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Abstract

We present a model of the market for a used durable in which
agents face …xed costs of adjustment, the magnitude of which depends
on the degree of adverse selection in the secondary market. We …nd
that, unlike typical models, the sS bands in our model contract as the
variance of the shock process increases. We also analyze a dynamic
version of the model in which agents are allowed to make decisions
that are conditional on the age of the durable. We …nd that, as the
durable ages, the lemons problem tends to decline in importance, and
the sS bands contract.

1 Introduction
Consumers purchase durables infrequently, and for this reason many econo-
mists believe that …xed adjustment costs are an important feature of the
market for consumer durables. Among the …xed costs most often cited are
“lemons costs.”1 These costs arise because adverse selection in the secondary
market reduces the price of a durable, and therefore discourages trade (Ak-
erlof [1970]). A distinguishing feature of the lemons cost is that it’s size is
endogenous. The size of the cost depends on the distribution of quality in
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like to thank Fernando Alvarez, Guillermo Caruana, Eduardo Engel, Igal Hendel, Dmitriy
Stolyarov, Jon Willis and three anonymous referees for helpful comments and suggestions.
Leahy thanks the National Science Foundation for …nancial support.

1See, for example, Bar-Ilan and Blinder [1992], Caballero [1994], and Eberly [1994].
Abel et al. [1996] use lemons e¤ects to motivate investment inertia.
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the secondary market, and this distribution depends on the sales decisions
of consumers. In spite of the obvious endogeneity of such costs, models of
durables typically assume that the costs of trade are exogenous.

The model that we present is a standard sS model of car ownership except
that the adjustment cost arises endogenously from adverse selection in the
secondary market. In the model, consumers care both about the quality of
the car that they own, and how well the car …ts their current needs. Only the
owner of a car knows its true quality. Fit is captured by a match parameter.
Consumers may sell cars either because the quality is low or because the car
is not a good match. Because the quality of cars on the secondary market
tends to be low, holders of relatively good cars face a cost to selling their car
and purchasing a new one. This is the only adjustment cost in the model.
The relative proportions of consumers selling on the basis of quality and …t
will in‡uence the size of this cost. The more high quality cars there are on
the secondary market, the lower the adjustment cost is.

The optimal adjustment policy is a state-contingent sS policy. Contin-
gent on the age and the quality of the car, consumers continue to hold the
car if the match parameter lies within some range about the optimum. The
limits of this range of inaction, the consumers sS bands, tend to be wider,
the higher the quality of the auto. This re‡ects the adverse selection in the
secondary market. Owners of high quality autos have higher adjustment
costs than owners of low quality autos.

In section 3, we study the interaction between adverse selection and ad-
justment in a model in which cars last for only two periods. This setting
illustrates the strategic complementarity between individual adjustment de-
cisions. If some agents sell their cars in order to improve their match, then
the quality of cars in the secondary market improves, the adjustment costs
fall, and the incentive to trade increases. This feedback between sales deci-
sions and the adjustment cost leads to the possibility of multiple equilibria.
In some equilibria the sS bands are wide, adjustment by owners of high qual-
ity cars is rare, and the lemons problem is severe. In others the sS bands are
narrow, adjustment is common and the lemons problem is mild.

Our …rst comparative static result concerns the e¤ect of an increase in the
variance of the shock to the match parameter. In sS models with exogenous
…xed costs, an increase in this variance would lead agents to widen their bands
and to adjust more often. In e¤ect, they divide the cost of the increased
variance between larger deviations from the optimal state and more frequent
payment of the adjustment cost. In our model, however, there is an additional
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e¤ect. More frequent adjustment means more agents are selling good cars.
Average quality in the secondary market improves and the adjustment cost
falls. Hence the bands may narrow instead.

We also consider an increase in the variance of the unobserved quality of
new cars. Unlike the variance of the match parameter, increases in the vari-
ance of quality exacerbate the adverse selection problem. This increases the
sS bands and reduces trade. We can therefore divide heterogeneity into two
types. “Good” heterogeneity which induces trade and reduces adjustment
costs and “bad” heterogeneity that causes adverse selection and increases
the cost of adjustment. The kinds of shocks traditionally considered in the
sS literature, such as shocks to tastes and income, fall in the former category.

In Section 4, we extend the life of cars. This allows us to observe what
happens to the adverse selection problem as the durable ages. We …nd that
the sS bands tend to narrow with age, so that adverse selection is initially
severe, but lessens with time. This e¤ect comes from two sources. First,
because the match between an owner and a car deteriorates over time, the
incentive to adjust becomes greater as the car ages. Since there is more
incentive to sell a good old car than a good new car, the distribution of quality
in the secondary market tends to improve with age. This improvement causes
the adjustment cost to fall and the sS bands to narrow as the car ages.

The second reason that the bands may narrow with age is that, if trading
history is observable, then holding a car may serve as a signal that the car is
high quality. Since agents with good cars face higher adjustment costs and
have wider sS bands, cars that remain unsold are more likely to be of high
quality. Cars that are sold early are more likely to be lemons. This may
explain the desirability of publicizing “original owner” in advertisements.

In both cases, the prospect that the market may improve with time creates
a further incentive for agents to wait and sell at a later date. Agents know
that as quality in the secondary market improves, so will the price that they
can receive for their car. This e¤ect also widens the bands for newer cars.

Together these e¤ects can explain why the lemons problem might be more
severe for new cars. New cars lose as much as 20 percent of their value as
soon as they are driven o¤ the lot.2 There is understandably considerable
reluctance to sell a new car. At the same time, few people appear to have
similar trouble selling four or …ve year old cars.

While we cast our model in terms of the used car market, the analysis
2Stiglitz [1997, p. 433].
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has applications for any area in which …xed adjustment costs and adverse
selection may interact such as the market for equities, investment, or labor.

2 Related Literature
Our paper relates to two literatures: sS adjustment and adverse selection.
It is somewhat surprising that these literatures have not been brought to-
gether earlier. Each attempts to explain market inertia, and the market for
consumer durables features prominently in both.

The sS model was developed by Arrow, Harris, and Marschak [1951] in
the context of inventories and extended to the consumption of a durable good
by Grossman and Laroque [1991]. Although there is by now a large literature
on durable adjustment, most of these models do not contain any equilibrium
interactions.3

Papers that do allow for equilibrium interactions focus on the determina-
tion of the price of the commodity, not the adjustment cost. Among these
papers, Stolyarov [2002] is the most closely related to our work.4 He consid-
ers an environment in which cars depreciate over time and trade is motivated
by heterogeneity in the taste for quality. He shows which qualities are pro-
duced new, which are traded on secondary markets, and solves for the prices
that clear secondary markets. He does not, however, incorporate adverse
selection. The costs of adjustment in his model are exogenous.

A novel feature of our model relative to most of the adverse selection liter-
ature is that the durable good may last for more than two periods. The most
closely related paper is Hendel and Lizzeri [1999]. They construct a dynamic
model with adverse selection in the used car market. They also motivate
trade by assuming that agents di¤er in their taste for quality. They …nd that
some agents refrain from selling high quality used cars due to the cost im-
posed by adverse selection in the secondary market. They also demonstrate
the possibility of multiple equilibria. There are several di¤erences between
our approach and theirs. First, our focus is on the comparative statics of the
sS bands. We constructed our model to di¤erentiate the sS features of the
model from the adverse selection features. Hendel and Lizzeri do not analyze

3See, for example, Bertola and Cabellero [1990], Bar-Ilan and Blinder [1992], Cabellero
[1993], Eberly [1994], Carroll and Dunn [1997], Adda and Cooper [2000], Caplin and Leahy
[1999], and Leahy and Zeira [1999]

4Caplin and Leahy [1999] and Leahy and Zeira [1999] endogenize prices in sS models.
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the comparative statics of their adjustment thresholds and their shock con-
founds changes in the motivation for trade with changes in adverse selection.
Second, in Hendel and Lizzeri, cars only last for two periods. Consequently,
they cannot analyze the evolution of the sS thresholds over time.

Eisfeldt [2004] constructs a model of an equity market which has aspects
of both sS behavior and adverse selection. Agents issue equity for one of
two reasons: the agent knows that the project is bad or the agent needs
the money. Higher aggregate productivity causes agents to increase the size
of their investments which has the e¤ect of increasing the variance of their
income. As this variance increases more agents sell claims to high quality
projects, which reduces the adverse selection problem and improves the e¢-
ciency of the equity market. The fundamental properties of this mechanism
are very similar to the mechanism at work in our static model of Section
3. Eisfeldt, however, does not consider multi-period projects and so cannot
analyze how the threshold for issuing equity evolves over time.

The evidence of the importance of adverse selection in markets for used
cars is mixed. Lacko [1986] and Genesove [1993] …nd evidence for adverse se-
lection among older cars. Lacko compares the quality of cars purchased from
family and friends with those purchased from newspaper adds. Genesove
analyzes prices from dealer auctions. Bond [1982], on the other hand, com-
pares the maintenance costs of trucks that are sold on the secondary market
to those which are not. He …nds no evidence of adverse selection. Hendel and
Lizzeri [1999] …nd that the cross-sectional correlation of price and trade vol-
ume are more consistent with a model in which depreciation motivates trade
rather than adverse selection. Adverse selection has been found to be impor-
tant in other markets. Rosemann and Wilson [1991] …nd evidence of adverse
selection in wholesale market for fruit, and Chezum and Wimmer [1997] …nd
evidence for adverse selection in the market for thoroughbred horses.

