

Network Security: Prevention, Detection and Mitigation

Dr. Charles Antonelli

Center for Information Technology Integration School of Information University of Michigan June 22, 2006

Content

Some of this material is covered in a three-month security training course I developed for system administrators at U-M

Course contributors:

- Kirk Soluk, U-M IT Security Services
- Matt Bing, U-M IT Security Services
- About a dozen domain expert guest lecturers
- http://www.itss.umich.edu/training/

Work supported by U-M IT Security Services

Agenda

- Security foci
- Prevention
- Detection
- Mitigation

- Linux and Windows environments
- Introduction to building & using tools

Traditional Security Focus

The infrastructure landscape

- Computing hardware
- Operating systems
- Network infrastructure
 - Routers, switches, hubs
 - Protocols, middleboxes
 - ▼ VLANs, VPNs
- File systems
- Security infrastructure
 - Identification, Authentication, Authorization
- Middleware
- Applications, libraries

User Security Focus

Navigating around the landscape

- Complex, arcane, layered systems & tools
- Onerous, repetitive authentication procedures
- Hidden network infrastructure
- Malicious software, viruses, worms
- Malicious web sites, services
- Risk of identity, data, asset theft

Secure the network

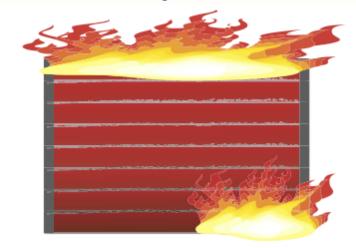
- Prevention
 - Firewalls
 - Network Scanning
 - Security risk assessment
- Detection
 - Intrusion detection
- Mitigation
 - Attack surface reduction

Secure the user

- Prevention
 - Password security
 - Social engineering
 - Secure remote login
 - RunAs User
 - Google Desktop
- Detection
 - Phishing & Pharming
 - Netcraft toolbar
- Analysis
 - Marketscore
- ... not covered further in this talk

Prevention

Firewalls



June 22, 2006

Firewalls

- A firewall limits the extent to which hosts on different networks can interact with one another
- Not a panacea, but a necessary security component in today's networks

Packet level firewalls

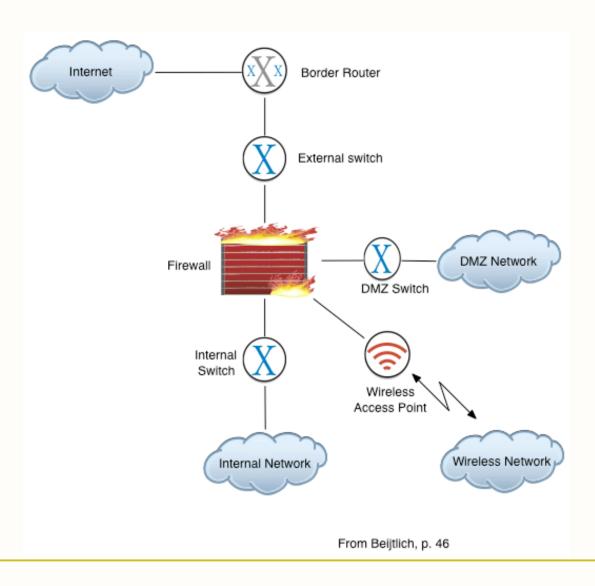
- Firewall inspects incoming network packets
- Blocks packets violating policy rules
- Rules allow blocking based on
 - Source and destination IP address
 - Source and destination port
 - Protocol, flags, type of service, ...

Stateless vs. stateful

- Stateless packet level firewalls treat every packet independently
 - Doesn't relate packets to network connections
 - Doesn't keep any history
- Results in coarse-grained control
 - Forces overly liberal or conservative policies
- Solution: firewall keeps state about recent packet flows
 - Decisions based on packet contents plus stored state
 - More fine-grained control
 - Can obviate application-level firewalls
- Problem
 - All that state consumes firewall resources
- Stateful firewalls are de rigueur

Application-level firewalls

- Application proxy server
 - Accepts client traffic
 - Maintains state, validates traffic
 - Passes validated traffic to server
- Firewall worries about security
 - Obviates security-related server changes
 - Hampers defense-in-depth
- Firewall must understand application protocol
 - Increased complexity
- Stateful packet-level firewalls are an alternative



