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Abstract

In this documentation the results are described which were obtained by using a grid
point oriented approach to solve the shallow water equations on the globe. Several test
cases of the shallow water test set have been evaluated.

This work was carried out on behalf of the Deutscher Wetterdienst (DWD).
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Introduction 1

1 Introduction

The program BARGLO [4] of the German Weather Service (Deutscher Wetterdienst,
DWD) solves the shallow water equations on the globe. The space discretization uses
an almost uniform triangular mesh, whose generation starts from a regular icosahedron,
which is embedded into the two-sphere [1]. The further refinement finally leads to a
triangulation (see Section 3), which is almost regular and which provides a data structure
having nice properties with respect to a later parallelization (see Section 5). Having an
approximately equally spaced grid, there is no need for a special procedure close to the
poles as in many other approaches.

Today, spectral methods are the most widely accepted and applied algorithms both
for numerical weather prediction and for the atmospheric part of global climate models.
The idea of using massively parallel computer architectures (perhaps for higher reso-
lutions) has raised the question again, whether grid point models or spectral methods
are more promising. Of course, the advantages and the disadvantages of the two meth-
ods are known, but never compared in a fair and systematic way. Therefore, applying
the grid point oriented approach of the DWD to the standard test suite will not only
contribute to such a fair comparison but also deliver the material which is necessary
for strategic decisions within the DWD’s new global model. As already mentioned,
there is no clear answer to the question whether the spectral technique [3] or a grid
point method is preferable. Both approaches have advantages (especially the grid point
approach offers the principal possibility to use optimal order methods) but the use of
parallel architectures again poses the above question because of the more local features
of grid point based models. Therefore, it is both of theoretical and practical interest
to investigate the given model. For spectral methods there exists a widely accepted
sequence of test cases (see [2, 6]), which will detect the numerical properties of solving
procedures. In this documentation we describe the results which we obtained running
the grid point program BARGLO in its original version and with some optimizations
on all but one the test cases. The optimization of the code, which essentially results in
a modified time stepping, is described later.

The numerical experiments are performed on several resolutions having an average
distance between mesh points of 542 km for the coarsest grid and of 125 km for the
finest one. The corresponding spectral truncation numbers are approximately T21/T42
and T106, respectively, if the grid spacing is considered at the equator.

2 The Continuous Problem

In Cartesian coordinates the shallow water equations are given by the advective form
of the momentum equations and by the continuity equation:



2 The Discretized Problem

Jdu Jdu Jdu Ih+hs)
o Tlae tay ot =0
dv dv dv d(h+ hs)
el - - S A 2.1
m—l—uax—l—vay—l-f%l-g oy 0 (2.1)
%4_“%4_@% h(@+@) = 0
ot dx dy dr Oy

u and v are the horizontal wind components. h represents the depth of the fluid,

hs the height of the underlying mountain. The Coriolis term is f = 2Qsin ¢ with

the latitude ¢ € [—%77, %ﬂ'] varying from the north pole (¢ = %ﬂ') to the south pole

(p = —im). @ =27 /T with T being the length of a siderian day, is the angular velocity
of the earth. The longitude A varies in [0, 27].

In vector representation using Cartesian coordinates with the origin in the center of
the earth the above system (2.1) reads like

%—Y+V-VV+fk><V—I—gV(h—|—hs) =0
%+V-Vh+h(V-V) =0 (2.2)

o2 9 @)
Oz’ Oy’ Oz
or (aa_xi + aa—yj + 88—2 ). 1,J and k are the unit vectors into the three space directions.

Here V := (u, v, w) is the three dimensional wind vector, V is given by (

3 The Discretized Problem

3.1 The Triangular Mesh

The discretization of the continuous problem uses a mesh consisting of spherical trian-
gles, having areas and sides of approximately the same size and length, respectively.
The first step to create this mesh consists in embedding a regular icosahedron (20 tri-
angles, 30 edges and 12 nodes) into the two-sphere. Because the icosahedron may be
placed anywhere in the two-sphere, the poles play no special role. Nevertheless, for
better representation two nodes of the icosahedron are placed into the poles. Because
each of the initial nodes is surrounded by 5 triangles, the angles within the triangles are
2%. The length of each side is given by

ks

L = 2 arccos — 2E;r - Regrin
sin £

with Reqre = 6371 km. Therefore L &~ 7053.6 km. The height of the triangles is

2
H = arcsin (sin Lsin %) - Regrin.
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To compute the coordinates ¢ and A of the twelve initial points on the two-sphere of
the twenty spherical triangles the figure is subdivided into 5 - 4 large triangles (see
Figure 3.1). Each of the five sub-domains consisting of four triangles is shifted in
latitudinal direction (A-direction), by 2% against the previous one. The sub-domains
are equal with respect to ¢.

(3,2) north pole

/\
/\
/ \
(2,2) ______ (3,1)
/\ /
/I N/
/ \/
(1,2) o _____ 2,1
\ /
\ /
j N/ i

(1,1) south pole

Figure 3.1: Principal idea to construct the icosahedral mesh

The final data structure is generated by repeating this initial data part five times
(see Figure 3.2). The refinement of this initial structure is done in a standard way: the
midpoints of the arcs of the spherical triangles are connected by geodesic arcs, yielding
four sub-triangles. This procedure is repeated several times until the desired resolution
is reached. For the refinement depth m > 0 and n := 2™ the total number of nodes is
N = 10n? +2. The number of triangles is T = 20n2. Table 3.1 collects some interesting
details of meshes created by this procedure. A is the average angle of opening and d is
the average Fuclidean distance between the midpoints of two adjacent triangles. The
mesh corresponding to two refinement steps is shown in Figure 3.2.

The discretization which is described later (see Section 3) places all unknowns into
the midpoints of the triangles. This simplifies the difference operators because only
three neighbor points occur in the difference equations and supplies a good locality
for the later parallelization. On the other hand, the resulting mesh is not completely
regular. The distance between neighboring points varies and may cause problems to
achieve the desired order of approximation when discretizing the continuous equations.
From this approach the data structure is derived in a natural way. Five times four
of the initial triangles are connected, resulting in two rhomboids within each of the
five parallelograms. Considering the centers of the triangles which are obtained by the
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Figure 3.2: Main structure of the icosahedral approach and a mesh after two refinement
steps

refinement, five logically rectangular data partitions are created. The number of nodes
per rectangle depends on the number of refinement steps. This number is je X te =
(n+1) x (2n+41) (see Table 3.1). Similarly to the connection of the large initial triangles
the triangles of finer meshes are considered as the basic elements of rhomboids, composed
of a lower and an upper triangle. All the required information concerning the vertices
and the midpoints is computed in a preprocessing step and written to a file which is read
by the main program. The details which are read from this file are the A- and -values
of the midpoints of the triangles, the length of the sides, the distance to neighbor points,
the unit vectors standing perpendicular to the triangles, the areas of the triangles and
information concerning the Coriolis term.
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step Nodes Triangles Length Angle dist.
(km) (grad) (km)

m n N T L A d ie je

0 1 12 20 7674 69.00 3 2

1 2 42 80 3837  34.50 5 3

2 4 162 320 1919  17.30 9 5

3 8 642 1280 959 8.63 542 17 9

4 16 2562 5120 480 431 271 33 17

5 32 10242 20480 240 216 136 65 33

6 64 40962 81920 120 1.08 68 129 65

Table 3.1: Characteristic values for the triangular mesh

3.2 Time Discretization

As time discretization an explicit time—split scheme is used. The advective terms can
be calculated in large time steps, whereas the gravity and Coriolis terms are treated in
smaller steps. In this way, the time step restrictions of the explicit schemes are well
adapted to the wave speeds the terms are dealing with.

