstream cars are usually bought outright. This is exactly the pattern
one would expect given our model. People who lease exotic cars do not want to
conform and thus do not want to participate in the secondary market. In contrast,
people who own mainstream cars can easily find buyers if they need to sell.
Another extension for subsequent study would be to consider imperfect com-

petition in our framework. To get intuition for how imperfect competition might
affect the results, suppose each type of durable is supplied by a different firm
(i.e., a duopoly). In this case, the building prices would exceed marginal cost c
by a type-specific markup. Since the duopolists compete over the same group of
potential buyers (the buyers at the z2 margin), the change in demand caused by
price changes (i.e., dQ/dP ) is the same for both firms. Suppose μ < 0 and the
two firms were to charge the same price. In this case, our analysis applies and
there is conformity on type a and higher demand for a houses. Consequently, the
elasticity of demand ((dQ/dP )× P/Q) will be lower for the firm that produces a
houses and therefore this firm has a greater incentive to increase its price. Thus,
in the duopoly there is a conformity premium. By reducing demand for the a
house, the conformity premium reduces conformity relative to the competitive
case. Interestingly, in durable goods markets, imperfect competition inefficiently
increases product diversity.
As another extension, one could consider the market for new homes in a model

with a small city and a large city. In our model, agents have to switch houses
because they must move from one city to another. If one city were larger than
the other, conformity would differ across the locations. In particular, if the trade
shock reflected job-to-job transitions, there would be greater conformity in the

9Under Nash bargaining, every efficient exchange occurs but the traders only capture half of
the surplus and thus would not conform enough. Moreover, with Nash bargaining and repeated
matching, owning a house that conforms to the majority taste would increase the value of an
agent’s outside option and provide greater incentive to conform.
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smaller city. In the large city, changing jobs does not necessarily imply that you
must move. In contrast, in the small city, changing jobs often requires moving
to the large city and thus you must trade your house. Thus, the trade hazard is
greater for people living in the small city and they conform more.
Finally, one could test empirical predictions of the model. The model predicts

that, all else equal, there should be more conformity for goods with lower depre-
ciation rates. Furthermore, individuals that are likely to move should conform
and purchase typical houses. Tenured professors for example should live in houses
with more “character” compared to untenured professors who should own typical
houses (casual observation suggests that this is indeed the case).

5. Related Literature

Our paper is related with three separate lines of research. The first is the literature
on durable goods in matching models. Two papers are particularly noteworthy.
Wheaton (1990) considers a search model of housing with two types of occupants
(families and singles) and two types of houses (large and small). The focus of
his paper is on the optimal level of search intensity. Smith (1997) considers a
matching model with many types of agents with idiosyncratic tastes and many
types of perfectly durable goods. Smith uses his model to demonstrate the “risk-
increasing” nature of trades. In both Smith (1997) and Wheaton (1990), the
supply of durable goods is exogenous. As a result, neither Smith nor Wheaton
address conformity as we do here.10

Second, our paper is related to the literature on liquidity and matching models.
(See among others Kiyotaki and Wright (1989) and (1993)). In these models, fiat
money has value because it provides liquidity. In our model, the value of a good
reflects both its intrinsic utility and the liquidity it provides. Unlike our model
however, in the money-search literature, there is typically an exogenous double-
coincidence of wants problem. Agents cannot produce the good they consume. In
our model, agents can produce the good they consume so there is no exogenous
double coincidence problem. Indeed, if depreciation rates are very high, the goods
are essentially non-durable and there is no conformity — agents simply produce the
good they prefer. The source of the double-coincidence problem in our model is
10There is also a literature on the provision and resale of durable goods in market settings

(see Waldman (2003) for a summary). Following Akerlof (1970), much of this literature focuses
on how adverse selection problems affect the provision and resale of durables. See Hendel and
Lizzeri (1999), (2002), and House and Leahy (2004)) for recent contributions.
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durability. Durable goods survive over long periods of time and may be consumed
by many different people. Unless markets are very efficient at matching buyers
and sellers, durability endogenously creates a double-coincidence problem.
Finally, there is the literature on conformity itself as in Bernheim (1994).