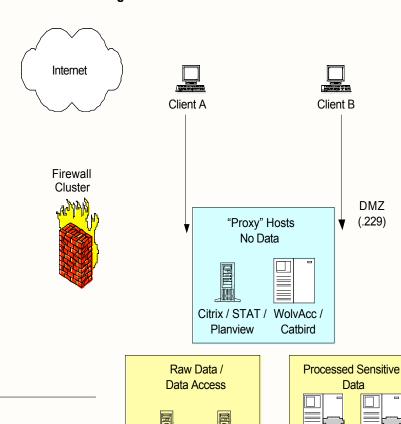
Host-based firewalls

- Firewall run on individual hosts
- Placed between incoming packets and the host network stack
- Acts like a packet-level firewall
- Each host requires policy management
 - Administration headache
 - Simple default policies in distributions
- Defense-in-depth
- Stateful host-based firewalls are de rigueur

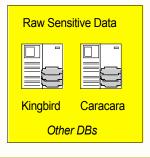
Canonical firewalled network

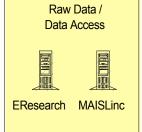
June 22, 2006

Canonical Firewall Zones


Collection of networks with specified security properties

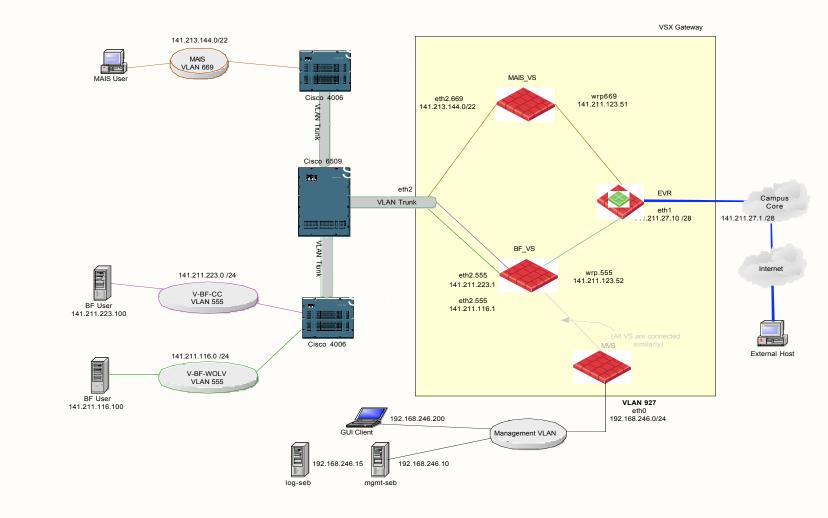
- Perimeter: untrusted
- DMZ: semi-trusted
- Intranet: trusted
- Wireless: untrusted!




Administrative Computing Data Center Design

Data Center Design

Secure Network (.228)



Virtual Firewall

- Single firewall can be impractical for a campus
 - Scalability, privacy, compartmentalization, administration
- Solution: virtual firewall
 - Leverages existing VLAN architecture
 - Separate virtual firewall per VLAN
 - Compartmentalizes administration, rule bases
 - Virtual firewalls co-located in physical firewall
 - Requires QoS, VLAN trunking, one subnet per VLAN
- Checkpoint VSX
 - Deployed by Administrative Computing
 - Available to U-M campus units

Virtual Firewall

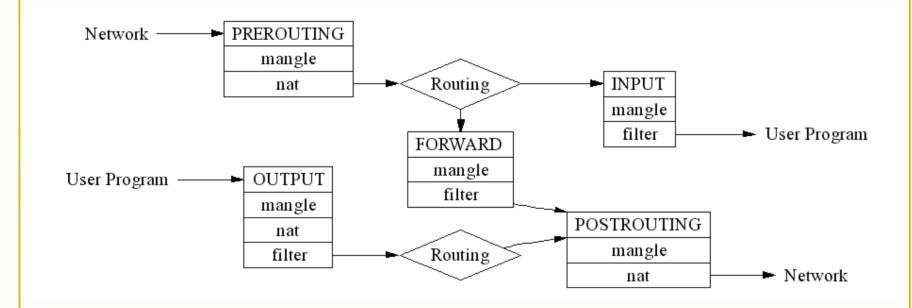
June 22, 2006

Linux Firewall

- "IP Tables"
- Packet-level firewall
- Successor to IP Chains
- NAT support
- Extended functionality via modules
- Stateful filter support
- Applications
 - Host based firewall
 - Stateful packet firewall
 - net.ipv4.ip_forward=1 in /etc/sysctl.conf