For the slower advective changes the following equations are solved in every large
time step:

oV,
—+V,-VV; =
m-l—zvl 0
oy
V,-Vh = 1
8t—|—lvl 0 (3)

The subscript ; denotes the results of the advective time step. Integration is done
with a two—step Lax—Wendroff scheme:

ntl At

\'Z = Vi - 7Vf -VV7
n+s n At n n
hl 2 = hl — TVI . Vhl (32)
vttt — vy ntl nt L
A T TV vV
e\ I v/ (3.3)

At
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The full set of equations including gravity and Coriolis terms are calculated after-
wards with smaller time steps using the advection results of the long ones. Discretization
is done with a semi-implicit Euler scheme. The Coriolis term is evaluated implicitly to
get a more stable discretization. The gravitational term is determined explicitly:

n+1 n
Rl = B 4 % (}”A% - h”ﬂv-vnﬂ)
Vﬂ-l-l _ n Tj4+1 n
v = v g A (ITI —fex TR v 4 h») (3.4)

with j = 1...k. According to the speed of the advection and the fast gravity waves,
respectively, the large time steps are subdivided into k& = 5 smaller ones.

3.3 Stability Considerations

Unfortunately, the discretization for the advection (3.1) is not stable with a straight
forward space discretization, see [8]. A stability analysis for this situation is fairly
complicated. However, a simplified study explains this statement:

Consider the nonlinear, one-dimensional convection equation:

Ou Ou

Time discretization due to Lax—Wendroff with centered space discretization gives:

n—l—l At ul — Un_
u, 2 = u;__au and
2 2Ax
n—I—% n—I—%
U — Uy
u?"’l = uf — Atg 12— "2 (3.6)
2Ax

or after inserting the first equation into the second one

2,2
u7?+1:u”_1Ata " 1 At“a

; ; 5@(“2’11 —uiy) + gm(uﬁz = 2uf + ui,); (3.7)

For the Von Neumann stability analysis (see [7]) the actual calculated solution u is
developed into a Fourier series, u? = E"el*® [? = 1:
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En—l—l 2
G = Tn :1—Iasinq§—%sin2¢, (3.8)

where 0 = AA’;“ denotes the Courant number. The modulo of the amplification factor

G gives the growth of the amplitudes of the solution.

With

2 _ ot
|IG]" =1+ L sin o >1 (3.9)

it is obvious that the discretization is unstable independent from the size of the
Courant number o.

Because of these reasons, which are reflected by the numerical results of the orig-
inal code, we propose a different procedure which has been used in the framework of
BARGLO. The practical improvement is described below (see Section 4) and can be ex-
plained theoretically. Applying a discretization which uses a Lax—Friedrich step instead
of the Euler step within the first part of the Lax—Wendroff scheme gives:

ntl u? 4+ ul At ut o —ul
ui B) — 1+1 1—1 _ =4 1+1 1—1 and
2 2 2Ax
n—I—% n—I—%
Wt =y At T Mier (3.10)
¢ ! 2Ax

instead. The Von Neumann stability analysis gives:

2
G:l—]acosqbsin(b—%sinz(b (3.11)

and

2
|G|> =14 o?sin? (b(% —1)<1lforo<2. (3.12)

This scheme is stable for Courant numbers ¢ < 2. For multi-dimensional problems
the critical Courant number can be smaller. Ideally one should consider the total time
splitting scheme with the Lax—Wendroff scheme for the large steps and the Eulerian
scheme for the small steps together. Nonlinear stability is achieved with an additional
diffusion step, see sec. (3.5).

Further improvement of the stability of the time splitting scheme was gained by per-
forming a Lax—Wendroff time scheme for the small non—advective time steps, too. The
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semi-implicit Euler scheme (3.4) was substituted with a semi-implicit Lax-Wendroff
scheme as follows:

" At hn—l—l — A7
R (7’ e —hnﬂv-vnﬂ) (3.13)
n At (Vitt vy Vitd e n
VJ+% = Vng+ﬁ(thl—fex%—gV(h J+%+h8))
At hn-l—l — h» n n
R+l — g -I-?( ! < L _plitsv . v J+%) (3.14)
Vn—l—l N VAl ng41 i+l
vutl — v o4 % (thl — fex v —;V - — gV (R ‘I'hS))

With these two slight changes it became possible to increase the size of possible time
steps drastically. However, the computational costs for every time step almost double
because of the more expensive Lax—Wendroff scheme within the small time steps. But
the total increase in efficiency is shown with the results of the test cases, see (4).

3.4 Spatial Discretization

A finite volume method on the triangular mesh is used to discretize the governing
equations. The following formula result:

1. Vi, with 1 a scalar quantity:

QFZZ — 1bo)ey;

The used conventions are: index 0 indicates the reference triangle, the indices
v =1,...,3 are used for the surrounding triangles, /; is the length of the three
sides of the triangle, ey; is the unit vector which stands perpendicular to the vector
normal to the triangle and which also stands perpendicular to the side ¢ of the
triangle (because these vectors are given in Cartesian coordinates, V1 is given in
these coordinates, too).

2. V-V, with V.= (V1, V3, V3) = (u, v, w) a vector field:

ro (2 )
= — l; Vi —I-VZ ez)
QFZ; Z:: ko + Vii) (€2
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3. Az, with ¢ a scalar quantity:

1=3 )

1 i
Av = 5 X 5 (= o)

Here the new quantity Az; is the distance between the midpoint of the reference
triangle and the i-th neighboring triangle.

4. Diffusion A2y, with v a scalar quantity:
Because of A%y = Aw with w = A1 there is

1 =3 l
A% = =5 T (w; — wy).
v F ; Ax; (wi = wo)

The formula for At can be used to complete the representation.

3.5 Diffusion

For the nonlinear instability of the Eulerian advection a fourth order diffusion operator
is added to the set of equations (diffusion coefficient Ky). Diffusion has to damp out
high frequent error modes. In BARGLO the diffusion step is calculated after every long
time step for every prognostic variable:

¢smooth = ¢ - AtI(4A2¢

This smoothing has to reduce high frequent error modes by a factor of % within a
time frame of two or three hours.