The main difference between our environment and Bernheim’s is that the desire
to conform in our model arises endogenously through resale concerns while in
Bernheim’s model, agents conform because their preferences place weight on public
perceptions of their type.11

6. Conclusion

A consumer’s demand for a durable good is governed not only by his individual
preferences but also by the preferences of other market participants. This inter-
dependence of preferences arises because of the inevitable resale of durable goods.
If a majority of the people who buy durables want goods with certain features,
the original owners choose to buy goods with these features even if they do not
like them. The incentive to conform to the average taste is strongest for long-lived
durable goods and for people who trade frequently. For non-durable goods or for
durables that are rarely traded, there is little incentive to conform.
There are two features which lead to conformity in our model. First, because

there is a chance that agents will have to sell their house, they care about its
resale value. The lower the depreciation rate is, and the more likely it is that they
will have to enter the resale market, the more they care about the resale value.
In the model, the resale value of the home is determined simply by the likelihood
that it will be accepted in trade. Second, frictions in the resale market (due to
matching) generate the possibility that the house will be purchased by someone
with different preferences from the current owner. As a result, the resale value
depends on the average preferences of the buyers in the resale market.
In equilibrium there is typically too little conformity relative to the social

optimum. By not conforming, agents impose two negative externalities on other
agents. First, people with typical preferences incur greater search costs because
of excessive product diversity in the secondary market. Second, some people with
moderate tastes settle goods they do not prefer. Because the original buyers do
not fully internalize these costs, conformity is inefficiently low.
11Other papers dealing with conformity include Akerlof (1980), Kandori (1992), and Okuno-

Fujiwara and Postlewaite (1995). Also related is the literature on product diversity. See Spence
(1976), Dixit and Stiglitz (1977), Mankiw and Whinston (1987), and Tirole (1993) chapter 7.
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Appendix: Proofs of the Propositions

This appendix provides proofs of the propositions. Proofs of the Lemmas are available in the online appendix.

Proposition 1 Given non-negative λ (a, a) , λ (b, b) , λ (a, ab) , and λ (b, ab) summing to 1, define z1 (γ),
z2 (γ), and z3 (γ) as follows:

z1 (γ) = −π {r + δ + γ [1− λ (a, a)]}
z2 (γ) = γπ [λ (a, a)− λ (b, b)]

z3 (γ) = π {r + δ + γ [1− λ (b, b)]}
For an agent with parameters z, γ, if z ≤ z1 (γ) then (a, a) is optimal; if z1 (γ) ≤ z ≤ z2 (γ), (a, ab) is
optimal; if z2 (γ) ≤ z ≤ z3 (γ), (b, ab) is optimal and if z3 (γ) ≤ z, (b, b) is optimal.

Proof. We focus on the continuation value when an agent receives the build shock. Agents follow one
of the four strategies {a, a} , {a, ab} , {b, ab} , and {b, b}. We calculate the building continuation value for
each strategy. The optimal strategy is the one with the highest value in the building stage. Suppose that an
agent with parameters z, γ follows {a, a}. We write va,a (.) and τa,a (.) to denote the value of following this
strategy and the expected value of receiving the trade shock. Note these strategies may not be optimal (i.e.
va,a (x) ≤ V (x) and τa,a (x) ≤ T (x)). We consider each policy in turn.

1. Strategy {a, a}. If he follows {a, a} then he always rejects b in the trade stage and τa,a (b) is irrelevant.
The trade value τa,a (a) = va,a (a)− π [λ (b, ab) + λ (b, b)] and thus the consumption stage value is,

rva,a (a) = 1− δc− γπ [λ (b, ab) + λ (b, b)] . (8)