Two empirical results bare directly on our theoretical results. First,
Genesove [1993] …nds, in his study of auto auctions, that one owner cars
sell for roughly 9% more than cars with multiple owners. To our knowledge,
ours is the …rst paper to rationalize this e¤ect. Second, Stolyarov [2002] …nds
that trade volume is very low among cars that are less than two to three years
old. It peaks at about four or …ve years and then levels o¤ at a moderate
level. Our model will capture this increase in trade volume over time.

Our theoretical results also have several empirical implications. One con-
cerns the estimation of depreciation from market prices. If the adverse selec-
tion problem is initially severe, then the initial fall in price re‡ects a combina-
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tion of depreciation and adverse selection. Physical depreciation is therefore
overestimated initially. If adverse selection becomes less severe as cars age,
then subsequent changes in price re‡ect both depreciation and the easing of
adverse selection. Physical depreciation is therefore underestimated in later
years.

A second empirical implication deals with the estimation of the e¤ect of
an increase in the variance of the shocks on the width of the adjustment
triggers in an sS model. Eberly [1994] regresses the size of sS bands on
the variance of an individual’s income and …nds a mildly positive coe¢cient
on income variance. Our model provides a reason that her estimates may
be biased toward zero. If individual income variance is correlated with the
variance of shocks to the market, her estimates mix the traditional sS e¤ect
and the thick market e¤ect that arises from adverse selection. To see this
suppose that there is a group of agents with high income variance and a
group of agents with low income variance and that there are two distinct
markets for cars (these may be di¤erentiated by price, space or time). If the
two income-variance types are randomly distributed across the two markets,
then the econometrician will observe that in each market agents with high
income variance will have wider bands. If agents with high income variance
trade exclusively in one market, then there will tend to be more trade in that
market and the adverse selection e¤ect will temper the e¤ect of variance
on the adjustment bands. In this case, the estimate of the traditional sS
e¤ect would be biased downwards. The …nding of a mildly positive e¤ect of
income variance on the width of the bands may therefore either mean that
the traditional sS e¤ect is small or that there is a correlation across agents
between income variance and the markets in which they participate.

3 The Model
Time is discrete and indexed by t 2 f0; 1; : : :g. There is a continuum of
in…nitely lived consumers indexed by i 2 [0; 1], each of whom inelastically
demands a single automobile. Consumers care both about the quality of the
car that they own and how well it meets their needs. Cars come in two types:
good and bad. Consumers derive greater utility from good cars. Needs are
re‡ected by a match parameter, zit; which summarizes all other motivations
for trade beside car quality, including, among other things, tastes, income,
and demographics. z = 0 re‡ects a perfect match and the absolute value of
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z re‡ects the degree to which the car and it’s owner are mismatched. Each
period t; each agent i receives utility:

Uit = xit ¡ z2it ¡ 'it:

Here x is a random variable taking the value 1 if the quality of the car is
good and Á 2 (0; 1) if the quality is bad, and 'it represents net spending on
cars. Consumers discount future payo¤s by ¯.

Cars last for two periods. After two periods they depreciate completely
and the owner must purchase another. Owners of one year old cars may also
purchase another car, but to do so they must sell the car that they possess.
In any period there are two markets in operation: a market for new cars and
a market for (one year old) used cars.

New cars are supplied by dealers. We do not model the dealers’ problem
in detail. The only properties that we need are the price of a new car and
the probability that a new car is good quality.5 Let p0 denote the exogenous
price of a new car, and let ¼ 2 (0; 1) denote the exogenous probability that a
new car is good quality. It will also be useful to let q0 = ¼+(1¡ ¼)Á denote
the expected quality of a new car.

The quality of any particular car, whether new or used, is the private
information of the owner. This gives rise to the adverse selection problem
that makes adjustment in this model interesting.

When a consumer purchases a car they choose one that is a perfect match.
Thus a new or used car purchased in period t will have a match parameter
zit = 0. As time passes, the consumer’s needs may change as the consumer’s
income, tastes, and family situation changes. As a result, the match parame-
ter may change. We assume that if a consumer bought a new car in period
t ¡ 1, the match parameter zit is a random variable, whose distribution is
described by a distribution function F on R. We will make assumptions on
F as necessary in order to ensure uniqueness, continuity or di¤erentiability of
a solution. At this point we only assume that the zit are independent across
time and across agents and that

R z
¡z dF < 1 for all …nite z > 0. This last

assumption ensures that some agents receive shocks to their match that are
so bad that they adjust under any circumstances.

In period zero, one half of the consumers begin with one year old cars.
The rest begin without cars. The timing of moves in each period is as follows.

5Given the inelastic demand for autos, the price of new cars will be determined in
equilibrium by the marginal cost of production.
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At the beginning of period t holders of one year old cars observe the match
parameter zit. Next the markets for new and used cars open simultaneously.
After trade is completed, consumers observe the quality of the car that they
own (if they do not already know it) and realize utility Uit.

Holders of one year old cars choose whether to sell their used cars, while
purchasers of cars decide between new and used cars. We look for a stationary
symmetric Nash equilibrium as a solution to our model.

3.1 Solution
We solve the model under the assumption that there is positive demand
for both new and used cars. This need not be the case. If p0 is too high,
consumers will not willingly purchase new cars. If p0 is too low, consumers
may prefer to scrap their used cars and then purchase new ones. At the end
of the section we present a Lemma that provides su¢cient conditions for all
markets to be active.6

Since all consumers purchasing cars are alike and since there is an active
secondary market for used cars, consumers who are making adjustments must
be indi¤erent in equilibrium between purchasing a new car and a used car.
We use this fact to solve for the optimal adjustment strategies. We solve the
model recursively. First, we solve for the optimal adjustment policy of the
holder of a one year old car. This determines the average quality of cars in
the used car market. We then solve for the price of used cars.

Let V1(x; z) denote the value of an optimal policy for an agent who enters
the period holding a one year old car of quality x and a match z. The
agent decides whether to keep the car or to purchase another car. Since in
equilibrium the agent is indi¤erent between purchasing a new car and used
car, we may assume for the purpose of determining the optimal policy that
the agent decides to purchase another one year old car. The value function
becomes:

V1(x; z) = maxfx¡ z2 + ¯V0; Q+ ¯V0g
where Q 2 [Á; 1] is the average quality of cars in the secondary market and V0
is the value of purchasing a new car. The …rst term inside the brackets is the
value of holding onto the car. The second is the expected payo¤ from selling
the car and buying another used car. Note that the price of used cars does
not appear in this second term, since the agent both buys and sells a used

6See House and Leahy (2000) for an analysis of the model with scrapping.

8



car. Regardless of the consumer’s decision, the car dies after one period, and
the consumer is forced to purchase another car. For simplicity we assume
that this is a new car (recall the consumer will be indi¤erent). Since the
continuation payo¤ is independent of the current choice, the consumer faces
what is essentially a static decision: buy or hold depending on the current
period’s payo¤.

Since Q 2 [Á; 1], it follows immediately that holders of lemons always
choose to adjust and holders of good used cars adjust if jzj ¸ Z where Z is
the equilibrium cuto¤7

Z =
p

1 ¡Q (1)

Since every agent with a lemon adjusts but only some agents with good cars
adjust, we know that the expected quality on the secondary market is less
than the expected quality of new cars, Q · q0. It follows that Z > 0. If F
places positive probability on the neighborhood (¡Z;Z), then in equilibrium
there will be a positive measure of agents who choose not to trade.

In equilibrium, the quality of cars in the secondary market depends on
the number of agents holding good used cars that decide to adjust, that is Q
depends on Z and F . Let ¸F denote the proportion of cars in the secondary
market that are good quality. Then

¸F =

³
1 ¡

R Z
¡Z dF

´
¼

1 ¡ ¼
R Z
¡Z dF

=
2¼F (¡Z)

(1 ¡ ¼) + 2¼F (¡Z) (2)

and
Q = ¸F + (1 ¡ ¸F )Á: (3)

In order to prove that an equilibrium exists, it is useful to construct the
mapping TF : [Á; 1] ! [Á; 1] as follows. Given Q 2 [Á; 1]; equations (1) and
(2) pin down Z and ¸F recursively. Then given ¸F , equation (3) de…nes
Q0 2 [Á; 1]. We set TF (Q) = Q0. The equilibrium level of Q is then a …xed
point of TF . Equilibrium levels of Z and ¸F follow from equations (1) and
(2).

Existence of an equilibrium Q follows from the monotonicity of TF and
Tarski’s …xed point theorem. All proofs are contained in the appendix.

Proposition 1: TF is non-decreasing, upper semi-continuous, and has the
…xed point property.

7For simplicity we assume that agents adjust when indi¤erent.
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Given Z, ¸F , and Q, the price in the second hand market is determined
by arbitrage between the new and used car markets:

V0 = Q¡ p1 + ¯V0

where p1 is the price of a used car. Solving for the price of used cars

p1 = Q¡ (1 ¡ ¯)V0 (4)

Predictably, the price of used cars is increasing in the quality and decreasing
in the value of purchasing new cars.

Finally, we can solve for the value of purchasing a new car:

V0 = ¼
µ
1 + ¯

·
2F (¡Z)Q+ (1 ¡ 2F (¡Z))

µ
1 ¡ 1

1 ¡ 2F (¡Z)

Z Z

¡Z
z2dF

¶¸¶
(5)

+(1 ¡ ¼) (Á+ ¯Q) + ¯2V0 ¡ p0

A new car purchased in period t is good with probability ¼. With probability
2F (¡Z) the match worsens in period t+1 to the point that the agent sells the
car. Given indi¤erence between purchasing a new or a used car, we assume in
this case the agent purchases another used car. With probability 1¡2F (¡Z)
the agent holds onto the car in t+1 and receives the conditional expectation
of x¡ z2. The new car is bad with probability 1¡¼, in which case the agent
receives Á in period t and sells the car in period t+ 1. Whether the new car
is good or bad, the price of the car in period t is p0 and the agent purchase
a new car in period t+ 2.