For a two dimensional model analysis the space discretization of A? on an equidis-
tant grid of mesh size Az starts with the standard second order approximation of the
Laplacian, which is described by the well-known five—point stencil. From this we get
the second order approximation for A2 = AA which is given by the 13—point—stencil:

1
) 2 _8 2
1 -8 20 -8 1
Az 2 8 2
1

This space discretization corresponds to the actual discretization as described in
Section 3.
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A two dimensional analysis using a frequency of the form o = We!?el? gives
qjsmoo At . . . 0 2
G = Tth =1- 16@1(4 (:31112 g + sin? 5) (3.15)

High frequencies correspond to values ¢, 8 close to 7, while low frequencies correspond
to ¢, 8 close to 0. The requirement to reduce high frequent error modes by a factor of
% within the time period T = k - At leads to:

At S |
k -

= (1 -64—K,) ==
G ( -~ ) :

$4

From this we get a condition for the diffusion constant

K= L (1 h) A8

This method affects low frequencies in a negligible way. A table of proposed and
used diffusion constants is given in Section 4.

4 The Shallow Water Test Set

The development of global weather forecast programs usually starts from the shallow
water equations on the sphere. This 2D-problem already exhibits the main difficulties for
the numerical solution of the 3D-problem which finally occurs in global weather forecast.
To detect numerical properties of new numerical approaches and software developments
a standard test set consisting of a series of test cases has been proposed [6]. Any new
development should perform well on these test cases. Because the realized test cases
are described in more meteorological detail below, here the numerical properties which
are checked by the test set are mentioned:

— The advection of a structure having compact support by a specific wind field
checks the behavior of the advection scheme.

— The steady state, nonlinear zonal geostrophic flow with given wind fields tests the
capability of the scheme to handle the poles and, in addition, nonlinearities come
into play.

— Other test cases which are characterized by increasing complexity and realism
look for the treatment of more complicated local features of atmospheric flow like
isolated mountains and driving a low pressure region around the sphere, respec-
tively.
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— Finally test cases providing atmospheric initial conditions of the 500 mb height
and wind fields from several atmospheric states check the capability of the scheme
under realistic conditions.

Of course, the standard numerical test in meteorology, applying a Rossby-Haurwitz
wave is included.

The results of the test cases are evaluated by comparing to analytical solutions and
highly resolved reference solutions. The error is measured in different norms. When
comparing the results of the described test cases with already published results using
implementations of spectral models one should keep in mind the following fact: most
of the test situations consider problems with relatively smooth phenomena. They can
be represented more or less exactly using frequencies up to a relatively small truncation
number. Therefore, the spectral methods provide quasi exact solutions in these situ-
ations. This is not the case for grid point oriented approaches because their inherent
locality is not able to detect global smoothness.

Because the numerical properties of the program BARGLO have to be compared to
those which have been reported for spectral methods [2] it is of interest to collect some
characteristic values which have been used there (Table 4.1).

Spectral Truncation | Grid Points | Distance at | Diffusion Constant | Time Step
M the equator Ky At

42 | 64-128 312 km 0.50 - 1016 1200 s

63 96 - 192 208 km 1.00-10% 900 s

106 | 160 - 320 125 km 1.25-10" 600 s

170 256 - 512 78 km 2.00- 103 450 s

213 | 320-640 62 km 8.00 - 10'2 360 s

Table 4.1: Characteristic values for test cases using spectral methods

Some parameters relevant to the earth and all test cases are not used uniquely

throughout the literature. Therefore we specify how we have used them:

— radius of the earth: R_,;;, = 6371 km instead of 6371.22 km

— angular velocity: Q = s

2n —1

precision instead of the fixed value Q = 7.292 x 1075571

— gravitation g = 9.81% instead of 9.80616%

(I'= siderian day = 86164.1 s) computed in single

All of the analytic representations of initial states for the wind or for the geopotential

height are given in spherical coordinates.

The program BARGLO requires them in

Cartesian form. If the surface vector (U, V)T is extended to the three-dimensional
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vector (U, V, W)T where we assume W = 0, the Cartesian formulation of the velocity

vector (u,v,w)” can be calculated by the transformation
—sin A —sin@cosA cos@cosA U
v | = cosA  —singsin A cospsin A V
0 Cos sin ¢ w

As an example consider the test case 1. Here we have

U Up (cos ¢ cos av + sin ¢ cos Asin «)
|4 = —Up sin Asin o
w 0

Then the Cartesian representation is

—Upsin A cos ¢ cos «
v | = | Up(cosAcospcosa+ sin¢sina)
w —Up cos psin Asin «

To have all components within the plane of the triangles the tangential components
are calculated due to the rules which are specified in [4]. Any vector V is projected

using the formula
Vigng=V—<V,n>n (4.1)

where n is the unit normal vector perpendicular to the plane of the triangle.

For all the experiments a standard output is given which describes the relative change
of quantities like total energy and total mass with time. For most of the experiments
we simulated a ten day period. Only test case 1 needs a twelve days simulation to be
back at the initial situation, and the test cases representing real atmospheric states are
provided for a five day forecast.

ho = .29400000E+05 hqu(t=0) = .23172501E+05
hour kin.energy pot.energy tot.energy tot.mass var. of geop.
0 .59850E+21 .80633E+21 .14048E+22 .14755E+19 -.24347E-10
1 .99966 1.00031 1.00004 1.0000001 .16976E-10
2 .99939 1.00059 1.00008 .9999998  -.91625E-11
3 .99924 1.00081 1.00014 .9999994 .21802E-10

Table 4.2: Part of the standard output of BARGLO

Because the different quantities are defined in a special way, their calculation is given
here:
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Z V,; - V;area;

triangles

&| =

— kinetic energy: Fi;, =

. 1 —\ 2
— potential energy: E,o = %0 Z (hi — h) areaq;

triangles

. _ 0
— mass: m = — h; area;

g triangles

Here h = Y triangles iarea;/sur face is the weighted mean value of the geopotential.
sur face is the sum of the areas of all planar triangles. Relative errors are given in
terms of [, /s and [.,-norms. With a true solution to a test case ur and

Ztriangles U; area,

sur face

I(u) := / udo approximated by
sur face

these quantities are defined for a scalar quantity as

()
I(Jurl)

, = VAlu—vrl)
I(u7)

- max(|u — url|)

max |ur|
The modifications for vector quantities are due to [6].

Performance measurements are not evaluated, because the current test is more con-
cerned with numerical questions than efficient programming. The experiments have
been done using a IBM RS6000 workstation. The code is not optimized, especially not
with respect of cache usage. Such a tuning is of future interest. All data used DOUBLE
PRECISION representation.

The sequence of experiments is performed using the diffusion constants as given in
Table 4.3. They have been selected from [4]. The influence of the diffusion constant due
to Section 3.5 is investigated later. For the mostly used time step sizes we give values
of K4 as proposed by the theoretical analysis of Section 3.5. The At which was used to
calculate the diffusion coefficient is mentioned in parentheses. Additionally, we give the
At which were calculated due to the stability condition. A systematic study of possible
values for these quantities is postponed.