2. Strategy {a, ab} . Because the agent accepts either a or b in trade, we must calculate the trade value of
a and b. Similarly, we must consider the consumption value of a and b. The trade value of possessing
a is τa,ab (a) = va,ab (a) + λ (b, ab) [va,ab (b)− va,ab (a)] − πλ (b, b) . The trade value of possessing b is
τa,ab (b) = va,ab (a) + [λ (b, b) + λ (b, ab)] [va,ab (b)− va,ab (a)] − πλ (a, a) . Thus va,ab (a) and va,ab (b)
satisfy

rva,ab (a) = 1− δc+ γ {λ (b, ab) [va,ab (b)− va,ab (a)]− πλ (b, b)}

rva,ab (b) = 1 + z − δc− δ [va,ab (b)− va,ab (a)]
+γ {[λ (b, b) + λ (b, ab)] [va,ab (b)− va,ab (a)]− πλ (a, a)}
−γ [va,ab (b)− va,ab (a)]

Solving for va,ab (a) gives

rva,ab (a) = 1 + γ

½
λ (b, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (b, b)]

¸
− πλ (b, b)

¾
− δc.

Consider an agent who receives the build shock. If he follows {a, ab} , his payoff is va,ab (a) − c while
if he follows {a, a} his payoff is va,a (a)− c. The agent prefers {a, ab} to {a, a} if va,ab (a) > va,a (a)⇔

z > −π {r + δ + γ [1− λ (a, a)]} ≡ z1 (γ)

Any agent with parameters z, γ with z > z1 (γ) will prefer {a, ab} to {a, a}.

3. Strategy {b, ab} . Following the argument above we find τ b,ab (a) = vb,ab (b)+[λ (a, a) + λ (a, ab)] [vb,ab (a)− vb,ab (b)]−
πλ (b, b) and τ b,ab (b) = vb,ab (b) + λ (a, ab) [vb,ab (a)− vb,ab (b)] − πλ (a, a) . Thus va,ab (a) and va,ab (b)
satisfy

rvb,ab (a) = 1 + δ [vb,ab (b)− vb,ab (a)− c]
+γ (vb,ab (b)− vb,ab (a)− [λ (a, a) + λ (a, ab)] [vb,ab (b)− vb,ab (a)]− πλ (b, b))

rvb,ab (b) = 1 + z − δc+ γ [−λ (a, ab) [vb,ab (b)− vb,ab (a)]− πλ (a, a)]
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Solving for vb,ab (b) gives

rvb,ab (b) = 1 + z + γ

∙
−λ (a, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (a, a)]

¸
− πλ (a, a)

¸
− δc.

An agent who receives the build shock prefers {b, ab} to {a, ab} if vb,ab (b) ≥ va,ab (a)⇐⇒

1 + z + γ

∙
−λ (a, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (a, a)]

¸
− πλ (a, a)

¸
− δc

≥ 1 + γ

½
λ (b, ab)

∙
z + γπ [λ (b, b)− λ (a, a)]

r + δ + γ [1− λ (b, b)]

¸
− πλ (b, b)

¾
− δc.

This expression can be rewritten as

(z + γπ [λ (b, b)− λ (a, a)])Ω ≥ 0

where

Ω ≡ 1− γλ (a, ab)

r + δ + γ [1− λ (a, a)]
− γλ (b, ab)

r + δ + γ [1− λ (b, b)]

We now show that Ω > 0. Without loss of generality assume that λ (b, b) ≥ λ (a, a) . Then,

Ω ≥ 1− γ

∙
λ (b, ab) + λ (a, ab)

r + δ + γ [1− λ (b, b)]

¸
.

Ω > 0 if r + δ + γ [1− λ (b, b)− λ (b, ab)− λ (a, ab)] > 0 which is satisfied since λ (b, ab) + λ (a, ab) +
λ (a, a) + λ (b, b) = 1. Because Ω > 0, the agents prefers {b, ab} to {a, ab} whenever

z ≥ γπ [λ (a, a)− λ (b, b)] ≡ z2 (γ) .

Agents (z, γ) with z > z2 (γ) prefer {b, ab} to {a, ab}.