Together equations (1) through (5) determine Z, ¸F , Q, V0, and p1.
Up to this point, there is nothing to ensure that V0 and p1 are positive. It

remains to present conditions under which consumers willingly purchase new
cars and the used car market is active. Lemma 1 presents these conditions
and shows that there are parameterizations of the model that satisfy them.

Lemma 1: The following statements are true:

1. p0 · q0 + ¯Á is a su¢cient condition for V0 > 0.

2. p0 ¸ (q0 ¡ Á)(1 + ¯) is su¢cient for p1 > 0.

3. Á ¸ 1
2 is su¢cient for there to exist a p0 that satis…es both of these

conditions.
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The …rst condition ensures that V0 is positive. It states that the p0 is not
so high that consumers do not wish to purchase cars. q0+¯Á is the expected
value of holding the average new car for one period and then trading it for a
bad used car. The optimal strategy can do no worse than this. The second
condition ensures that p1 is positive and rules out scrapping. It relates the
price of a new car p0 to the maximum possible loss in quality from visiting
the used car market q0 ¡ Á. It follows from equation (4) and the fact that

V0 · q0
1 ¡ ¯ ¡ p0

1 ¡ ¯2 : (6)

This condition says that an agent can expect to do no better than hold the
average car with a perfect match.

This completes the solution to the model.

3.2 Discussion
The …rst thing to notice is that, in a lemons model, di¤erent agents face dif-
ferent incentives when contemplating adjustment. These incentives depend
on the quality of their car. Owners of higher quality cars face greater costs
of adjustment. This contrasts with the …xed costs of adjustment normally
imposed by sS models.

We can think of 1¡Q as the cost of adjustment faced by holders of good
cars. The lower is Q; the greater is the cost of adjustment, and the wider
is the range of inaction, (¡Z;Z). Since Q ¸ Á, holders of lemons actually
receive an adjustment subsidy. This is why they all adjust.

3.2.1 A Useful Graphical Analysis

We can depict the equilibria of the model as the intersections of two curves in
the (Z;Q) plane. The …rst curve gives the quality on the secondary market
that results from any choice of Z. Combining equations (2) and (3):

Q(Z) =
2¼F (¡Z)

(1 ¡ ¼) ¡ 2¼F (¡Z) +
1 ¡ ¼

(1 ¡ ¼) ¡ 2¼F (¡Z)Á

The weights on 1 and Á re‡ect the proportion of good and bad cars on the
secondary market. For this reason we refer to Q(Z) as the distribution curve.
Note thatQ(Z) is monotonically decreasing in Z since the proportion of good
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cars is decreasing in Z. When Z = 0 all cars are traded, so Q(0) = q0:When
Z = 1, no good cars are traded, so Q(1) = Á.

The second curve gives the optimal choice of Z given Q:

Z(Q) =
p

1 ¡Q:

We call this the reaction curve. Z(Q) is monotonically decreasing in Q, with
Z(0) = 1 and Z(1) = 0.

Figure 1 depicts these two curves. For simplicity we have placed Z2 rather
than Z on the x-axis. This makes the reaction curve linear. Both curves are
decreasing in Z. When Z = 0, the distribution curve lies below the reaction
curve. As Z approaches 1, the distribution curve eventually lies above the
reaction curve. All equilibrium Z must lie in the interval [

p
1 ¡ q0;

p
1 ¡ Á].

3.2.2 Multiple Equilibria

Recall that the …xed point mapping TF was non-decreasing. The monotonic-
ity of TF is a re‡ection of the positive feedback in adjustment. If agents
believe that the quality of cars in the secondary market has improved, then
the range of inaction narrows and quality in the secondary market improves.
This strategic complementarity opens the possibility for multiple equilibria,
a possibility that is con…rmed by the following example.

Example 1: Suppose that F describes a discrete probability distribution on
f¡ẑ; ẑg where ẑ 2

£p
1 ¡ q0;

p
1 ¡ Á

¢
. Then if agents believe that the

average quality in the secondary market is Á, no holder of a good car
adjusts and the expected quality in the secondary market is Á, whereas
if agents believe that the average quality in the secondary market is q0,
all holders of good cars adjust and the expected quality is q0.

We can understand this multiplicity in the context of Figure 1. The choice
of F in Example 1 implies that the distribution curve Q(Z) is equal to q0
for all Z · ẑ and equal to Á for all Z > ẑ. The distribution curve therefore
intersects the reaction curve at two points: Z = f1 ¡ q0; 1 ¡ Ág.8

Ruling out such multiplicity simpli…es the comparative statics. Assump-
tion 1 presents a su¢cient condition for a unique equilibrium.

8Recall that we have assumed that agents adjust when indi¤erent. If we allowed agents
to randomize when indi¤erent then all qualities between q0 and Á would be possible at ẑ
and there would be a third intersection at ẑ:
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Assumption 1: F has a density f(z). f(z) is symmetric about zero and
single peaked with f(0) < 1p

1¡Á
¡1¡¼
¼

¢
.

Figure 1 can help to clarify the assumption. In order to rule out multiple
equilibria we need the distribution curve to be ‡at. There are two ways to do
this. First, as the cuto¤, Z, increases, some people with good cars who were
adjusting now hold their cars; the bound on f(0) ensures that this number is
small so that the change in Q is small. Second, the bound on f(0) is weaker
for low ¼ or high Á. The reason is that the distribution curve must lie between
Á and q0. Reductions in ¼ or increases in Á both narrow this interval, forcing
the distribution curve to be ‡at regardless of the distribution F .

Proposition 2: Given Assumption 1 the equilibrium is unique.

3.2.3 Comparative Statics

We wish to analyze the e¤ect of an increase in the dispersion of the shock on
the size of the sS bands. Before presenting this result, we must …rst clarify
what we mean by an “increase in dispersion”. We borrow our de…nition of
dispersion from Bickel and Lehmann [1979] and Sargent [1987, p.64-65].

De…nition 1 Consider two Borel probability measures ¹ and º on R. Sup-
pose that both E¹ [x] and Eº [x] are well de…ned and …nite, and that E¹ [x] =
Eº [x] ´ ¹x. Then º has greater dispersion than ¹ i¤ 8x1; x2 such that
x1 · ¹x · x2 we have

Z x1

¡1
dº ¸

Z x1

¡1
d¹ and

Z +1

x2
dº ¸

Z +1

x2
d¹:

If these inequalities are strict then º has strictly greater dispersion than ¹.

This is the natural de…nition of dispersion in the context of sS adjustment
where the main issue that we care about is whether or not a shock takes the
agent outside the sS bands. Intuitively, an increase in dispersion requires
that the probability that the agent adjusts increases regardless of how the
bands (about the mean) are de…ned. Notice that if º is more disperse than
¹; then it is also a mean preserving spread of ¹.9

With this de…nition in hand, we present the main result of this section:
9The converse does not necessarilty hold.
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Proposition 3: If the equilibrium is unique, a (strict) increase in the dis-
persion of the shock to match quality " leads to a (strict) reduction in
the adjustment trigger Z and a (strict) increase in the quality of used
cars Q.

Again Figure 1 provides intuition. An increase in dispersion shifts the
distribution curve in Figure 1 up. Given any range of inaction (¡Z;Z),
an increase in dispersion increases the probability that holders of good cars
adjust. This adjustment leads to an increase in the average quality of cars
in the secondary market. Since the reaction curve does not shift, Z falls and
Q rises.10

This e¤ect is the opposite of what we usually observe in sS models. Nor-
mally, an increase in the variance of the underlying shock increases the option
value to waiting and causes the range of inaction to widen. Since holders of
used cars in our model have a one period horizon, the adjustment decision
is essentially static. The standard e¤ect therefore does not appear. In a
model with more dynamics, such as the model of the next section, both ef-
fects would be present. In that case, we would not be able to sign the e¤ect
of an increase in the dispersion of the shock on the width of the sS bands.

3.2.4 Good heterogeneity and bad heterogeneity

We have shown that an increase in the dispersion of matches reduces the
width of the sS bands. There is another source of heterogeneity in our
model, namely car quality. We can ask how an increase in dispersion of car
quality a¤ects the bands.

To model an increase in the dispersion of quality without a¤ecting the
mean quality, we let Áh denote the quality of a good car (which was previously
…xed at one) and Ál denote the quality of a bad car (which was previously
denoted by Á). All other aspects of the model are the same.

We consider an experiment in which we increase Áh and reduce Ál such
that the average quality stays the same:

¼¢Áh + (1 ¡ ¼)¢Ál = 0:
10It is easy to see what happens if there are multiple equilibria. The distribution curve

still rises. At all equilibria at which the distribution curve cuts from below (above), Z
falls (rises) and Q rises (falls). In particular, Z falls at the two extreme equilibria.
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Following the logic of section 3.1, the cuto¤ is given by

Z =
p
Áh ¡Q:

The increase in dispersion has a direct e¤ect on Z through Áh and an indirect
e¤ect through Q. Both e¤ects work to increase Z. Since the proportion of
good cars on the secondary market is less than ¼, the increase in dispersion
reduces Q for any …xed Z.

Proposition 4: If the equilibrium is unique, a (strict) increase in the dis-
persion of car quality x leads to a (strict) increase in the adjustment
trigger Z and a (strict) reduction in the quality of used cars Q.