For all test cases we show results using both the original form of the program and the
modified program (modified especially with respect to time stepping and with respect to
the handling of the data structure). If nothing is specified, the presented results concern
the program in its original form. The results obtained with the modified program are
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refinement depth diffusion constant At
m K4 used | K4 proposed (T=2) | proposed
3 7.3-10'7 | 1.5- 1017 (At = 3600s) | 8727 s
4 4.5-10' | 1.0- 10'°(At = 1800s) | 4327s
5 3.7-10% | 7.1-10%(At =900s) | 2164 s

Table 4.3: Diffusion constant depending on refinement depth and time step size

specified explicitly. The direct comparison of the calculations on the triangular mesh
and on grids as they are used for spectral transform methods is not so easy because
the mesh spacing in the latter case varies from the pole to the equator. The different
spectral truncations correspond to approximate distances between neighboring points
at the equator as follows: T42 (312 km), T63 (208 km), T106 (125 km), T170 (78
km) and T213 (62 km), respectively. For the triangular mesh the average distance
between midpoints of neighboring triangles does not vary as extremely. For the different
refinement steps we have average distances of 542 km (m=3), 271 km (m=4), 136 km
(m=>5) and 68 km (m=6), respectively (see Table 3.1). This has to be kept in mind
when comparing time step sizes and diffusion coefficients as they have been used for the
different test cases and numerical techniques.

4.1 Advecting Cosine Bell

This test case does not deal with the complete set of the shallow water equations. It
concentrates on the advective component of the numerical approach. A cosine bell is
placed at predescribed positions and advected over the sphere. It circulates around the
equator, over the poles and at slight angles to these extreme values. After a simulation
time of twelve days the bell should be back at the initial position. For this test case
the predicted wind field is overwritten by an analytically specified wind field every time
step. The analytical specification of the wind field and of the cosine pattern is given
in [6]. It is necessary to transform the given definitions to the Cartesian coordinate
system. Starting from the specifications of u,v and h as given in [6] we have:

v = —Upsin Acosgpcosa (4.2)
= Up(cos Acosgcosa+sin psin a) 4.3)
w = —Uycosesin Asina 4.4)
ho (14 cos(%))g ifr<R
— 2 R
ho= {0 itr>R (45)

ho = 1000m is prescribed and r is the great circle distance between some arbitrary
point on the sphere and the center of the cosine bell [6].
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The numerical experiments have been performed using the diffusion constant Ky
as specified in Table 4.3 for the corresponding refinement step. Table 4.4 contains
the relation of the initial and final values of energy, mass and geopotential height.
Additionally, the time step size is reported. These time step sizes produced stable
results. A systematic search for the largest possible time step size can be done later, but
always considering the accuracy requirements. Comparing the time step sizes of At =
1200s and At = 600s as they are used for the tests using spectral models with resolutions
corresponding to T42 and T106, respectively, larger time step sizes are allowed even for
the original program.

Figure 4.1: Initial state of wind fields with « =0 and a = 7

The first picture (Figure 4.1) shows the initial states of the wind field for different
1

directions of &. The maximum velocity v,,; is 38.609 ms™".

This version of the program produces results which are not satisfactory for resolutions
below refinement depth m = 5, as the loss of the total energy shows. The variation of
the angle of rotation has no influence on the behavior of the program, as the results
for the different resolutions prove. Figure 4.2 shows the initial and the final state of
the cosine bell for o« = 0 using a resolution with m = 5 and calculating with At = 900
seconds. The profile of the cosine bell is slightly damaged and a small wave occurs
behind the moving profile. According to this phenomenon the contour lines are more
dense at the back end of the bell and less dense at the front of the profile. The difference
between the initial state and the final state within the critical region is plotted in the
upper part of Figure 4.3. The difference varies from -240 m to 210 m, approximately.
Varying the direction of the bell’s movement (o = 7 instead of @ = 0.0) shows no
significant difference. Again, the oscillation is behind the bell. But now, due to the
changed direction at another position (see Figure 4.3). In Figure 4.4 the error norms
(looy 11, l2) of the height errors for all angles using refinement depth m = 5 and At = 900
are shown. The relative errors seem to be large. Looking closer at the values, the

reason for this is a small shift of the final cosine bell with respect to the reference bell
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after 2 days | after 6 days | after 12 days
At E M E M E M
3600 | 0.659 0.989 | 0.490 0.968 | 0.390 0.937
1800 | 0.936 0.995 | 0.845 0.984 | 0.751 0.968
900 | 0.990 0.997 | 0.972 0.992 | 0.946 0.984
3600 | 0.656 0.989 | 0.491 0.968 | 0.393 0.937
1800 | 0.936 0.995 | 0.845 0.984 | 0.752 0.967
900 | 0.990 0.997 | 0.972 0.992 | 0.946 0.984
3600 | 0.659 0.989 | 0.517 0.973 | 0.390 0.937
1800 | 0.936 0.995 | 0.864 0.986 | 0.751 0.968
900 | 0.990 0.997 | 0.976 0.993 | 0.945 0.984
3600 | 0.680 0.991 | 0.518 0.973 | 0.396 0.938
1800 | 0.936 0.995 | 0.865 0.986 | 0.752 0.967
900 | 0.990 0.997 | 0.976 0.993 | 0.946 0.984

angle

o=

Q
Il
[T

o= 0.05

a=72-0.05

TR WUt R W ot W ot W B

modified program

a=20 5 | 1800 | 0.980 0.995 | 0.943 0.984 | 0.896 0.968
5 900 | 0.987 0.997 | 0.965 0.992 | 0.934 0.984
a=7 5 | 1800 | 0.980 0.995 | 0.944 0.984 | 0.897 0.968
5 900 | 0.987 0.997 | 0.965 0.992 | 0.934 0.984
a=0.05 5 | 1800 | 0.980 0.995 | 0.952 0.986 | 0.895 0.968
5 900 | 0.987 0.997 | 0.965 0.992 | 0.933 0.984
a=75-=0.05 |5 | 1800 | 0.980 0.995| 0.953 0.986 | 0.897 0.968
5 900 | 0.987 0.997 | 0.965 0.992 | 0.935 0.984

Table 4.4: Advection of the cosine bell; relative conservation of energy and mass, original
and modified program

(see Figure 4.7). Therefore the centers of the two do not coincide and produce a large
error. The maximum value of the final bell, which is for & = 0.0 equal to 959.56 m,
differs with respect to the maximum of the reference bell, which is for this resolution
989.75 m just by about 30.0 m. This again comes from the fact, that the specified
center of the bells in general does not meet a center of a triangle and results in a
velocity error. This influences the height of the errors, too. For the modified program
using the improved time stepping the variation of the angle has no influence on the
quality of the results. This is shown here for refinement step m = 5. Even with a
time step size twice as large as allowed for the original program the results are of the
similar accuracy. A possible time step size can be chosen three times larger than for
the corresponding spectral computations. The error norms as shown in Figure 4.8 are
larger than those reported for the unchanged algorithm. The reason for this may be
the introduced artificial averaging (comparable to some artificial diffusion) during the
modified time stepping procedure in combination with the principal facts which were
already mentioned above. Comparing the structure of the error as presented both in
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Figures 4.3 (above) and in Figure 4.6 with that reported for spectral methods ([2],
Figure 1.2 b) shows the similarity.