4. Strategy {b, b} . An agent who follows {b, b} always rejects a so τ b,b (a) is irrelevant. τ b,b (b) = vb,b (b)−
π [λ (a, ab) + λ (a, a)] . Thus vb,b (b) is

rvb,b (b) = 1 + z − δc− γπ [λ (a, ab) + λ (a, a)]

An agent who receives the build shock prefers {b, b} to {b, ab} if vb,b (b) > vb,ab (b)⇔

z > π [r + δ + γ [1− λ (b, b)]] ≡ z3 (γ)

Since z1 (γ) < z2 (γ) < z3 (γ) any agent with z < z1 (γ) prefers {a, a} to all of the other strategies. To see
this note that such an agent prefers {a, a} to {a, ab} by case one above. However, by case two, he also prefers
{a, ab} to {b, ab} and by case three prefers {b, ab} to {b, b}. Thus {a, a} is optimal for this agent. Similar
arguments imply that for z1 (γ) < z < z2 (γ) the optimal strategy is {a, ab} ; for z2 (γ) < z < z3 (γ) the
optimal strategy is {b, ab} and for z > z3 (γ) the optimal strategy is {b, b}.

Proposition 2 Given any F and G, there exists at least one steady state equilibrium.

Proof. By Lemma 4 La,a and Lb,b have at least one fixed point. Let λ (a, a) and λ (b, b) be fixed
points of La,a and Lb,b. We construct an equilibrium as follows: Use λ (a, a) and λ (b, b) to construct z1 (γ),
z2 (γ), and z3 (γ) from Proposition 1. With z1 (γ), z2 (γ), and z3 (γ) compute λ (a, a) , λ (b, b) , λ (a, ab) , and
λ (b, ab) with Lemma 3. By construction λ (a, a), λ (b, b), λ (a, ab) , and λ (b, ab) are equilibrium matching
probabilities.

Proposition 3 If F satisfies Assumption 1 then (1) The equilibrium is unique; (2) There is conformity
whenever μ 6= 0 and the market conforms to the mean taste (the market conforms on a if μ < 0 and
conforms on b if μ > 0 ); (3) If μ 6= 0, an increase in durability (lower δ) or patience (lower r) causes
conformity to increase (i.e., z2 (γ) increases if μ < 0 and decreases if μ > 0 for all γ); (4) All else equal,
agents with a greater likelihood of trade conform more.
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Proof.

1. By proposition 2, λ (a, a) is a fixed point of the mapping La,a,

λ (a, a) = La,a (λ (a, a)) =

Z ∞
0

F (−π {r + δ + γ [1− λ (a, a)]}) dG (γ)

By assumption F has a density and thus we can calculate the derivative of La,a. This derivative is

0 ≤ ∂La,a (λ (a, a))

∂λ (a, a)
=

Z ∞
0

f (z1 (γ))πγdG (γ) < f (μ)π

Z ∞
0

γdG (γ) = f (μ)πγ̄ < 1.

Where the second inequality follows since f (z) ≤ μ and the last inequality follows from Assumption
1. Thus there can be at most one fixed point. Similar arguments hold for Lb,b. Since existence of at
least one equilibrium is guaranteed by proposition 2, the equilibrium is unique.

2. Because f is symmetric about μ, if μ = 0 then F (−x) = 1 − F (x) and thus the unique equilibrium
must have λ (a, a) = λ (b, b) and z2 (γ) = 0 for all γ (no conformity). Let λ∗ be the equilibrium
λ∗ = λ (a, a) = λ (b, b) for μ = 0. For any l ≥ λ∗ we must have La,a (l) ≤ l (since the derivative of La,a
is less than 1 by part 1) and for any l ≤ λ∗ we must have Lb,b (l) ≥ l by the same reasoning.
Consider μ > 0 (the argument for μ < 0 is identical). For any given l ∈ [0, 1] , and for all γ,

F (−π {r + δ + γ [1− l]} ;μ > 0) < F (−π {r + δ + γ [1− l]} ;μ = 0)

1− F (π {r + δ + γ [1− l]} ;μ > 0) > 1− F (π {r + δ + γ [1− l]} ;μ = 0)
Therefore, integrating over all γ we have La,a (l) |μ>0 < La,a (l) |μ=0 and Lb,b (l) |μ>0 > Lb,b (l) |μ=0.
When μ > 0, l ∈ [λ∗, 1] cannot be a fixed point of La,a since La,a (l) |μ>0 < La,a (l) |μ=0 ≤ l for
l ∈ [λ∗, 1] . Similarly, l ∈ [0,λ∗] cannot be a fixed point of Lb,b. Because the equilibrium is unique, we
conclude that for μ > 0, the equilibrium satisfies λ (b, b) > λ∗ > λ (a, a). This implies that z2 (γ) < 0
for all γ so the market conforms on b.