Firewall Rules

- (Standard) matching criteria
 - protocol
 - source IP (address/mask)
 - dest IP (address/mask)
 - port (source/destination/both)
 - interface (input/output)
- (Standard) targets
 - ACCEPT
 - REJECT
- Plus stateful matching criteria
 - e.g. is packet part of established TCP connection



filter table

- Default table
- Built-in chains
 - INPUT
 - incoming network packets
 - FORWARD
 - packets being routed through the host
 - OUTPUT
 - locally-generated packets output to network
- Other tables: nat and mangle
 - See the man page

Firewall Traversal

Rob Mayoff

June 22, 2006

IP Tables Example (RHEL4)

```
2SI4#:; iptables -n -L
Chain INPUT (policy ACCEPT)
          prot opt source
                                        destination
RH-Firewall-1-INPUT all -- 0.0.0.0/0
                                                  0.0.0.0/0
Chain FORWARD (policy ACCEPT)
target
          prot opt source
                                        destination
RH-Firewall-1-INPUT all -- 0.0.0.0/0
                                                 0.0.0.0/0
Chain OUTPUT (policy ACCEPT)
                                        destination
target
          prot opt source
Chain RH-Firewall-1-INPUT (2 references)
target
          prot opt source
                                        destination
                                        0.0.0.0/0
ACCEPT
           all -- 0.0.0.0/0
ACCEPT
          icmp -- 0.0.0.0/0
                                        0.0.0.0/0
                                                            icmp type 255
ACCEPT
           esp -- 0.0.0.0/0
                                        0.0.0.0/0
               -- 0.0.0.0/0
                                        0.0.0.0/0
ACCEPT
           udp -- 0.0.0.0/0
                                        0.0.0.0/0
ACCEPT
                                                            udp dpt:631
ACCEPT
           all -- 0.0.0.0/0
                                        0.0.0.0/0
                                                            state RELATED, ESTABLISHED
           tcp -- 0.0.0.0/0
                                        0.0.0.0/0
ACCEPT
                                                            state NEW tcp dpt:22
                                        0.0.0.0/0
ACCEPT
           tcp -- 0.0.0.0/0
                                                            state NEW tcp dpt:80
ACCEPT
              -- 0.0.0.0/0
                                        0.0.0.0/0
                                                            state NEW tcp dpt:443
           tcp -- 0.0.0.0/0
                                        0.0.0.0/0
ACCEPT
                                                            state NEW tcp dpt:5443
           all -- 0.0.0.0/0
REJECT
                                        0.0.0.0/0
                                                            reject-with icmp-host-prohibited
```

June 22, 2006

Interlude: Bastille Linux

- Wizard for locking down Linux
 - Created by a group of security administrators
 - Support for the major Linux distributions
- Categories & step-by-step walkthroughs
 - ... including iptables
- Won't apply any changes until you've answered all the questions
 - Undo feature
- Read-only assessment with risk ratings
- http://www.bastille-linux.org/

Bastille lab

- Install bastille
 - Obtain from Bastille web page or rpmfind.net
 - rpm -iv Bastille-3.0.9-1.0.noarch.rpm
 - On RHEL4, you'll also need:
 - rpm -iv perl-Tk-804.027-1.2.el4.rf.i386.rpm
- Run bastille
 - man bastille
 - bastille --assess ("guaranteed" read-only)
 - bastille
- Explore

Windows Firewall

- On by default for all interfaces (XP)
- Stateful
- Supports
 - remote address restrictions
 - port exception
 - program exception
 - ICMP exception
- Can be managed via Group Policy

Windows Firewall Outbound Behavior (Stateful)

Outbound TCP:

Response allowed from target IP only

Outbound UDP:

Response allowed from any IP; closed after 90 seconds of inactivity

Outbound broadcast and multicast:

Response allowed from same subnet only.
Closed after 3 seconds of inactivity.

Network Scanning

- Examining host(s) from the network
 - What ports are open
 - What services are running
 - What flaws exist in those services
 - What type of OS is running
 - What kind of filtering is in place
- Attack tool
 - Reconnaissance
- Defensive tool
 - Where are the security risks?