rrrrrrrrorm

nitiol height field

rrirrirrirT

nitiol height field

Figure 4.2: Initial state and final state of the advecting cosine bell (o« = 0,m =5, At =
900 s), contour interval 100 m
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Figure 4.3: Above: difference between initial and final state of the cosine bell (a =

0, m = 5, At = 900), contour interval 20 m (solid lines negative, dashed lines positive);

below: final state of the cosine bell (o« = 5, m =5, At = 900 s), contour interval 100 m
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Figure 4.5: Final state of the cosine bell (m = 5, @ = 0.0 and a = 7, At = 900),
contour interval 100 m, modified program
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Figure 4.6: Height difference between initial and final state of the cosine bell (o =
0, m = 5, At = 900), contour interval 50 m (solid lines negative, dashed lines positive),
modified program

ht for test case 1, g=7n/2, mpdified vergion

height for tgst case 1, x=0, mpdified versipn he
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Figure 4.7: Longitudinal and latitudinal cut through the initial and final cosine bells

Z, respectively, modified program

fora=0and o = 7,
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4.2 Steady State Geostrophic Flow

This test case is a steady state solution to the non-linear shallow water equations.
Because of the smoothness of the geopotential height and the wind field this example is
a trivial test for spectral methods. Even for low resolutions the solution is approximated
well. The test is performed using the standard parameter as specified in [6].

Starting from the specifications of u, v and h as required we have after transformation
to Cartesian coordinates the same initialization for w,v and w as in test case 1. The
geopotential height is given by

1
h=hy— (RearthQuo + §u(2)) (— cos Acos@sin a + sin 0 cos 04)2

with hg = 2.94 - 10*m?s72, ug and «, respectively, as in test case 1.

Table 4.5 shows the results concerning relative mass and energy for the original time
stepping. For the coarse resolution m = 3 the time step size of 3600 seconds runs
into stability problems for any angle a. Table 4.5 gives the time step sizes for which
stable results were obtained. The possible time steps are smaller than those used for
experiments with spectral methods. The results are independent from the angle used.

For this test case the modified time stepping allows an extremely enlarged time
step size. Again, the results are independent from «. Therefore results using coarser
resolutions m = 3 and m = 4 are reported only for & = 0.0. Even with a time step
size which is more than six times larger for m = 5 the final results are stable. The
mass is conserved more or less exactly, while the development of the energy shows a
nearly linear increase. This gain of energy is reduced when time steps with At = 675 s
are used. Compared to the original version the new time stepping enables larger time
steps, which now are even larger than the usually used At for the spectral methods.
Figure 4.9 shows the initial height fields for the test situations using the angles o = 0.0
and a = 7. The development of the error is reported in Figure 4.10.

The structure of the error reflects to a certain degree also the underlying structure
of the grid. Ten of the initial discretization points on the initial icosahedron can be
recognized. These are points, where only five neighboring cells exist. Such a symmetry
is not only observed for test case 2, but also for test case 3. This phenomenon is
presented in Figure 4.18, looking at the north pole. The height- and wind-errors in
Figures 4.11 and 4.12, respectively, are small and show a reasonable development. For
the modified program the errors are again larger than for the original version. The
reported results in Figures 4.14 and 4.15 refer to m = 5 with At = 675 s. The enlarged
errors are explained by the larger time steps. In Table 4.5 the results for the modified
program give the impression of stability for all the time step sizes. But the height and
wind errors with At = 900 s show an unstable behavior after approximately 200 hours
(Figures 4.14 and 4.15). This time step therefore is too large for this test on refinement
depth m = 5.
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after 2 days | after 5 days | after 10 days
At E M E M E M
3600 | 0.992 0.998 | 0.980 0.993 | 1.617 0.795
1800 | 0.991 0.999 | 0.976 0.997 | 0.952 0.994
450 | 0.998 1.000 | 0.994 0.999 | 0.989 0.998
120 | 0.999 1.000 | 0.999 1.000 | 0.997 1.000
3600 | 0.992 0.997 | 0.980 0.993 | 1.612 0.803
1800 | 0.991 0.999 | 0.976 0.997 | 0.952 0.994
450 | 0.998 1.000 | 0.994 0.999 | 0.989 0.998
120 | 0.999 1.000 | 0.999 1.000 | 0.997 1.000
3600 | 0.992 0.997 | 0.980 0.992 divergent
1800 | 0.990 0.999 | 0.975 0.997 | 0.951 0.994
450 | 0.998 0.999 | 0.994 0.999 | 0.988 0.998
120 | 0.999 0.999 | 0.999 0.999 | 0.997 0.999
3600 | 0.992 0.997 | 0.980 0.993 | 5.017 0.869
1800 | 0.990 0.999 | 0.975 0.997 | 0.950 0.994
450 | 0.998 1.000 | 0.994 0.999 | 0.988 0.998
120 | 0.999 1.000 | 0.999 1.000 | 0.997 1.000

angle

a=20

o= 0.05

Q
Il
[T

—0.05

Q
Il
[T

T W WUt B W WU R W WOt e W W B

modified program

a=20.0 3 | 3600 | 1.007 1.000 | 1.018 1.000 | 1.037 1.001
4 | 1800 | 1.005 1.000 | 1.014 1.000 | 1.028 1.000
5 900 | 1.003 1.000 | 1.008 1.000 | 1.017 1.000
5 675 | 1.002 1.000 | 1.006 1.000 | 1.011 1.000
a=0.05 5 900 | 1.003 1.000 | 1.008 1.000 | 1.017 1.000
5 675 | 1.002 1.000 | 1.006 1.000 | 1.011 1.000
a=73 5 900 | 1.004 0.999 | 1.010 0.999 | 1.020 0.999
5 675 | 1.003 1.000 | 1.007 1.000 | 1.014 0.999
a=7%2-0.05 |5 900 | 1.004 1.000 | 1.010 0.999 | 1.020 0.999
5 675 | 1.003 1.000 | 1.007 1.000 | 1.014 0.999

Table 4.5: Zonal geostrophic flow; relative conservation of energy and mass, original
and modified program
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Figure 4.10: Zonal flow, height errors after 120 (top) and 240 hours (below), (v = 0.0),

At =120 s
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Figure 4.18: Symmetry of the height errors after ten days due to the space discretization,
(test case 2 left and test case 3 right)

4.3 Steady State Geostrophic Flow with Compact Support

This case is a steady state solution to the non-linear shallow water equations. Because
of the smoothness of the geopotential height and the wind field this example is a trivial
test for spectral methods. Similarly to the test case 2, for principal reasons grid point
approaches cannot be expected to work as good on this problem as spectral methods
do. Even for low resolutions the solution is approximated well. The test is performed
using the standard parameter due to [6]. The problem description is as specified in
Section 4.2. After transformation of the initial conditions due to [6] the velocities in
Cartesian coordinates are:

= —sinA-u
CosA-u
=0

T < g
I

The height field is used as given in [6].