3. If μ > 0 then
R∞
0
[1− F (z3 (γ))] dG (γ) = λ (b, b) > λ (a, a) =

R∞
0
F (z1 (γ)) dG (γ) by part (2). This

implies that z2 (γ) < 0. Differentiating gives

∂z2 (γ)

∂δ
= πγ

∙
∂λ (a, a)

∂δ
− ∂λ (b, b)

∂δ

¸
∂λ (a, a)

∂δ
= − π

R
f (z1 (γ)) dG (γ)

1− π
R
f (z1 (γ)) γdG (γ)

and
∂λ (b, b)

∂δ
= − π

R
f (z3 (γ)) dG (γ)

1− π
R
f (z3 (γ)) γdG (γ)

Lemma 6 implies f (z3 (γ)) ≥ f (z1 (γ)) for all γ. Moreover, Assumption 1 guarantees that 1 −
π
R
f (z1 (γ)) γdG (γ) > 0 and 1− π

R
f (z3 (γ)) γdG (γ) > 0. Thus

∂z2 (γ)

∂δ
= πγ

∙
− π

R
f (z1 (γ)) dG (γ)

1− π
R
f (z1 (γ)) γdG (γ)

+
π
R
f (z3 (γ)) dG (γ)

1− π
R
f (z3 (γ)) γdG (γ)

¸
> 0

An increase in durability implies a reduction in z2 (γ) for all γ. The proof for r is identical.

4. The proof follows immediately by observing that z2 (γ) = πγ [λ (a, a)− λ (b, b)].

Proposition 4 Assume that trade hazards are (γ + θ) as described in the text (θ = 0 is the original equilib-
rium) and consider an F satisfying Assumption 1. Then, for a marginal increase in θ at θ = 0, there exists
γ̂ ∈ (0,∞] such that conformity increases for all agents with γ < γ̂ and decreases for all agents with γ > γ̂.
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Proof. Differentiating λ (a, a) and λ (b, b) with respect to θ and evaluating at θ = 0 gives

∂λ (a, a)

∂θ

¯̄̄̄
θ=0

=
−π (1− λ (a, a))

R
f (z1 (γ, 0)) dG (γ)

1−
R
f (z1 (γ, 0)) γdG (γ)

,

∂λ (b, b)

∂θ

¯̄̄̄
θ=0

=
−π (1− λ (b, b))

R
f (z3 (γ, 0)) dG (γ)

1−
R
f (z3 (γ, 0)) γdG (γ)

.

The conformity cutoff is z2 (γ) = (γ + θ)π [λ (a, a)− λ (b, b)] . Differentiating z2 with respect to θ and eval-
uating at θ = 0 we obtain:

∂z2 (γ)

∂θ

¯̄̄̄
θ=0

=
z2 (γ)

γ
+ γπ

∙
∂λ (a, a)

∂θ

¯̄̄̄
θ=0

− ∂λ (b, b)

∂θ

¯̄̄̄
θ=0

¸
.

Suppose μ > 0 (μ < 0 is symmetric.) In this case z2 (γ) < 0. If the term in square brackets is negative then
∂z2(γ)
∂θ

¯̄̄
θ=0

< 0 for all γ so we set γ̂ =∞. If the term is positive then let γ̂ be

γ̂ =
− [λ (a, a)− λ (b, b)]h

∂λ(a,a)
∂θ

¯̄̄
θ=0
− ∂λ(b,b)

∂θ

¯̄̄
θ=0

i > 0.
By construction ∂z2(γ)

∂θ

¯̄̄
θ=0

< 0 for γ < γ̂ and ∂z2(γ)
∂θ

¯̄̄
θ=0

> 0 for γ > γ̂ which proves the result.