Scanners

- Commercial
 - eEye Retina
 - ISS
 - ...
- Open source
 - Nessus
 - Nmap
 - ...

nmap

- Network mapping tool
 - Really a network scanner
- Swiss army knife
- Two-step process
 - Identifies hosts on specified network segment(s)
 - Scans specified ports on each host
- Read the man page thoroughly
 - Especially for limitations ...
- Generally under-appreciated

nmap

nmap

• subnet e.g. 141.211.244.0/26

-n don't map addresses to names

-sS TCP SYN port scan

-sT TCP connect port scan

-sU UDP port scan

-sV detect service versions

-s... several more advanced scans

O use fingerprinting to guess remote OS

-T manually set scan rate

-p range range of ports to scan

many more

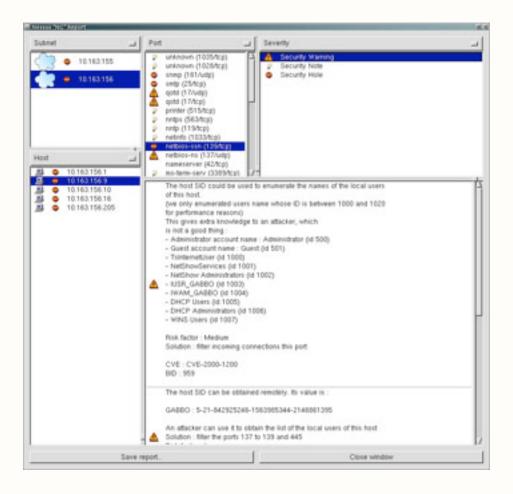
Maintained at http://www.insecure.org/nmap/

Nessus

- Was open-source, GPL
 - ... Nessus 3.0 closed
- Client/server architecture
 - Server placed on host(s) in network
 - ▼ UNIX/Linux, AIX, Mac OS X
 - Client connects to server(s), runs test
 - ▼ Windows, UNIX/Linux
- Strong authentication
 - TLS, aka SSL
 - Certificates used to authenticate server

Install Nessus

- http://www.nessus.org/download/
- On RHEL 4, Nessus 3.0 also needs:
 - sharutils-4.2.1-9.i386.rpm
 - freetype-devel-2.1.9-1.i386.rpm
 - fontconfig-devel-2.2.3-7.i386.rpm
 - xorg-x11-devel-6.8.2-1.EL.13.6.i386.rpm
 - glib-devel-1.2.10-11.1.i386.rpm
 - gtk+-devel-1.2.10-33.i386.rpm



Nessus Results

- Subnet -> Host -> Port -> Severity groupings
- Three severity levels
 - Security note informational
 - Security warning possible vulnerability
 - Security hole verified vulnerability
- Detail pane gives description, suggested fixes, references and links
 - Also gives a standardized vulnerability name; see the Common Vulnerability and Exposures list at http://cve.mitre.org/

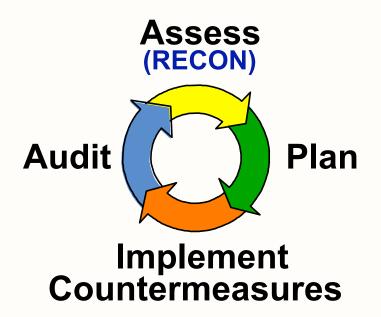
Nessus Display

June 22, 2006

Note

As always, you should seek authorization before performing a network scan using any tool

- Scans can trigger intrusion detection systems
- Scans can crash machines
- Scans can print reams of gibberish
- Great way to get on your system administrator's radar


A Note on Penetration Testing

Actively find weaknesses in your systems

- Reconnaissance
 - Google, WHOIS, Web, DNS, Traceroute
 - Newsgroups, discussions, job postings
- Scanning & Enumeration
 - Nmap, Nessus, Retina
 - DumpSec, SQLPing2, Netcat, snmpwalk
- Exploitation
- Obtaining pen-test authorization is critical!

Risk Assessment

RECON

Risk Evaluation of Computers and Open Networks

Why Risk Assessment?