To produce stable results with the unchanged algorithm the time step size has to be



Steady State Geostrophic Flow with Compact Support

after 2 days

after 5 days

after 10 days

angle | m At E M E M E M

a=0 | 3 |3600| 0961 0.999 | 0.922 0.999 | 0.875 0.998
4 11800 | 0.993 1.000 | 0.986 0.999 | 4.642 0.981
4 1 900 | 0.992 1.000 | 0.981 1.000 | 0.965 0.999
5 | 2251(0.993 1.000 | 0.996 1.000 | 0.992 1.000

modified program

a=0 | 3 |3600| 0975 1.000 | 0.956 1.000 | 0.940 1.000
4 13600 | 1.012 1.000 | 1.031 1.000 | 1.065 0.999
5 | 1800 | 1.007 1.000 | 1.019 1.000 | 1.038 1.000

35

Table 4.6: Zonal geostrophic flow with compact support; relative conservation of energy
and mass, original and modified program

considerably smaller than expected, as in the previous case. The improved version of
the program is able to use time steps which are three times larger than for the reported
spectral methods. For this case the time step sizes can be increased by a factor of about
4 for m = 4 and even more for m = 5.

Figure 4.19 shows the initial wind and height fields, while Figure 4.20 reports the
development of the height error. Looking to the wind and height errors again, we have
acceptable small errors, which are again larger for the modified program. But one should
keep in mind the considerably larger time steps.
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Figure 4.22: Zonal flow with compact support, height errors after 120 (top) and 240
hours (below), At = 1800 s, modified program
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4.4 Zonal Flow over an Isolated Mountain

A first approximation to realism is the usage of some artificial topography. The center
of an artificial mountain is placed at the position A = %ﬂ' and ¢ = . The maximal
height is 2000 m.

90° 90°

-90° -90°

Figure 4.23: Zonal flow over an isolated mountain; topography (contour interval 100 m)

After transformation to Cartesian coordinates the initial wind field is given by

U = —ugcospsin A
V = wugpcospcosA
W =0

A similar wind field has also been used in test cases 1 and 2 for &« = 0. Here we use the
same definitions with ug = 20.0ms™!. The height field is used as given in [6].

This test case has no analytical solution. Therefore, an error estimation requires
a reference solution which has to be computed by some other solving method using a
fine resolution. The reference solutions used in this and the following two test cases
are taken from the spectral transform shallow water model described in [2]. They are
provided for each day and therefore the error norms are calculated in intervals of 24
hours. The forecast for this test case is computed for ten days.

Table 4.7 contains the relative conservation of the initial values of energy and mass.
With the original program, stable results can be produced with the specified At . To
produce stable results with the modified version, the time step size can be chosen up to
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At

after 2 days
E M

after 5 days
E M

after 10 days
E M

ol W B

1800
900
225

0.988 1.000
1.000 1.000
1.002 1.000

0.951 1.000
0.985 1.000
0.998 1.000

0.869 1.000
0.956 1.000
0.997 1.000

dified program

S S N N =

3600
3600
1800
1800

900

1.027
1.033
1.016
1.018
1.010

1.000
1.000
1.000
1.000
1.000

1.053
1.079
1.030
1.039
1.018

1.001
1.000
1.000
1.000
1.000

1.083
1.168
1.047
1.080
1.036

1.001
1.001
1.000
1.000
1.000

41

Table 4.7: Zonal flow over an isolated mountain; relative conservation of energy and
mass, original and modified program

At = 1800 s, which is eight times higher than for the original program. This is much
larger than the time stepping in the referenced spectral model (At = 600 s). Comparing
the results (see table 4.7) in case of At = 1800 s and At = 900 s there is a small increase
of the energy. Furthermore the error norms are up to two times higher for At = 1800 s.
Therefore we decided to present only the graphs for At = 900 s in case of the modified
program. Here the time step size is still four times larger than that of the original
program and 1.5 times larger than for the spectral model. Nevertheless the error norms
of the spectral model and BARGLO have the same order.

90°

180°

270°

90°

5250

5250

5250

5500

5500

5500

5750

5750

5750

5750

5750

5750

5500

5500

5500

5250

5250

5250

-90°

180°

T
270°

Figure 4.24: Zonal flow over an isolated mountain; initial height field with incorporated
topography (h + hs), contour interval 50 m
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The initialization of the height field and the reference solutions for day five and day
ten are presented in Figures 4.24 and 4.25. The development of the height field as
computed by the original program using At = 225 s and the deviations to the reference
solutions at day five and ten are shown in Figures 4.26 and 4.27. The corresponding
results for the modified program using At = 900 s are shown in Figures 4.29 and 4.30.
The graphs of the error norms are provided in Figure 4.28. Although the increased time
stepping used in the modified version leads to larger error norms, the errors still have a
reasonable size. Further investigation for a better choice of the diffusion constant may
improve the results, especially in this and the next two test cases.
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Figure 4.25: Zonal flow over an isolated mountain; reference height field (h + h;) after
120 (top) and 240 hours (below), contour interval 50 m
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Figure 4.26: Zonal flow over an isolated mountain; height field (h + hy) after 120 hours
(top, contour interval 50 m) and difference to reference solution (below, contour interval
2.5m), At =225
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Figure 4.27: Zonal flow over an isolated mountain; height field (h + h;) after 240 hours
(top, contour interval 50 m) and difference to reference solution (below, contour interval
5m), At =225 s
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Figure 4.28: Zonal flow over an isolated mountain; height and wind error norms At =
225 s (original) and At =900 s (modified)
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Figure 4.29: Zonal flow over an isolated mountain; height field (h + h;) after 120 hours
(top, contour interval 50 m) and difference to reference solution (below, contour interval
2.5 m), At =900 s, modified program
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Figure 4.30: Zonal flow over an isolated mountain; height field (h + hy) after 240 hours
(top, contour interval 50 m) and difference to reference solution (below, contour interval
5 m), At =900 s, modified program
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4.5 Rossby-Haurwitz Wave — Wavenumber 4

Rossby-Haurwitz waves can be considered as the de facto standard for meteorological
tests. This test case consists of a regular pattern, which moves from west to east without
change of shape by a given angular velocity. Only a wave number of R = 4 is included
in the standard test set [6]. Unstable waves R > 5 are not considered.

For this test case, an analytical solution is not known. For evaluation we use the
provided reference solution from a high resolution spectral transform model integration

[2].