Proposition 5 Assume that all agents have a common γ, let F satisfy Assumption 1, and let z∗1 , z
∗
2 and

z∗3 be the unique equilibrium cutoffs. If either (i) μab is the same sign as μ, or (ii) |μ| ≥ π(γ+δ)
2 , then

sign
³
∂W (z∗1z

∗
2z
∗
3 )

∂z2

´
= sign (z∗2) and there is too little conformity in equilibrium.

Proof. Differentiating W from Lemma 5 with respect to z2 gives

∂W

∂z2
= −πγ ∂λ (b, ab)

∂z2
F (z1)

+

Z z2

z1

("
∂Pa,ab (a)

∂z2

1

F (z2)− F (z1)
− Pa,ab (a)

[F (z2)− F (z1)]2
f (z2)

#
[z2 − z]

)
dF (z)

+f (z2)

∙µ
Pa,ab (a)

F (z2)− F (z1)

¶
[1− πγλ (b, b)] +

µ
1− Pa,ab (a)

F (z2)− F (z1)

¶
[1 + z2 − πγλ (a, a)]

¸
+

Z z3

z2

("
∂Pb,ab (b)

∂z2

µ
1

F (z3)− F (z2)

¶
+

Pb,ab (b)

(F (z3)− F (z2))2
f (z2)

#
[z − z2]

)
dF (z)

−f (z2)
∙µ
1− Pb,ab (b)

F (z3)− F (z2)

¶
[1− πγλ (b, b)] +

µ
Pb,ab (b)

F (z3)− F (z2)

¶
[1 + z2 − πγλ (a, a)]

¸
−πγ ∂λ (a, ab)

∂z2
[1− F (z3)]

The 3rd and 5th lines add to zero. We can now write the derivative as

∂W

∂z2
= πγ

∂λ (a, ab)

∂z2
(F (z1)− [1− F (z3)])

+

Z z2

z1

("
∂Pa,ab (a)

∂z2

µ
1

F (z2)− F (z1)

¶
− Pa,ab (a)

[F (z2)− F (z1)]2
f (z2)

#
[z2 − z]

)
dF (z)

+

Z z3

z2

("
∂Pb,ab (b)

∂z2

µ
1

F (z3)− F (z2)

¶
+

Pb,ab (b)

(F (z3)− F (z2))2
f (z2)

#
[z − z2]

)
dF (z)

where we have used ∂λ(b,ab)
∂z2

= −∂λ(a,ab)
∂z2

. Lemma 9 shows that ∂λ(a,ab)
∂z2

> 0, so the first term has the same
sign as z2. Lemma 10 shows that the sum of the remaining two terms has the same sign as

[γ [1− F (z1)] + δ]

∙Z z2

z1

[z2 − z] dF (z)
¸
− [γF (z3) + δ]

∙Z z3

z2

[z − z2] dF (z)
¸

(9)
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Using the expressions for z1 and z3 when r = 0 we can rewrite this expression as

(−z1) (z2) (F (z2)− F (z1)) + (z3) (z2) (F (z3)− F (z2))−
½
(−z1)

Z z2

z1

zdF (z) + (z3)

Z z3

z2

zdF (z)

¾
The mean taste of the inclusive traders μab is

μab =

R z3
z1
zdF (z)

F (z3)− F (z1)
=

R z2
z1
zdF (z) +

R z3
z2
zdF (z)

F (z3)− F (z2) + F (z2)− F (z1)

Using this in the expression above gives

(z2)

½
(−z1) (F (z2)− F (z1)) + (z3) (F (z3)− F (z2))−

Z z3

z2

zdF (z)

¾
(10)

−μab (−z1) [F (z3)− F (z2) + F (z2)− F (z1)]

Note that
R z3
z2
zdF (z) < z3

R z3
z2
dF (z) = z3 (F (z3)− F (z2)) so that

(−z1) (F (z2)− F (z1)) + (z3) (F (z3)− F (z2))−
Z z3

z2

zdF (z)