Heterogeneity plays two roles in our model. Heterogeneity in incomes,
tastes, or demographics motivates trade. Therefore increases in the this type
of heterogeneity cause the sS bands to contract. Heterogeneity in quality
reduces trade because of the adverse selection problem. Consequently, in-
creases in this type of heterogeneity cause the bands the widen.11 12

4 Dynamics
We now extend the life of the cars so that we can study how the sS bands
evolve as cars age. We assume that cars last for three periods instead of
just two periods. At times we will …nd it convenient to make comparisons
between the model in which cars last for three periods and the previous model
in which cars lasted for only two periods. We refer to the previous model as
the “two-period” model and to the models of this section as “three-period”
models. We consider two information structures. In the …rst, the trading
history is not observable, so that buyers cannot distinguish between two year
old cars that have had two owners and those which have had only one owner.
This version highlights the e¤ect that deteriorating match quality has on the
time pro…le of the adjustment triggers. In the second information structure,
trading history is observable. This version illustrates the role of trade history
in signalling quality and the e¤ect that this signalling has on the evolution
of the adjustment triggers over time.

11The only shock in Hendel and Lizzeri [1999] is a shock to car quality. Therefore if
they were to consider an increase in dispersion it would reduce trade.

12We don’t include depreciation in the model. Depreciaiton could encourage trade if it
were observable or discourage trade if it were unobservable.
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4.1 Unobservable Trading Histories
We retain the basic structure of Section 2, making alterations to allow for
three period lived cars. First, if consumers cannot observe the history of
ownership of the cars they buy, there will be three markets: a market for
new cars, a market for one year old cars, and a market for two year old cars.

Second, we amend the matching function. As before z = 0, during the
…rst period that an agent owns a car whether or not the car is new or used. In
the second period of ownership z = "1, where "1 is distributed on R according
to the distribution F . In the third period of ownership the …t is given by
z = "1 + "2, where "2 is an additional independent draw from F . Note that
without trading, matches will tend to deteriorate over time.

To simplify the analysis, we assume that F has a density f which is
symmetric about zero and everywhere positive on R. The fact that F has a
density will allow us to use Brouwer’s …xed point theorem to prove existence.
Symmetry ensures that upward and downward adjustment are the same.
Positivity ensures that some agents receive shocks so large that they adjust
and thus supply in all three markets is positive. As we did before, we assume
that there is positive demand for new and used cars. At the end of the section
we present a Lemma which presents su¢cient conditions for all markets to
be active.

Agents choose whether or not to adjust and when they adjust they choose
what type of car to buy. The optimal adjustment strategies are described
by threshold levels of z contingent on the age and quality of the car that
the agent possesses. We look for a competitive equilibrium in which (1) the
prices p1 and p2 clear the market for one and two year old cars respectively,
(2) agents choose their thresholds optimally given prices and the expected
qualities in the market for one and two year old cars, q1 and q2, (3) expec-
tations are rational in that q1 and q2 are the average qualities of cars in the
market for one and two year old cars.

As in the two period model, we …x the price of new cars at p0 and the
expected quality of new cars at q0.

4.1.1 Solution

We begin by characterizing the adjustment triggers as a function of the qual-
ity of cars in the used car market. Consider …rst the decision of the agent
who enters period t with a two year old car. Let V2 denote the value of
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this agent’s optimal policy. This value depends on the quality of the car
which is known to be x 2 fÁ; 1g and on the match parameter z. Given these
state variables, the agent chooses whether or not to sell the car and, if the
choice is to sell, what type of car to purchase. As in the two period model,
buyers will be indi¤erent between what type of car they buy in equilibrium.
Without loss of generality, we equate the value of adjusting with the value of
purchasing a two year old car. The value of an optimal policy is therefore:

V2(x; z) = max
©
x¡ z2 + ¯V0; q2 + ¯V0

ª
(7)

where V0 is the value of purchasing a new car. The interpretation is essentially
the same as in the two period model. The …rst term represents the value of
holding on to the current car, whereas the second term represents the value
of adjusting.

Next consider the decision of an agent who enters period t with a one
year old car. The quality of the car is known to be x 2 fÁ; 1g and the match
parameter is z. In this case, the value of an optimal policy is

V1(x; z) = max
©
x¡ z2 + ¯E" [V2(x; z + ")] ; q1 + ¯E(x0;") [V2(x0; ")]

ª
(8)

where E! represents the mathematical expectation with respect to the distri-
bution of the random variable !. Again the …rst term is the value of holding
and the second term is the value of adjusting (this time to another one year
old car). In each case, the agent must form expectations concerning the evo-
lution of the match. If the agent chooses to trade for another car, the agent
must also form expectations over the quality of that car x0. x0 is drawn from
the equilibrium distribution of qualities in the market for one year old cars.

Since some holders of good cars receive terrible matches and adjust, the
expected quality on the secondary market is above that of a lemon. Therefore
all holders of lemons adjust in each period.

Lemma 2: In any equilibrium, all agents with lemons adjust in every period
regardless of the age of their car.

Let ¹z1 and ¹z2 denote the adjustment thresholds for holders of good one
and two year old cars. Equations (7) and (8) imply that an agent sells a
good one year old car if jzj ¸ ¹z1 where

¹z1 =
q

1 ¡ q1 + ¯E(x0;") [V2(1; ¹z1 + ") ¡ V2(x0; ")]: (9)
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and a good two year old car if jzj ¸ ¹z2 where

¹z2 =
p

1 ¡ q2: (10)

Equations (9) and (10) determine the adjustment thresholds as functions
of q1 and q2. We now analyze the determination of these qualities. Consider
…rst the market for one year old cars. Given ¹z1, the mass of agents with high
quality cars who adjust is 2¼F (¡¹z1): Hence the proportion of good cars is

¸1 =
2¼F (¡¹z1)

(1 ¡ ¼) + 2¼F (¡¹z1)
· ¼; (11)

and the expected quality is,

q1 = ¸1 + (1 ¡ ¸1)Á: (12)

The situation is slightly more complex in the market for two year old used
cars. Given ¹z1, the distribution of matches for two year old cars is

G¹z1
(z) = F (z) [2F (¡¹z1)] +

Z ¹z1

¡¹z1
F (z ¡ ")f(")d": (13)

with the associated density:

g¹z1 (z) = 2f (z)F (¡¹z1) +
Z ¹z1

¡¹z1
f(z ¡ ")f(")d" (14)

The …rst term in (13) represents the z’s of the agents who have held their car
for one period. Their match parameter is described by a single draw from F .
The second term in (13) represents the z’s of agents who have held their cars
for two periods. Their match is represented by the sum of two draws from
F , "1 + "2. As these agents chose not to sell their cars last period, "1 lies
between ¡¹z1 and ¹z1. The density of these realizations is f("1). For "1+ "2 ·
z, it must be the case that "2 · z ¡ "1. This gives the second term.

Given ¹z2 and G¹z1
(z), the mass of agents with two year old good cars is

2¼G¹z1
(¡¹z2): Hence the proportion of good cars in the two year old market is

¸2 =
2¼G¹z1

(¡¹z2)
(1 ¡ ¼) + 2¼G¹z1

(¡¹z2)
· ¼; (15)

and the expected quality is
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q2 = ¸2 + (1 ¡ ¸2)Á: (16)

In order to prove existence and analyze the properties of equilibrium,
it is useful to construct the mapping T : [Á; 1] £ [Á; 1] ! [Á; 1] £ [Á; 1] as
follows. Given q1, we can use (12) to de…ne ¸1. Given q1, q2, and ¸1, we
can solve (7), (9) and (10) implicitly for the adjustment triggers ¹z1 and ¹z2.
Then given ¹z1 and ¹z2; equations (11) and (15) pin down ¸01 and ¸02. Finally
given ¸01 and ¸02, equations (12) and (16) de…ne q01; q02 2 [Á; 1]£ [Á; 1]. We set
T (q1; q2) = (q01; q02). The equilibrium values of q1 and q2 arise as …xed points
of T .

Existence of an equilibrium (q1; q2) follows from the continuity of T and
Brouwer’s …xed point theorem.

Proposition 5: There exists an equilibrium in the model with unobservable
trading histories.

Given the equilibrium qualities and adjustment triggers, we can solve for
the equilibrium prices. We …rst calculate the value of purchasing a new car.
V0 must satisfy

V0 = q0 + ¯E [V1(x; ")] ¡ p0 (17)

Note given q1 and q2, the existence of a solution V0 to (17) follows from
standard dynamic programming arguments.

The utility from purchasing in the new car market must be the same as
purchasing in the two year old car market:

V0 = q2 ¡ p2 + ¯V0:
This pins down p2:

p2 = q2 ¡ (1 ¡ ¯)V0 (18)

Similarly, the utility from purchasing in the new car market must be the
same as purchasing a one year old car:

V0 = E
£
x+ ¯

¡
max

©
V0 + p2; x¡ "2 + ¯V0

ª¢¤
¡ p1

This pins down p1:

p1 = E
£
x+ ¯

¡
max

©
V0 + p2; x¡ "2 + ¯V0

ª¢¤
¡ V0 (19)

It remains to place assumptions on the parameters that ensure that V0,
p1, and p2 are all positive. The following Lemma serves this purpose. The
intuition for these conditions is similar to the intuition for Lemma 1.
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Lemma 3: The following statements are true

1. p0 · q0 + ¯Á+ ¯2Á is a su¢cient condition for V0 > 0.

2. p0 ¸ (q0 ¡ Á)(1 + ¯ + ¯2) is su¢cient for p1 > 0 and p2 > 0.

3. If Á ¸ 1
2 ; then there exists a p0 that satis…es both of these condi-

tions.

4.1.2 Evolution of the Bands

In this section we analyze the equilibrium cuto¤s ¹z1 and ¹z2:We …nd it useful
to compare ¹z1 and ¹z2 to the cuto¤ Z in the two period model. To simplify
this comparison we will assume that the parameters satisfy Assumption 1,
so that Z is unique.