As reported in Table 4.8 the original version requires extremely small time steps to
obtain stable results from the initial states (Figure 4.31). 60 s is the largest time step
size for refinement step m = 5 using the original program. Also for spectral methods the
time step size is smaller (600 s for T42 and 180 s for T106) than the default values (1200
s for T42 and 600 s for T106). The modified version of BARGLO allows At = 225 s.
This time step size is larger than those reported for experiments with spectral methods.

The initializations of the height field and the wind field are shown in Figure 4.31. The
reference solutions for day five and day ten are shown in Figure 4.32. The development of
the height field as computed by the original program using At = 60 s and the deviations
to the reference solutions at day five and ten are presented in Figures 4.33 and 4.34.

The corresponding results for the modified program using At = 225 s are shown in
Figures 4.35 and 4.36.

Figure 4.37 shows acceptable small height and wind errors, where again the modified
program has slightly larger errors. Compared to similar resolutions with spectral models,
the reference solutions are well approximated by both program versions of BARGLO.

after 2 days | after 5 days | after 10 days
At E M E M E M
1800 | 0.796 0.999 | 0.737 0.997 | divergent
900 | 0.819 0.999 | 0.665 0.998 | 0.559 0.997
450 | 0.938 0.999 | 1.152 0.998 | divergent
225 1 0.951 1.000 | 0.885 0.999 | 0.796 0.998
60 | 0.989 1.000 | 0.971 1.000 | 0.943 0.999

odified program
3600 | 0.786 0.999 | 0.675 0.998 | 0.665 0.997
1800 | 0.891 0.999 | 0.786 0.998 | 0.694 0.996
900 | 0.927 1.000 | 0.841 0.999 | 0.739 0.997
225 | 0.974 1.000 | 0.953 1.000 | 0.909 0.999

OU s W W B

T e w2

Table 4.8: Rossby-Haurwitz wave — wavenumber 4; relative conservation of energy and
mass, original and modified program
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Figure 4.32: Rossby-Haurwitz wave — wavenumber 4; reference height field for 120 (top)

and 240 hours (below), (contour interval 100 m)



52

The Shallow Water Test Set

latitude

135 180 225 270 315 360

longitude

latitude

270 315 360

T
135 180 225
longitude

Figure 4.33: Rossby-Haurwitz wave — wavenumber 4; height field after 120 hours (top,
contour interval 100 m) and difference to reference solution (below, contour interval 10

m), At =60 s
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Figure 4.34: Rossby-Haurwitz wave — wavenumber 4; height field after 240 hours (top,
contour interval 100 m) and difference to reference solution (below, contour interval 20

m), At =60 s
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Figure 4.35: Rossby-Haurwitz wave — wavenumber 4; height field after 120 hours (top,
contour interval 100 m) and difference to reference solution (below, contour interval 10

m), At = 225 s, modified program
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Figure 4.36: Rossby-Haurwitz wave — wavenumber 4; height field after 240 hours (top,
contour interval 100 m) and difference to reference solution (below, contour interval 20

m), At = 225 s, modified program
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Figure 4.37: Rossby-Haurwitz wave — wavenumber 4; height and wind error norms

At =60 s (original) and At = 225 s (modified)
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4.6 Analyzed 500 mb Height and Wind Field Initial Conditions

The following three test cases are based on observed data. They refer to initial condi-
tions for 21 December, 1978, 9 January, 1979 and 16 January, 1979 (each 0000 GMT),
respectively. The provided data sets are initialized via nonlinear normal mode initial-
ization with a high resolution spectral transform model. Although this initialization
scheme is not consistent with the scheme being tested, the initial data sets lead to
reasonable results and it was not necessary to develop a special initialization program.
Details about the initialization are provided in [2].

For all test cases the mean height is set to 10 km. The forecasts are calculated
up to five days by the original and the modified model version. Table 4.9 shows the
development of relative mass and energy for all three test cases. Also the error norms for
the wind and height fields are graphed for the complete test set. Only the presentation
of the resulting height patterns is limited to the case 21 December, 1978, which has a
strong flow over the north pole and which is also discussed in [2].

Analyzing Table 4.9 we observe a significant loss of energy for all resolutions. We
presume that this effect is due to a decrease of the wind velocities and the resulting loss
of the kinetic energy. This requires further investigations.

In all test cases the time step sizes can be chosen larger in the modified version than
in the original program. On refinement depth m = 5 the time step size is increased by
a factor of 4 and we also recognize an improved conservation of the relative energy.

Figures 4.45, 4.46 and 4.47 show the height and wind error norms for the test cases.
The error graphs of the original and modified versions look similar, but one should keep
in mind, that the time step sizes in the modified version are larger than in the original
program. Compared to the error norms in [2], which are calculated by a spectral model
with At = 600 s, the error norms in Figures 4.45, 4.46 and 4.47 are about three times
larger. [2].

North and south polar stereographic projections (figures 4.38 — 4.44 and 4.48 — 4.51)
are presented for the 21 December 1978 case. The figures show the reference height
fields computed by a spectral model, the height fields calculated by the two versions of
BARGLO as well as the forecast errors compared to the reference solutions. They are
provided for day 1 (24 hours) and day 5 (120 hours).

Additionally, figure 4.52 and 4.53 show graphs of the height field at every time step at
the grid point closest to 40N and 105W, which is actually located at 40.65N and 104.89W
for refinement depth m = 5. The graphs for the original version 4.52 obviously present ,
that the initial data set is not completely consistent with the scheme being used. Some
gravity waves occur in the solutions, but they do not disturb the overall structure. In
comparison to the modified version the contours shown in figure 4.53 are smoother and
gravity wave effects only occur in the beginning of the forecast. Summing up the trace of
the curves at 40N, 105W is similar in both figures. Additionally, the overall appearance
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21 December 1978
after 2 days | after 5 days

m At E M E M
3 | 1800 | 0.555 1.000 | 0.482 1.000
4 | 900 | 0.736 1.000 | 0.640 1.000
5| 225|0.881 1.000 | 0.810 1.000
modified program

3 | 1800 | 0.583 1.000 | 0.543 1.000
4 | 1800 | 0.778 1.000 | 0.740 1.000
5| 900 | 0.901 1.000 | 0.867 1.000

9 January 1979
after 2 days | after 5 days

m At E M E M
3 | 1800 | 0.583 1.000 | 0.494 1.000
4 | 900 | 0.761 1.000 | 0.676 1.000
5| 225 0.890 1.000 | 0.832 1.000
modified program

3 | 3600 | 0.671 1.000 | 0.667 1.000
4 | 1800 | 0.807 1.000 | 0.786 1.000
5| 900 | 0.912 1.000 | 0.892 1.000