> (−z1) (F (z2)− F (z1)) + (z3) (F (z3)− F (z2))− z3 (F (z3)− F (z2))
= (−z1) (F (z2)− F (z1)) > 0

As a result, the first term in (10) has the same sign as z2. Thus, if −μab has the same sign as z2, the sign of
∂W
∂z2

is the same as the sign of z2. By Assumption 1, −μ has the same sign as z2. Thus if μab has the same
sign as μ, there is too little conformity. This establishes (i.).
To establish (ii.) recall that the sign of (??) is the same as the sign of (9) Using integration by parts, we

can write the first integral as Z z2

z1

[z2 − z] dF (z) =
Z z2

z1

F (z) dz − z3F (z1) .

Similarly, the second integral isZ z3

z2

[z − z2] dF (z) = −F (z3) z1 −
Z z3

z2

F (z) dz.

Using these expressions and since z2 = z1 + z3 we have z3 = z2 − z1 > 0 and −z1 = z3 − z2 > 0, we can
rewrite the expression as

(−z1)
π

∙Z z2

z1

[F (z)− F (z1)] dz
¸
− (z3)

π

∙Z z3

z2

[F (z3)− F (z)] dz
¸
.

Assume that μ < 0 (the proof for μ > 0 is analogous). Since z2 > 0 > μ, F is concave for all z ∈ [z2, z3].
Thus, by Jensen’s inequality,Z z3

z2

[F (z3)− F (z)] dz <
1

2
(−z1) (F (z3)− F (z2))

F may or may not be concave for all z ∈ [z1, z2]. However, because of the symmetry of F , if μ ≤ z1+z2
2 then,Z z2

z1

[F (z)− F (z1)] dz ≥
1

2
(z3) (F (z2)− F (z1)) .

Thus if (−z1) 12 (z3) (F (z2)− F (z1)) − z3
1
2 (−z1) (F (z3)− F (z2)) > 0 expression (9) must also be greater

than zero and there is too little conformity. Dividing by (−z1) 12 (z3) (a positive number) gives (F (z2)− F (z1))−
(F (z3)− F (z2)) which by Lemma 11 is always positive for μ < 0. Thus, if μ ≤ z1+z2

2 there is too
little conformity. Since μ < 0, z2 > 0. Moreover, z1 = −π [δ + γ [1− F (z1)]] > −π [δ + γ]. Thus, if
μ < −π(γ+δ)2 ≤ z1

2 ≤
z1+z2
2 there is too little conformity. This establishes (ii.).
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Lemma 1 If an agent builds type x, then he accepts type x in trade.

Lemma 2 Given matching probabilities λ (x, τ) for x ∈ {a, b} and τ ∈ {a, b, ab} with
P

τ∈{a,b,ab}
P
y∈{a,b} λ (y, τ) =

1 there exist unique values V (a) , V (b) , T (a) , T (b) , and B satisfying (1), (2), and (3).

Lemma 3 Let z1 (γ) , z2 (γ) and z3 (γ) be given. The implied matching probabilities λ (a, a) and λ (b, b)
are λ (a, a) =

R∞
0
F (z1 (γ)) dG (γ) and λ (b, b) =

R∞
0
[1− F (z3)] dG (γ) . Furthermore, there exist unique

nonnegative numbers Pa,ab (a) , Pa,ab (b), Pb,ab (a) and Pb,ab (b) such that the implied matching probabilities
λ (a, ab) and λ (b, ab) are λ (a, ab) = Pa,ab (a) + Pb,ab (a) and λ (b, ab) = Pa,ab (b) + Pb,ab (b) .

Lemma 4 The mappings La,a and Lb,b defined by (5) and (6) each have at least one fixed point.