Consider …rst the relationship between ¹z2 and Z. Given any ¹z1; ¹z2 and
q2 are determined by a distribution curve and a reaction curve similar to the
two curves in Figure 1. In fact, the reaction curve is equation (10), which
is the same as the reaction curve in the two period model. The distribution
curve is given by combining equations (15) and (16).

q2 =
2¼G¹z1

(¡¹z2)
(1 ¡ ¼) + 2¼G¹z1

(¡¹z2)
+

µ
1 ¡

2¼G¹z1
(¡¹z2)

(1 ¡ ¼) + 2¼G¹z1
(¡¹z2)

¶
Á

This the same distribution curve as in the two period model with the excep-
tion that G¹z1 replaces F . Lemma 4 relates G¹z1 to F . It shows that G¹z1 is
more disperse than F for any ¹z1.

Lemma 4: For any ¹z1 > 0, the distribution G¹z1 is weakly more disperse
than F . Moreover, g (0) · f (0) so that if f satis…es Assumption 1,
then so does g¹z1 .

Since G¹z1 satis…es Assumption 1, the equilibrium ¹z2 is unique. The fact
that G¹z1 is more disperse than F implies that the distribution curve that
determines ¹z2 is bounded below by the distribution curve that determined
Z. This discussion establishes the following proposition.

Proposition 6: Let f; ¼; Á; ¯ be given and let f satisfy Assumption 1, then
¹z2 · Z and q2 ¸ Q.
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Proposition 6 says that because matches are worse after two periods of
shocks than after only one , there will be a greater incentive to trade. The
increased trade causes increased quality.

Now consider the relationship between ¹z1 and Z. Again we can think in
terms of a distribution curve and a reaction curve. The distribution curve is
the same as in the two period model. The reaction curve is now given by:

¹z1 =
q

1 ¡ q1 + ¯E(x0;") [V2(1; ¹z1 + ") ¡ V2(x0; ")]:

If it were not for the term E(x0;") [V2(1; ¹z1 + ") ¡ V2(x0; ")], the reaction curve
would also be the same as in the two period model. Unfortunately, the sign of
this term is ambiguous. The term represents the trade-o¤ between entering
the last period with a good car and entering the last period with a good
match. The following proposition presents a su¢cient condition under which
this term is positive. If this condition is satis…ed then the reaction curve
associated with ¹z1 is bounded below by the reaction curve in the two period
model. It follows that in this case ¹z1 ¸ Z.

Proposition 7: Let f and Á be given and let ¼ < min
n
¼¤ (f; Á) ; 1

f(0)
p
1¡Á+1

o

where ¼¤ (f; Á) is:

¼¤ (f; Á) = 1¡

vuut1 ¡ min

(
1

1 ¡ Á

Z 2
p
1¡Á

0

h
2
³p

1 ¡ Á
´
"¡ "2

i
f (") d"; 1

)
> 0

Then,
¹z1 ¸ Z ¸ ¹z2 and q1 · Q · q2:

Proposition 7 places a bound on ¼. Low ¼ increases the value of having
a good car by reducing the probability of …nding another good car on the
secondary market. This raises EV2(1; ¹z1 + ") relative to EV2(x0; ")

While it may seem natural that ¹z1 ¸ Z ¸ ¹z2. This is not a necessary
outcome of this model. We now present an example in which ¹z1 < ¹z2 = Z.

Example 2: Suppose that F is mean zero, has mass :5 at 0; and mass :5
distributed uniformly over the range [¡10; 10]. Suppose also that ¼ =
Á = :5 and ¯ = :95: The unique equilibrium is given by ¹z1 = :5548 and
Z = ¹z2 = :5830.
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There are two notable aspects to this example. First, Z = ¹z2. The reason
for this is that while Lemma 4 says that G¹z1 is more disperse than F , it does
not say that it is everywhere strictly more disperse than F . The mass at
zero and the uniform distribution on [¡10; 10] imply that G¹z1 (z) and F (z)
are equal on [¹z1 ¡ 10;¡¹z1] [ [¹z1; 10 ¡ ¹z1]. This range includes ¹z2.

The other notable feature is that ¹z1 < ¹z2. The wide uniform component
of F and the mass point at zero also …gure in this result.13 The wide uniform
ensures that there is a signi…cant amount of adjustment. This raises the
probability of …nding a good car on the secondary market. The mass of .5
at zero implies that there is substantial persistence to the matches. Both of
these factors raise V2(x0; ") relative to V2(1; ¹z1 + "):

4.2 Observable Trading Histories
If the trading history of a car is observable to the buyers, there will be four
markets: new cars, one year old used cars, two year old cars with original
owners, and two year old cars with new owners. As before, we use subscripts
to distinguish a car’s age. Because there are two markets for two year old
cars, we use a superscript orig to indicate the original owner market and
the superscript new to indicate the new owner market. The prices in each
market are denoted

©
p0; p1; p

orig
2 ; pnew2

ª
. To distinguish the cuto¤s in this

model from the cuto¤s in the previous models, we denote the cuto¤ matches
for each market with a script ¹s.

We solve the model backwards, beginning with two year old cars. The
reasoning is similar to the two period model. Given j 2 forig; newg, the
value functions are

V j2 (x; z) = max
©
x¡ z2 + ¯V0; qj2 + ¯V0

ª
: (20)

The …rst term in the maximum gives the value of holding on to the current
car, whereas the second term gives the value of adjusting. Any agent holding
a two year old lemon will choose to adjust, since they cannot trade for a
worse car, and they will improve their match. The adjustment triggers for
holders of good cars are given by

¹sj2 =
q

1 ¡ qj2 (21)
13Danziger (1999) has used this distrubutional assumption to simplify the aggregation

of a dynamic sS model.
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Working backwards gives us the value of owning a one year old car, of
quality x with current shock z as:

V1(x; z) = max
©
x¡ z2 + ¯E"

£
V orig2 (x; z + ")

¤
; q1 + ¯Ex0;" [V new2 (x0; ")]

ª

Again the …rst term gives the value of holding, whereas the second term gives
the value of adjusting. It is no longer the case that agents with one year old
lemons will necessarily adjust. It may be more pro…table to enter the second
period with a two year old car that is …rst hand. We therefore must calculate
triggers for both types of car. The trigger for high quality car owners is now:

¹s1 =
q

1 ¡ q1 + ¯
£
E"V orig2 (1; ¹s1 + ") ¡Ex0;"V new2 (x0; ")

¤
: (22)

Let ŝ1 denote the adjustment trigger for holders of one year old lemons. Then
we have,

ŝ1 =
q

max
©
0; Á¡ q1 + ¯

£
E"V orig2 (Á; ŝ1 + ") ¡ Ex0;"V new2 (x0; ")

¤ª
:

Because agents with two year old lemons always adjust, E"V
orig
2 (Á; ŝ1 + ") =

qorig2 + ¯V0, and

ŝ1 =
q

max
©
0; Á¡ q1 + ¯

£
qorig2 + ¯V0 ¡ Ex0;"V new2 (x0; ")

¤ª
: (23)

ŝ1 is greater than zero when the value of su¤ering with a bad car today and
selling it as an original owner tomorrow, Á+¯qorig2 +¯2V0, exceeds the value
of selling a lemon.

Given these adjustment triggers, we now characterize the quality of cars
traded on the second hand markets. We consider the three markets in turn.
Consider …rst the market for one year old cars. Given ¹s1 and ŝ1, the total
mass of agents with high quality cars who adjust is 2¼F (¡¹s1) and the total
mass of agents with low quality cars who adjust is 2¼F (¡ŝ1). Hence the
proportion of good cars in the market is

¸1 =
¼F (¡¹s1)

(1 ¡ ¼)F (¡ŝ1) + ¼F (¡¹s1)
; (24)

and the expected quality is,

q1 = ¸1 + (1 ¡ ¸1)Á (25)
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Consider now the market for two year old cars with new owners. Given
¹snew2 , the fraction of agents with high quality cars who adjust is 2F (¡¹snew2 ).
As agents with good cars make up a fraction ¸1 of new car owners and since
the remaining 1 ¡ ¸1 who own bad cars all adjust, the proportion of good
cars in this market is

¸new2 =
2F (¡¹snew2 )¸1

(1 ¡ ¸1) + 2¸1F (¡¹snew2 )
(26)

Consider …nally the market for two year old cars with original owners.
Originally, a fraction ¼ of agents receive good quality cars and a fraction
1 ¡ ¼ receive bad quality cars. Of the agents who receive good quality cars,
only those owners for whom "1 2 [¡¹s1; ¹s1] retain their cars when they are
one year old. Given ¹s1, we can calculate the measure of matches for original
owners of good two year old cars. This measure is

H¹s1
(z) = ¼

Z ¹s1

¡¹s1
F (z ¡ "1)f("1)d"1: (27)

Note that the integration is over "1 and that the mass of these agents is equal
to ¼[1 ¡ 2F (¡¹s1)]. The number of these agents who adjust is 2H¹s1

(¡¹sorig2 ).
Of the agents who originally receive bad cars, a fraction 1 ¡ 2F (¡ŝ1) retain
their their cars when they are one year old. All of these agents adjust in
the next period. The total number of original owners of bad two year old
cars who put their cars on the market is therefore (1 ¡ ¼) [1 ¡ 2F (¡ŝ1)]. It
follows that the fraction of good cars in this market is

¸orig2 =
2H¹s1

(¡¹sorig2 )

(1 ¡ ¼)(1 ¡ 2F (¡ŝ1)) + 2H¹s1
(¡¹sorig2 )

(28)

We can now calculate the average quality in each second year market

qj2 = ¸
j
2 +

¡
1 ¡ ¸j2

¢
Á (29)

Finally, the value of purchasing a new car, V0, must satisfy:

V0 = q0 + ¯E [V1(x; z)] ¡ p0

The prices in the second period are:

porig2 = qorig2 ¡ (1 ¡ ¯)V0
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pnew2 = qnew2 ¡ (1 ¡ ¯)V0
Again, the utility from purchasing in the new car market satis…es:

V0 = E
£
x+ ¯

¡
max

©
V0 + pnew2 ; x¡ "2 + ¯V0

ª¢¤
¡ p1

This pins down p1:

p1 = E
£
x+ ¯

¡
max

©
V0 + pnew2 ; x¡ "2 + ¯V0

ª¢¤
¡ V0

Existence of an equilibrium is established in a manner similar to that in
the previous section.