- No such thing as perfect security
- Foundation for well-informed decisions that justify IT expenditures
- RECON methodology facilitates consistent decisions across U-M

RECON Background

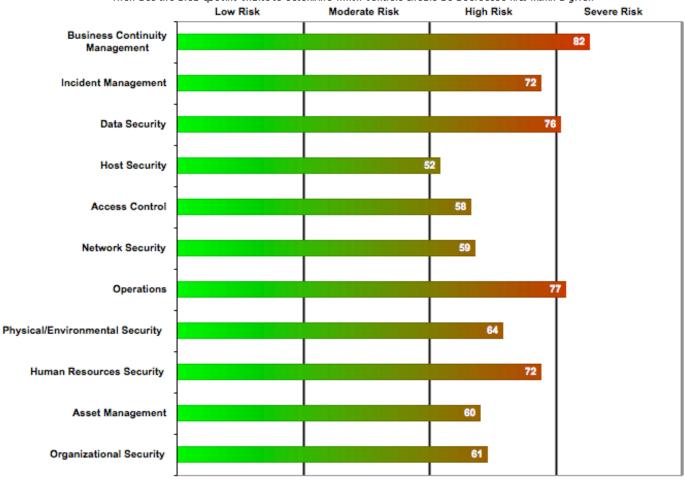
- Produced and maintained by IT Security Services in collaboration with others
 - University Audits, Administrative Computing, Health System
 - Lessons learned from security course projects
 - 36 units have already conducted RECON-based risk assessments
 - Risk assessment methodology for University-wide GLBA compliance effort
- Standards based
 - ISO 17799 Code of Practice for information security management (2005)
 - NIST SP 800-26: Security Self-Assessment Guide for Information Technology Systems
- Self-directed
 - Meant to be performed locally by units, schools, and colleges
- Incorporates real-world, hands-on security testing
 - Results based on fact rather than perception.

RECON Tangibles

- One Excel Spreadsheet
 - Scope Pages (worksheets)
 - Network Diagram
 - Application Scope
 - System Scope
 - Questionnaire
 - Answers determine level of compliance with ISO 17799 Best Practices
 - Risk Analysis Logic
 - Deviation from best practices represents a risk
 - Built-in Reports
 - Graphically depict prioritized risk areas
- Security Test Document
 - Describes how to perform approximately 15 hands-on security tests
 - Test results used to accurately answer a subset of critical questions

RECON Security Tests

- Attack Surface Enumeration
 - Nmap
 - Service verification
 - Service validation
- Password Audit
 - Default vendor passwords
 - Weak (dictionary) user login and database passwords
- Account Security
 - Unused Accounts
- Firewall Security
 - Nmap again from outside the firewall
- War walking
- RAS Authentication
- Encryption Verification
- Vulnerability Scanning using eEye Retina

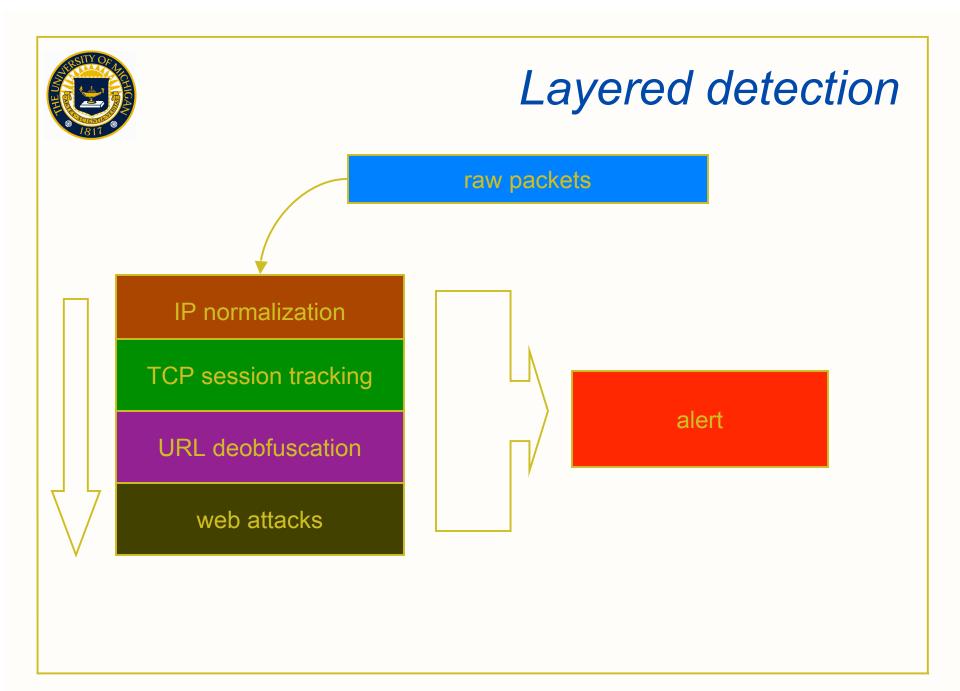


RECON Summary Output

Use this chart to prioritize the areas that should be addressed first.