Lemma 5 Assume that all agents have a common γ. Given cutoffs z1, z2, z3, let Pa,ab (a) , Pb,ab (a) ,
Pa,ab (b) and Pb,ab (b) be given by Lemma 3 and define ψa,ab = Pa,ab (a) / [F (z2)− F (z1)] and ψb,ab =
Pb,ab (b) / [F (z3)− F (z2)] . Then, the flow of social welfare is

W (z1, z2, z3) = {1− πγ [λ (b, b) + λ (b, ab)]}F (z1)

+

Z z2

z1

©
ψa,ab [1− πγλ (b, b)] +

¡
1− ψa,ab

¢
[1 + z − πγλ (a, a)]

ª
dF (z)

+

Z z3

z2

©¡
1− ψb,ab

¢
[1− πγλ (b, b)] + ψb,ab [1 + z − πγλ (a, a)]

ª
dF (z)

+

Z ∞
z3

{1 + z − πγ [λ (a, a) + λ (a, ab)]} dF (z)− δc.

Lemma 6 If a density function f (z) with mean μ satisfies the following conditions: (1) Symmetry (S): for
any x, f (μ+ x) = f (μ− x), and F (μ+ x) = 1− F (μ− x); and (2) Quasi-Concave (QC): for any fixed x,
the set {y : f (y) ≥ f (x)} is convex; then for any z < z0, F (z) ≥ 1− F (z0)⇔ f (z) ≥ f (z0).

Lemma 7 For the model with a single γ (i.e., degenerate G), define

ra =
δ + γF (z1)

F (z3)− F (z2)
, and rb =

δ + γ [1− F (z3)]
F (z2)− F (z1)

,

then, the following statements are true

Pa,ab (b) =
γrb

γra + γrb + rarb
(F (z2)− F (z1)) and Pa,ab (a) =

γra + rarb
γra + γrb + rarb

(F (z2)− F (z1))

Pb,ab (a) =
γra

γra + γrb + rarb
(F (z3)− F (z2)) and Pb,ab (b) =

γrb + rarb
γra + γrb + rarb

(F (z3)− F (z2))

Lemma 8
∂Pb,ab (b)

∂z2
+

Pb,ab (b)

F (z3)− F (z2)
f (z2) = −f (z2)

Pb,ab (b)

(F (z3)− F (z2))
Pb,ab (a)

(F (z3)− F (z2))

∙
F (z3)− F (z2)
F (z2)− F (z1)

+
γ

γ + ra

¸
< 0

∂Pa,ab (a)

∂z2
− Pa,ab (a)

F (z2)− F (z1)
f (z2) = f (z2)

Pa,ab (a)

F (z2)− F (z1)
Pa,ab (b)

F (z2)− F (z1)

∙
F (z2)− F (z1)
F (z3)− F (z2)

+
γ

γ + rb

¸
> 0

Lemma 9 ∂λ(a,ab)
∂z2

> 0.

Lemma 10 The sign ofµ
1

F (z2)− F (z1)

¶ ∙
∂Pa,ab (a)

∂z2
− Pa,ab (a)

f (z2)

F (z2)− F (z1)

¸ Z z2

z1

[z2 − z] dF (z)

+

µ
1

F (z3)− F (z2)

¶∙
∂Pb,ab (b)

∂z2
+ Pb,ab (b)

f (z2)

F (z3)− F (z2)

¸Z z3

z2

[z − z2] dF (z)

is the same as the sign of

[γ [1− F (z1)] + δ]

∙Z z2

z1

[z2 − z] dF (z)
¸
− [γF (z3) + δ]

∙Z z3

z2

[z − z2] dF (z)
¸

Lemma 11 F (z2)− F (z1) ≷ F (z3)− F (z2) if μ ≶ 0.
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FIGURE 1: UNIQUE EQUILIBRIA WITH A UNIFORM DISTRIBUTION 

 
 
 
 
 

FIGURE 2: MULTIPLE EQUILIBRIA WITH A SYMMETRIC DISTRIBUTION 
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FIGURE 3: EQUILIBRIUM AND OPTIMAL 1z , 2z , 3z  FOR DIFFERENT MEANS.  
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The figure shows the equilibrium cutoffs (the solid dark lines) and the optimal cutoffs (the light shaded 
lines) for different means of F(z).  In each case, F is normal with a unit variance.  The cutoffs are plotted on 
the vertical axis while the mean is on the horizontal axis.  