Proposition 8: There exists an equilibrium in the model with observable
trading histories.

It remains to present conditions that ensure that V0 and all prices are
positive. Lemma 5 presents su¢cient conditions for all markets to be active.
We omit the proof since it is essentially identical to that of Lemma 3.

Lemma 5: The following statements are true:

1. p0 · q0 + ¯Á+ ¯2Á is a su¢cient condition for V0 > 0.

2. p0 ¸ (q0 ¡Á)(1+ ¯+ ¯2) is su¢cient for p1; pnew2 , and porig2 are all
positive.

3. Á ¸ 1
2 is su¢cient for there to exist a p0 that satis…es both of these

conditions.

4.2.1 Properties of equilibrium

The following proposition states the main results of this section:

Proposition 9: Let f; ¼; Á; ¯ be given and let f satisfy Assumption 1. Then,
every equilibrium in the observable case satis…es: ŝ1 < ¹s1; ¹sorig2 · Z;
and Z ·

©
¹snew2 ; ¹sorig1

ª
. Moreover, there exist parameterizations for

which ŝ1 > 0.
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The intuition underlying this proposition is natural. First, people with
one year old lemons have a greater incentive to adjust than people with one
year old good cars. Thus ŝ1 < ¹s1. Because, people with lemons are more
likely to trade, the proportion of good cars in the new car market is less than
¼ and the proportion of good cars in the original owner market is greater than
¼. For this reason turnover will be a signal of car quality: original owner cars
will tend to be higher quality than new owner cars. This signaling imposes
an adjustment cost on holders of lemons. It is now possible that holders
of lemons who have good matches will refrain from trade in order to take
advantage of the higher quality cars in the original owners market.

Consider now the new owner market. The equilibrium is characterized by
the familiar two curves. The reaction curve is the same as in the two period
model. The distribution curve is given by:

qnew2 =
2F (¡¹snew2 )¸1

(1 ¡ ¸1) + ¸12F (¡¹snew2 )
+

(1 ¡ ¸1)
(1 ¡ ¸1) + ¸12F (¡¹snew2 )

Á

This is the same as the distribution curve in the two period model except that
¸1 replaces ¼. Since ¸1 < ¼ this curve lies everywhere below the distribution
curve in the two period model. Hence, Z · ¹snew2 .

Now compare the original owner market to the two period model. Again,
the reaction curves are the same. The distribution curve is given by:

qorig2 =
2H¹s1

(¡¹sorig2 ) + Á(1 ¡ ¼)(1 ¡ 2F (¡ŝ1))
(1 ¡ ¼)(1 ¡ 2F (¡ŝ1)) + 2H¹s1

(¡¹sorig2 )

There are two di¤erences between this curve and the distribution curve in
the two period model. First, Hs1 takes the place of ¼F . The same arguments
that showed G¹z1 is more dispersed then F imply Hs1 is more disperse than
F . That is, Hs1 (¡z) ¸ ¼F (¡z) (for z > 0). Second, 1 ¡ 2F (¡z) · 1 for
z > 0. Both of these di¤erences shift the distribution curve up relative to
the distribution curve in the two period model. Hence, ¹sorig2 · Z.

Finally, consider the …rst period market. The distribution curve is the
same as in the two period model. To see that the reaction curve shifts down,
we must consider two possibilities: either some agents with lemons choose to
hold their cars or all holders of lemons adjust. If they all adjust, then there
are no lemons with original owners and the quality in original owner market
is 1. It follows that V orig2 (1; ¹s1 + ") = 1 + ¯V0 as any agent in this market
can trade and receive a perfect match. It follows that E"V orig2 (1; ¹s1 + ") ¡
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Ex0;"V new2 (x0; ") > 0, so the reaction curve shifts up and ¹s1 > Z. If instead
some agents with lemons decide to hold onto their cars, it must be because
the original owner market is much better than the new owner market. Again
E"V orig2 (1; ¹s1 + ") ¡ Ex0;"V new2 (x0; ") > 0. One can show that, in this case,
¹s1 >

p
1 ¡ Á > ŝ1 > Z.

5 E¢ciency
In this section we discuss the e¢ciency properties of our model and compare
the equilibria to the equilibrium under perfect information.

If car quality were observable, then all agents would trade every period in
order to guarantee themselves a perfect match. The secondary market price
would adjust so that agents would be indi¤erent between buying good or bad
used cars. The ex ante value of an optimal policy in this case is:

V ¤ =
q0

1 ¡ ¯ ¡ p0
1 ¡ ¯n

In our model, with unobservable quality, ine¢ciency arises due to a lack
of trade. The equilibrium is not informationally constrained Pareto optimal,
since a social planner could achieve the …rst best simply by forcing all agents
to trade. In each period, people would get a car of average quality and a
perfect match. The value of such an arrangement would be V ¤.

Another way to implement the …rst best solution would be through leasing
contracts. Agents would rent a car for one period under the condition that
they trade that car in at the end of the period. In practice, however, standard
leasing contracts tend not to look like this. They frequently contain a clause
that allows the owner to purchase the leased car at a predetermined price.
As long as the price is not so high that agents choose never to keep their car,
the adverse selection problem will return. Some agents will keep good cars in
spite of imperfect matches. This raises the question of whether the optimal
leasing contract is renegotiation proof. Under the optimal leasing contract,
an agent trades in his car in return for a car of average quality (recall quality
is unobservable by all agents other than the owner). An agent with a good
car and with a match z <

p
1 ¡ q0 has an incentive to make a side payment

to the leasing company in order to keep the car. The leasing company has
an incentive to accept the side payment. What form a renegotiation proof
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equilibrium with leasing takes is an interesting question that is beyond the
scope of this paper.14

In the model with unobservable trading history the only misallocation
relative to perfect information was that some agents with good cars failed to
trade. In the model with observable history there is an additional misallo-
cation in the one year old market. Some of the agents with lemons decide
not to trade. The presence of signalling introduces an additional opportunity
cost to adjustment for all agents. In the second period, however, there may
be a gain in e¢ciency. As agents learn which cars are good and which are
bad, the adverse selection problem is reduced and trade incidence increases.

6 Conclusion
The used car market features so prominently in both the literature on ad-
verse selection and in the literature on sS adjustment that it is surprising that
existing models of this market have not, to this date, incorporated both fea-
tures. We presented a model in which sS adjustment arose from an adverse
selection problem. The presence of adverse selection creates a complemen-
tarity between agents adjustment decisions. This has several implications
for the nature of the equilibrium sS policies. As the variance of the shock
process increases more agents adjust and the sS bands shrink. As the car
ages, matches deteriorate, more adjustment takes place and the sS bands
tend to shrink.

14Hendel and Lizzeri [2002] study an adverse selection model with leasing.
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7 Appendix: Proofs of the Propositions
Proof of Lemma 1: To prove the …rst statement note that V0 ¸ q0 + ¯Á+
¯2V0¡p0. The optimal strategy can do no worse than the value of purchasing
a new car, holding it for one period, and then trading it for a bad used car.
The statement follows immediately from this condition.

To prove the second statement note that equations (4) and (6) imply that

p1 ¸ Q¡ q0 +
p0

1 + ¯

The statement follows immediately from the fact that Q ¸ Á.
The third statement follows immediately from the observation that

(q0 + ¯Á) ¡ (q0 ¡ Á)(1 + ¯) = Á+ ¯(2Á¡ q0)

and the fact that q0 · 1:¤

Proof of Lemma 2: Consider …rst holders of two year old lemons.
They choose between q2 + ¯V0 if they adjust now or Á ¡ z2 + ¯V0 if they
hold on to the car. Since q2 ¸ Á they adjust. Now consider holders of
one year old lemons. They receive q1 + ¯E(x;") [V2(x; ")] if they adjust and
Á¡ z2 + ¯E" [V2(Á; z + ")] if they hold. Since holders of two year old lemons
adjust, V2(Á; z + ") = q2 + ¯V0. It follows from (7) that E(x;") [V2(x; ")] ¸
q2 + ¯V0. Since q2 ¸ Á, they adjust.¤

Proof of Lemma 3: To prove the …rst statement note that V0 ¸ q0 +
¯Á+¯2Á+¯3V0 ¡p0. The optimal strategy can do no worse than purchasing
a new car, trading this car for a bad one-year-old used car in the next period,
and then trading that car for a bad two-year-old used car in the next period,
before buying a new car again. The statement follows immediately from this
condition.

To prove that the second condition implies p2 > 0, …rst note that together
equations (17), (8), and (7) imply that

V0 <
q0

1 ¡ ¯ ¡ p0
1 ¡ ¯3 : (30)

Given the deterioration of the match quality, it is not possible to do bet-
ter than purchasing the average car every three periods. This condition,
combined with equation (18) implies
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p2 ¸ q2 ¡ q0 +
p0

1 + ¯ + ¯2

The statement follows immediately from the fact that q2 ¸ Á.
To prove that the second condition also implies p1 > 0, note that equation

(19), q1 > Á and q2 > Á jointly imply p1 ¸ Á ¡ (1 ¡ ¯)V0. The statement
follows immediately from (30).