16 January 1979

after 2 days | after 5 days
At E M E M

1800 | 0.533 1.000 | 0.476 1.000
900 | 0.748 1.000 | 0.657 1.000
225 | 0.884 1.000 | 0.824 1.000

odified program
1800 | 0.587 1.000 | 0.529 1.000
1800 | 0.785 1.000 | 0.744 1.000
900 | 0.900 1.000 | 0.873 1.000

ol W B

ok W B

Table 4.9: Analyzed 500 mb height and wind field; relative conservation of energy and
mass, original and modified program
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180" o

0 180°
Figure 4.38: Initial height field for 21 December 1978 case, north (left) and south polar
stereographic projection (right), contour interval 50 m

of the curves is well met in comparison to the corresponding graphs in [2], even though
the grid point locations are naturally not identical. Only the courses of the curves are
less clear-cut, especially concerning the extreme values.
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Figure 4.41: Height field for day 1 of 21 December 1978 case, north (left) and south
polar stereographic projection (right), contour interval 50 m

0 180°
Figure 4.42: Difference with reference solution for height field for day 1 of 21 December
1978 case, north (left) and south polar stereographic projection (right), contour interval
15 m (dashed lines negative, solid lines positive)
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Figure 4.45:

(original) and At =900 s (modified)
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Height and wind error norms for case 21 December, 1978, At = 225 s
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Figure 4.46: Height and wind error norms for case 9 January, 1979, At = 225 s (original)
and At =900 s (modified)
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Figure 4.47: Height and wind error norms for

(original) and At =900 s (modified)
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Figure 4.48: Height field for day 1 of 21 December 1978 case, modified program, north
polar stereographic projection (left), south polar stereographic projection (right), con-
tour interval 50 m

0 180°
Figure 4.49: Difference with reference solution for height field for day 1 of 21 December
1978 case, modified program, north polar stereographic projection (left), south polar
stereographic projection (right), contour interval 15 m (dashed lines negative, solid lines
positive)
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Figure 4.50: Height field for day 5 of 21 December 1978 case, modified program, north
polar stereographic projection (left), south polar stereographic projection (right), con-
tour interval 50 m
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Figure 4.51: Difference with reference solution for height field for day 5 of 21 December
1978 case, modified program, north polar stereographic projection (left), south polar
stereographic projection (right), contour interval 25 m (dashed lines negative, solid lines
positive)
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Figure 4.52: Height field at grid point closest to 40N, 105W for m = 5, original program
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Figure 4.53: Height field at grid point closest to 40N, 105W for m = 5, modified program
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4.7 Rossby-Haurwitz Wave — Wavenumber 1

This last reported test does not belong to the official test set. But it was used by the
DWD as an initial test case. For this test, simulating an extremely smooth phenomenon
the improvement of the program by the new time stepping is not severe.

after 2 days | after 5 days | after 10 days
m At E M E M E M
3 | 3600 | 0.964 1.000 | 0.902 1.000 | 0.782 1.000
4 | 1800 | 0.990 1.000 | 0.975 1.000 | 0.943 1.000
51 900 | 0.997 1.000 | 0.993 1.000 | 0.986 1.000
modified program
3 | 3600 | 1.058 1.000 | 1.125 1.001 | 1.165 1.002
4 13600 | 1.096 1.000 | 1.254 1.001 | 1.524 1.002
4 | 1800 | 1.038 1.000 | 1.092 1.001 | 1.154 1.001
5 | 1800 | 1.046 1.000 | 1.116 1.001 | 1.218 1.001
51 900 | 1.021 1.000 | 1.049 1.000 | 1.088 1.000

Table 4.10: Rossby-Haurwitz wave — wavenumber 1; relative conservation of energy and
mass, original and modified program

5 A Concept for Parallelization

This concept aims towards the parallelization using a moderately parallel architecture
not necessarily with distributed memory. Nevertheless, the concept is described on
basis of a data partitioning and having message passing in mind. As the Figure 3.2 in
Section 3.1 shows, the data structure is nicely regular. From the beginning there are
at least five regular parts. Each of the parts itself consists of two large rhomboids, or
four triangles, respectively. This structure origins from the initial mesh. Using more
refinement steps does not disturb the regularity at all. Even the midpoints of the created
triangles form nicely regular data fields. They are easily subdivided to supply each of
the processor with the data for the calculations. All currently performed operations are
local. Already in the sequential code at certain times in the algorithm some boundary
update between adjacent parts of the initial structure is performed. This is at least the
time when a parallel version should distribute new values. If the original subdomains
are subdivided into even smaller ones, the communication should not only distribute
values at the segment boundaries as it is done already now, but also communicate values
at the newly created interior boundaries.

A recommended vehicle to do this, especially in three dimensions (where we assume
a similar data structure) could be the GMD communications library [5] which can be
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Figure 4.55: Rossby-Haurwitz wave — wavenumber 1, height field after 120 and 240
hours, At = 900 s, contours from 5.300 to 6.500 m
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placed on top of a message passing interface standard (MPI or PARMACS) and as a
benefit the portability comes out in a natural way. This library assumes the concept of
block-structured grids. The blocks can be created by subdividing the global data space
only in x- and y-direction. This keeps the vertical data points together, as it is often
desired due to the physical coupling in this direction. Nevertheless, the computation
can be done on more or less rectangular data blocks.

6 Conclusion and Outlook

The grid point oriented approach based on an icosahedral grid is used to run the well-
known shallow water benchmark suite. The approach offers some principle advantages
1. almost uniform triangular mesh
2. no special treatment at the poles
3. leading to a rectangular data structure
4. locality of the grid operators
In spite of these nice features, the original program showed a dramatic instability. By

improving the time stepping algorithm a considerable improvement has been demon-
strated.

test case At original | At modified | At spectral
cosine bell 900 s 1800 s 600 s
geostrophic flow 120 s 675 s 600 s
flow with compact support 225 s 1800 s 600 s
isolated mountain 225 s 1800 s 600 s
Rossby—Haurwitz wave (4) 60 s 225 180 s
500 mb Height/wind field 225 s 900 s 600 s
Rossby—Haurwitz wave (1) 900 s 900 s -

Table 6.1: Overview of time step sizes for the different test cases, refinement depth
m =5, T106

In all situations the time step size could be chosen larger than those reported for
spectral methods. This indicates to possible advantages compared to spectral methods:
The number of points in such grid point approaches may become similar or less to that
of the reduced grids like in the IF'S and the time step may become larger, optimal order
methods are applicable and local refinements are more easily incorporated. Each of
these features is important and justifies further work towards such a grid point oriented
approach.
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Further investigations should also compare the properties of approaches using either
plane triangles or spherical triangles. Additionally, a systematic study of the influence of
the diffusion constant K, should be performed. Another step to do is the parallelization
of the program or of its next version. Depending on the data structure of the intended
3D-version, the parallelization can be started using the 2D program. Furthermore there
is need to investigate the discretization more closely — both in time and in space. Some-
times the errors indicate to problems with the spatial discretization. Considerations
of the order of discretization are important. What would higher order discretization
techniques offer? Stability analysis has not yet been performed in a way to offer the
best result. We only obtained a better result than the first approach.
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