Then use the area-specific charts to determine which controls should be addressed first within a given

June 22, 2006



Intrusion Detection

Network Intrusion Detection

- The goal of the Network Intrusion Detection System (NIDS) is to surmise what the end host will process at each network layer and look for some indication of intrusion
- A box
 - This is where the magic happens
- Session tracking at each network layer passed up the stack
 - IP defragmentation
 - TCP session reassembly
 - Application layer deobfuscation

June 22, 2006

Signature vs anomaly

- Signature
 - Does this network traffic match a known, well-formed pattern of a particular attack?
 - HTTP GET /awstats?configdir=|cmd
- Anomaly
 - Does this network traffic differ from the usually observed traffic?
- Writing good rules is an art

NIDS issues

- Packet fragmentation
 - Different OS's reassemble overlapping fragments differently
- Out-of-order packets, low TTL, ...
- See Ptacek & Newsham paper
 - ... and Dugsong's fragroute for an implementation
- Most network ambiguities are solved
 - Reasonably permissive TCP/IP stack
 - aggressive timeouts to avoid DoS
 - Do not accept data until ACKed by destination
 - Alert on any obvious anomalies
 - UDP remains a problem
 - connection-less

IN OR LEGISLATION OF THE PROPERTY OF THE PROPE

Snort

- Free
- Excellent way to cut your teeth
- Rule based rather than a language
 - One line per rule
 - Syntax supported by most vendors
 - Official rules
 - User contributed rules
 - bleedingsnort.com
 - isc.sans.org
- http://www.snort.org/
- ... 0day rules aren't free anymore

Mitigation

Attack surface reduction

Some recommendations

- Scan for existing services
 - Nessus, eEye Retina, nmap
- Run only needed services
 - ... and keep them updated!
 - ▼If all you run is sshd, that's where the attacks will come
- RunAs User

Countermeasures

- Manual
 - Block with firewall/router filter rules
- Automated
 - TCP RSTs / UDP port unreachable
 - Race condition with sender
 - Inline blocking
 - Danger, Will Robinson
- These countermeasures are temporary!
 - Buy time to investigate & remediate

IPS

- Intrusion Prevention Systems
 - Inline NIDS
 - ▼"Bump on the wire"
 - Alerts cause traffic to be blocked
 - Drop this packet only
 - Drop packets from this host for some time
 - Has a direct effect on availability

IPS

- You should carefully consider the implications of IPS
 - Attacker spoofs malicious UDP packets from *.root-servers.net
 - ▼Game over

Conclusions

- Practical tools and procedures exist for securing networks
 - For most major platforms and distributions
 - Some good tools are freely available
- Experience is needed to use the tools and interpret the results
 - Don't let that scare you off
- Securing the infrastructure is a problem different from securing the user

June 22, 2006

References

- Richard Bejtlich, "The Tao of Network Security Monitoring," Addison-Wesley, 2004.
- Bob Toxen, "Real World Linux Security: intrusion detection, prevention, and recovery," 2nd Ed., Prentice-Hall, 2003
- Fyodor's Top 100 Network Security Tools http://sectools.org
- nmap http://www.insecure.org/nmap/
- Nessus http://www.nessus.org/
- Insertion, Evasion, and Denial of Service: Eluding Network Intrusion Detection http://www.snort.org/docs/idspaper/
- fragroute http://www.monkey.org/~dugsong/fragroute/
- Snort http://www.snort.org/
- NFR http://www.nfr.net/
- ISS http://www.iss.net/
- RunAs User http://itss.umich.edu/events/download/RunAsUser_sumit_05.pdf
- Google desktop http://safecomputing.umich.edu/tools/download/gd_security.pdf
- Netcraft toolbar http://toolbar.netcraft.com