The third statement follows immediately from the observation that
¡
q0 + ¯Á+ ¯2Á

¢
¡ (q0 ¡ Á)(1 + ¯ + ¯2) = Á+

¡
¯ + ¯2

¢
(2Á¡ q0)

and the fact that q0 · 1:¤

Proof of Lemma 4: Given that G¹z1 and F are symmetric about zero,
it is su¢cient to show that for z · 0, G¹z1(z) ¸ F (z).

Let z < 0. Dividing through by F (z), (13) becomes

G¹z1(z)
F (z)

= 2F (¡¹z1) +
Z ¹z1

¡¹z1

F (z ¡ "1)
F (z)

f("1)d"1

We can rewrite the integral on the left-hand side as:
Z ¹z1

¡¹z1

F (z ¡ "1)
F (z)

f("1)d"1 =
Z ¹z1

0

F (z + "1) + F (z ¡ "1)
F (z)

f("1)d"1

We now argue that for " 2 [0; ¹z1] and z < 0:

1
2
[F (z + "1) + F (z ¡ "1)] ¸ F (z)

If z+"1 < 0 the result follows immediately from our assumptions on f which
imply that F is convex over the interval (¡1; 0].

The case in which z+ "1 > 0 is more complex since F is convex at z¡ "1
and concave at z + "1. Consider any z such that ¡¹z1 < z · 0, and any "1
for which z + "1 > 0 and consider the point: ¡z + "1 > z + "1. De…ne the
line L (x) as follows:

L(x) =
·¡x¡ z + "1
2 (¡z + "1)

¸
F (z ¡ "1) +

·
x¡ z + "1
2 (¡z + "1)

¸
F (¡z + "1)
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Because f is symmetric, L(0) = 1=2. Because F is concave on [0;1), any
x 2 [0;¡z + "1] will have F (x) ¸ L (x). Because F is convex on (¡1; 0]
any x 2 [z ¡ "1; 0] will have F (x) · L (x). Take x = z + "1 so that 0 < x <
¡z + "1. Then, F (z + "1) ¸ L (z + "1). Now de…ne the line l (x) as:

l(x) =
·¡x+ z + "1

2"1

¸
F (z ¡ "1) +

·
x¡ z + "1

2"1

¸
F (z + "1)

Note that L (z ¡ "1) = l (z ¡ "1) = F (z ¡ "1) and L (z + "1) · F (z + "1) =
l (z + "1). As a result, l (x) ¸ L (x) for any x 2 [z ¡ "1;1] : We now have:

1
2
[F (z + "1) + F (z ¡ "1)] = l (z) ¸ L (z) ¸ F (z)

Since F (z + "1) + F (z ¡ "1) ¸ 2F (z) for any z · 0 we have:
Z ¹z1

¡¹z1

F (z ¡ "1)
F (z)

f("1)d"1 ¸
Z ¹z1

0

2F (z)
F (z)

f("1)d"1 = 2 [F (¹z1) ¡ F (0)]

Using the fact that F (0) = 1
2 we have:

G¹z1(z)
F (z)

¸ 2F (¡¹z1) + 2
·
1 ¡ F (¡¹z1) ¡ 1

2

¸
= 1

So that G¹z1(z) ¸ F (z) for any z · 0. Thus G¹z1 is more disperse than F:¤

Proof of Proposition 1: Consider Q;Q0 2 [Á; 1] with Q < Q0. It
follows from (1) that Z(Q) > Z(Q0). It follows from (2) that ¸F (Z(Q)) ·
¸F (Z(Q0)) (the inequality is strict if F places positive probability on the set
[¡Z(Q0);¡Z(Q))[(Z(Q); Z(Q0)]). It follows from (3) that TF (Q) · TF (Q0).
TF (Q) is therefore non-decreasing in Q. We conclude that a …xed point
exists by Tarski’s …xed point theorem. Upper semi-continuity follows from
our assumption that, when indi¤erent, agents adjust.¤

Proof of Proposition 2: Combining equations (1), (2), and (3), we
construct the mapping Z ! Z 0 de…ned by

Z 0 =

s
(1 ¡ ¼) (1 ¡ Á)

1 ¡ ¼ + 2¼F (¡Z) :

Any equilibrium cuto¤ is a …xed point of this mapping. Consider
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dZ 0

dZ
=

s
(1 ¡ ¼) (1 ¡ Á)

1 ¡ ¼ + 2¼F (¡Z)
¼f(¡Z)

1 ¡ ¼ + 2¼F (¡Z) · ¼
1 ¡ ¼f(¡Z)

p
1 ¡ Á:

Assumption 1 implies dZ
0

dZ < 1 which proves the proposition.¤

Proof of Proposition 3: Consider two densities f and g which have
the same mean. Suppose that f is more disperse than g in the sense of
de…nition 1. Consider Q 2 [Á; 1]. Let Z(Q) be de…ned by (1). Since f
is more disperse than g,

R Z(Q)
¡Z(Q) g(z)dz ¸

R Z(Q)
¡Z(Q) f(z)dz which implies that

¸g(Z(Q)) · ¸f(Z(Q)). It follows that Tg(Q) · Tf(Q) for all Q. Let Q¤ be
the …xed point under g. Since Tf(Q¤) ¸ Tg(Q¤) = Q¤; and since Tg is non-
decreasing, the unique …xed point under f must lie in the interval [Q¤; 1).
Note that if f is strictly more disperse so that

R x
¡x g(z)dz >

R x
¡x f(z)dz for

any x then the unique …xed point under f must be strictly greater than Q¤.¤

Proof of Proposition 4: We de…ne the mapping TF (Q;Áh; Ál) as in sec-
tion 3.1 with the obvious modi…cations. We write TF (:;Áh; Ál) to indicate that
this mapping depends on the parameters Áh and Ál. As before, this mapping
is non-decreasing, upper semi-continuous, and has the …xed point property.
Moreover, we assume that there is a unique point at which TF (Q;Áh; Ál) = Q.
Consider Á1h < Á

2
h and Á1l > Á

2
l such that ¼Á1h+ (1¡ ¼)Á1l = ¼Á2h+ (1¡ ¼)Á2l .

We …rst show that TF (Q;Á1h; Á
1
l ) > TF (Q;Á

2
h; Á

2
l ). Fix Q. Let Z(Q; Áh) =p

Áh ¡Q. Z(Q;Á1h) < Z(Q; Á
2
h) implies that ¸F (Z(Q;Á1h)) > ¸F (Z(Q; Á

2
h)).

This together with the fact that fact that ¸F (Z(Q; Á2h)) < ¼ and ¼Á1h + (1¡
¼)Á1l = ¼Á

2
h + (1 ¡ ¼)Á2l establishes TF (Q;Á1h; Á

1
l ) > TF (Q;Á

2
h; Á

2
l ).

Let Q1 be the unique …xed point of TF (Q;Á1h; Á
1
l ) and Q2, the unique

…xed point under TF (Q;Á2h; Á
2
l ). Since TF (Q;Á1h; Á

1
l ) > TF (Q;Á

2
h; Á

2
l ) and

TF (Q;Á1h; Á
1
l ) is non-decreasing, Q2 < Q1. It follows that Z(Q2; Á2h) >

Z(Q1; Á1h).¤

Proof of Proposition 5: First we de…ne a mapping T : [Á; 1]£ [Á; 1] !
[Á; 1] £ [Á; 1] as follows:

Let q1 and q2 be given. Then, from equation (10), we have ¹z2 =
p
1 ¡ q2

and from equation (12) we have ¸1 = (q1 ¡ Á) = (1 ¡ Á). Now consider

¹z1 =
q

1 ¡ q1 + ¯E(x0;") [V2(1; ¹z1 + ") ¡ V2(x0; ")]:

32



It follows from the de…nition of V2 (equation (7)) that

E(x0;") [V2(1; ¹z1 + ") ¡ V2(x0; ")]
= E"

£
maxf1 ¡ (¹z1 + ")

2 ; q2g ¡ ¸1maxf1 ¡ "2; q2g ¡ (1 ¡ ¸1)maxfÁ¡ "2; q2g
¤

Therefore ¹z1, if it exists, is implicitly de…ned by the following equation:

¹z21 = 1 ¡ q1 + ¯E"
£
maxf1 ¡ (¹z1 + ")

2 ; q2g ¡ ¸1maxf1 ¡ "2; q2g
¡(1 ¡ ¸1)maxfÁ¡ "2; q2g

¤

That there exists ¹z1 > 0 that satis…es this equation follows from three ob-
servations. First, given q1, q2, ¸1, both sides of this equality are continuous
in ¹z1. Second, if ¹z1 = 0, the right-hand side is greater than the left-hand
side. Third, if ¹z1 = 1, the left-hand side is equal to in…nity, whereas the
right-hand side is …nite. That ¹z1 is unique follows form the observation that
the left-hand side is strictly increasing in ¹z1, whereas the right-hand side is
weakly decreasing in ¹z1.

Given ¹z1 and ¹z2; equations (11) and (15) pin down ¸01 and ¸02. Given
¸01 and ¸02, equations (12) and (16) de…ne q01; q02 2 [Á; 1] £ [Á; 1]. We set
T (q1; q2) = (q01; q02). The equilibrium values of q1 and q2 arise as …xed points
of T .

The existence of an equilibrium follows from the continuity of T . To see
that T is continuous, …rst note that ¹z1 is continuous in q2 and q1. ¹z2 is a
continuous function of q2 by de…nition. The fact that F has a density means
that ¸01 and ¸02 are continuous in ¹z1 and ¹z2. Finally, it follows from (12)
and (16) that q01 and q02 are continuous in ¸01 and ¸02. Existence follows from
Brouwer’s …xed point theorem.¤

Proof of Proposition 7: Consider a mapping T : [0;1] ! [0;1]
de…ned as follows. Given z 2 [0;1] de…ne the following:

q1 = 2¼F (¡z)
1¡¼+2¼F (¡z) ¸1 = q1¡Á

1¡Á
q2 =

2¼Gz(¡z2)
1¡¼+2¼Gz(¡z2) z2 =

p
1 ¡ q2

(Note Gz satis…es Assumption 1 as long as F does, so for any z there is a
unique z2 (z), q2 (z)). De…ne T (z) = z0 as:

z0 =
q

1 ¡ q1 (z) + ¯E
£
max

©
1 ¡ (z + ")2 ; q2 (z)

ª
¡ »(z)

¤
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where
»(z) = ¸1 (z)max

©
1 ¡ "2; q2 (z)

ª
+ (1 ¡ ¸1 (z)) q2 (z) :

Equilibria are …xed points of T .
Propositions 1 and 2 imply

p
1 ¡ q1 (z) > z for all z < Z. If, in addition,

E
£
max

©
1 ¡ (z + ")2 ; q2 (z)

ª
¡ »(z)

¤
> 0 for all z < Z, then the equilibrium

¹z1 > Z. To show this, …rst note that

»(z) < ¼ + (1 ¡ ¼) q0 =
£
1 ¡ (1 ¡ ¼)2

¤
+ (1 ¡ ¼)2 Á

Second, it is easy to show that E
£
max

©
1 ¡ (z + ")2 ; Á

ª¤
is decreasing in z

for z > 0. So, since Z · p
1 ¡ Á ´ zmax we know that for any z < Z,

E
£
max

©
1 ¡ (z + ")2 ; Á

ª¤
> E

£
max

©
1 ¡ (zmax + ")2 ; Á

ª¤

= Á+
Z 2zmax

0

£
2 (zmax) "¡ "2

¤
f (") d":

Combining two inequalities yields:

E
£
max

©
1 ¡ (z + ")2 ; q2 (z)

ª
¡ ¸1 (z)max

©
1 ¡ "2; q2 (z)

ª
¡ (1 ¡ ¸1 (z)) q2 (z)

¤

> Á+
Z 2zmax

0

£
2 (zmax) "¡ "2

¤
f (") d"¡

£
1 ¡ (1 ¡ ¼)2

¤
¡

£
(1 ¡ ¼)2

¤
Á

=
Z 2zmax

0

£
2 (zmax) "¡ "2

¤
f (") d"¡

£
1 ¡ (1 ¡ ¼)2

¤
(1 ¡ Á)

Let ¼¤ be de…ned as in the statement of the proposition. Then, if ¼ <
¼¤ then

R 2zmax

0 [2 (zmax) "¡ "2] f (") d" ¡
£
1 ¡ (1 ¡ ¼)2

¤
(1 ¡ Á) > 0. Using

Proposition 6 we conclude that any equilibrium has the property that ¹z1 >
Z > ¹z2 and q1 < Q < q2.¤

Proof of Proposition 8: The …rst step is to de…ne the mapping T :
[Á; 1] £ [Á; 1] £ [Á; 1] ! [Á; 1] £ [Á; 1] £ [Á; 1] such that T (q1; qorig2 ; qnew2 ) =³
q01;

£
qorig2

¤0
; [qnew2 ]0

´

Equations (21) and (25) imply ¹sj2 =
q

1 ¡ qj2 and ¸1 = (q1 ¡ Á) = (1 ¡ Á).
Now consider

¹s1 =
q

1 ¡ q1 + ¯E(x0;")
£
V orig2 (1; ¹s1 + ") ¡ V new2 (x0; ")

¤
:
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Manipulation of the de…nition of V orig2 and V new2 (equation (20)) yields:

E(x0;")
£
V orig2 (1; ¹s1 + ") ¡ V new2 (x0; ")

¤
=

E"
£
maxf1 ¡ (¹s1 + ")

2 ; qorig2 g ¡ ¸1maxf1 ¡ "2; qnew2 g ¡ (1 ¡ ¸1)qnew2

¤

Therefore ¹s1 is implicitly de…ned by

¹s21 = 1¡q1+¯E"
£
maxf1 ¡ (¹s1 + ")

2 ; qorig2 g ¡ ¸1maxf1 ¡ "2; qnew2 g ¡ (1 ¡ ¸1)qnew2

¤

That there exists ¹s1 > 0 that satis…es this equation follows from three ob-
servations. First, given q1, qorig2 , qnew2 , and ¸1, both sides of this equality
are continuous in ¹s1. Second, if ¹s1 = 0, the right-hand side is greater than
the left-and side. Third, as ¹s1 ! 1, the left-hand side approaches in…nity,
whereas the right-hand side is …nite. The uniqueness of ¹s1 follows from the
observation that the left-hand side is strictly increasing in ¹s1, whereas the
right-hand side is weakly decreasing in ¹s1.

Finally, equation (23) and the de…nition V new2 gives:

ŝ1 =
q

maxf0; Á¡ q1 + ¯E"
£
qorig2 ¡ ¸1maxf1 ¡ "2; qnew2 g ¡ (1 ¡ ¸1)qnew2

¤
g:

(31)
With ¹s1, ŝ1, ¹sorig2 , and ¹snew2 , equations (24), (26), (27) and (28) pin down

¸01, (¸new2 )0, and
¡
¸orig2

¢0
. Finally given ¸01, (¸new2 )0, and

¡
¸orig2

¢0
, equations

(25) and (29) de…ne
³
q01;

£
qorig2

¤0
; [qnew2 ]0

´
2 [Á; 1] £ [Á; 1] £ [Á; 1]. We set

T (q1; qorig2 ; qnew2 ) =
³
q01;

£
qorig2

¤0
; [qnew2 ]0

´
. The equilibrium values of q1; qorig2 ;

and qnew2 arise as …xed points of T .
The existence of an equilibrium follows from the continuity of T and

Brouwer’s …xed point theorem. The argument for continuity is similar to
that made in Proposition 5 and is therefore omitted.¤

Proof of Proposition 9: We begin by showing that ¹s1 ¸ Z. There
are two cases. First if ŝ1 = 0 then all agents with lemons adjust. Consider
the determination of ¹s1 using the apparatus of …gure 1. The distributional
curve is the same in the two period model. The reaction curve, however,
shifts up. To see this note that since there are no original owners with
lemons, all original owners get to adjust regardless of their match. Thus
V orig2 (1; ¹s1 + ") = 1 + ¯V0 and E(x0;") [V new2 (x0; ")] < 1 + ¯V0. This implies
that

¹s1 =
q

1 ¡ q1 + ¯E(x0;")
£
V orig2 (1; ¹s1 + ") ¡ V new2 (x0; ")

¤
>

p
1 ¡ q1
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It follows that ¹s1 > Z
In the second case, ŝ1 > 0. If ŝ1 > 0, equation (23) implies that the value

of holding a lemon with a perfect match is strictly better than the value
of trading, so that ¯

£
E(x0;")V new2 (x0; ")

¤
< Á ¡ q1 + ¯qorig2 + ¯2V0: Agents

with good cars can do no worse than if they were forced to trade, so that
¯E"

£
V orig2 (1; ¹s1 + ")

¤
> ¯qorig2 + ¯2V0. Combining these two expressions

¯E(x0;")
£
V orig2 (1; ¹s1 + ") ¡ V new2 (x0; ")

¤
> q1 ¡ Á > 0

It follows from equation (22) that ¹s1 >
p
1 ¡ Á > Z.

We now show that ¹snew2 > Z. Consider again …gure 1. The reaction curve
is the same as in the two period model. But, the distribution curve shifts
down. This is because in any equilibrium, ŝ1 < ¹s1 so that the fraction of
agents with lemon’s who adjust is greater than the fraction of agents with
good cars who adjust. This implies that the proportion of good cars in the
new owner market is less than ¼. Given any …rst period cuto¤s (¹s1 > ŝ1),
the equilibrium cuto¤ (¹snew2 ) and quality (qnew2 ) in the new owner market is
determined just as it would be in a two period model with a lower ¼ (note,
uniqueness is ensured since ¼ is lower). Note also that in equilibria in which
ŝ1 > 0, we have the additional restriction that Z < ¹snew2 <

p
1 ¡ Á < ¹s1.

Now we show that ¹sorig2 < Z. Again, the reaction curve is the same as
in the model in which cars last for only two periods. Now, however, the
distributional curve shifts up since there is a greater fraction of agents with
good cars (ŝ1 < ¹s1) and their matches (given by H¹s1 (z)) are more disperse
in the sense of de…nition 1. Thus the equilibrium must have ¹sorig2 < Z.

Finally, we show that if ¼ < (1 ¡ ¼)2 ¯ then ŝ1 > 0. The proof is by
contradiction. Suppose that ŝ1 = 0. Then qorig2 = 1. This implies:

Á¡ q1 + ¯E"
£
qorig2 ¡ ¸1maxf1 ¡ "2; qnew2 g ¡ (1 ¡ ¸1)qnew2

¤

¸ Á¡ q0 + ¯ [1 ¡ ¼ ¡ (1 ¡ ¼)q0] > 0

where the last inequality follows from ¼ < (1 ¡ ¼)2 ¯: The expression for ŝ1
in (31), implies ŝ1 > 0. This completes the proof. ¤
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