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Abstract

We state and sketch a proof of the Riemann-Hilbert correspondence.
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1 Introduction

Consider X = C as a complex manifold with its structure sheaf O of holomorphic
functions. Set O0 the stalk at 0 and K = Frac(O0). Then we set K̃ to be the ring
of (possibly multivalued) holomorphic functions defined on an open, punctured disk
around 0. For a matrix A ∈Mn(K), consider the system of ODEs

d

dx
u(x) = A(x)u(x)

where we take solutions u(x) ∈ K̃n. Then the set of solutions forms an n-dimensional
vector space over C. Pick a basis for this space of solutions, and let S(x) be the matrix
with the chosen basis as columns. Since the analytic continuation of S(x) along a circle
around 0 ∈ C gives another basis of the solution space, there is an invertible matrix
G ∈ GLn(C) such that

lim
t→2π

S(eitx) = S(x)G

Thus, we have obtained (locally) from a differential equation a representation of
the fundamental group of the punctured disk. One might hope for a correspondence
between these data. However, if n = 1 and A = P (x) is a polynomial, then the
space of solutions is one-dimensional, generated by an entire function. (Take e.g.
u(x) = exp(

∫ x
0 P (t)dt.) In particular, the representation of the fundamental group we

obtain will be the trivial representation. Thus, we must restrict the class of differential
equations we consider in order to obtain a meaningful correspondence. Classically, this
leads to the notion of a regular singular point.

The Riemann-Hilbert correspondence vastly generalizes the above example. In place
of differential equations on C, we consider certain DX -modules on a smooth variety
X, and in place of representations of the fundamental group, we consider constructible
sheaves on the complex manifold Xan associated to X. Analogously to above, they are
related by the solution functor SolX . (For computational reasons, we will prefer to use
the de Rham functor DRX instead, but they are closely related by 6.5.)

Theorem 1.1. The de Rham functor DRX gives an equivalence of categories:

DRX : Db
rh(DX)

∼−→ Db
c(X)

where Db
rh(DX) is the bounded derived category of DX-modules consisting of com-

plexes whose cohomology sheaves are regular, holonomic DX-modules, and Db
c(X) is the

bounded derived category of CXan-modules whose cohomology sheaves are constructible.

To reach the correct conditions on DX -modules to obtain an equivalence, we pro-
ceed as follows. First, we restrict to coherent DX -modules, which admit well-behaved
commutative approximations. This alows us to define the further condition of holo-
nomicity. For holonomic DX -modules, we are already very close: the existence of a
duality functor allows us to obtain certain image functors which we did not have for
general DX -modules, which play a crucial role in the proof of the correspondence.
Finally, as we saw above, we must impose some notion of regularity.

This exposition was written as a Minor thesis at Harvard University under the
supervision of Dennis Gaitsgory. The presentation heavily follows [HTT08], and any
errors introduced are my own. Unless otherwise stated, varieties in this paper are
assumed to be smooth, quasi-projective varieties defined over C.

2



2 Algebraic D-modules

We begin by defining the category of D-modules on a smooth variety. We then define
the inverse and direct image functors for D-modules with respect to a morphism of
smooth varieties, and discuss various properties of these functors.

2.1 D-modules

Let X be a smooth variety of dimension n = dimX, OX its structure sheaf, and ΘX

its tangent sheaf. We consider ΘX and OX as subsheaves of E ndCX (OX), where ΘX

acts locally by derivations and OX acts locally by multiplication. We then define the
subsheaf DX of E ndCX (OX) to be the sheaf generated by OX and ΘX , and we call
this the sheaf of differential operators on X. It will frequently be convenient to work
in (affine) local coordinates on X.

Notation 2.1. Let X be a smooth variety. We will frequently denote the restrictions
OX |U ,ΘX |U , DX |U by OU ,ΘU , DU respectively.

Example 2.2. Let U ⊂ X be an open, affine subset of X. Then we can take a local
coordinate system {xi ∈ OX(U), ∂i ∈ ΘX(U)}1≤i≤n such that we have the following
local description of ΘU :

ΘU =

n⊕
i=1

OU∂i, [∂i, ∂j ] = 0, [∂ixj ] = δij

From this we obtain the following local description of DX :

DU =
⊕
α∈Nn

OU∂α, ∂α =
n∏
i=1

∂αii

We call a sheaf M on X a left DX-module if M(U) is a left DX(U)-module for each
open U ⊂ X and these actions commute with the restriction morphisms. The following
lemma gives an equivalent characterization of left DX -modules:

Lemma 2.3. Let M be an OX-module. The data of a left DX-module structure on M
extending the OX-module structure is equivalent to a C-linear morphism

∇ : ΘX → E ndC(M), θ 7→ ∇θ

satisfying the following conditions:

1. ∇fθ(s) = f∇θ(s)
2. ∇θ(fs) = θ(f)s+ f∇θ(s)
3. ∇[θ1,θ2](s) = [∇θ1 ,∇θ2 ](s)

where f ∈ OX , θ, θ1, θ2 ∈ ΘX , s ∈M denote local sections, and the DX-action is given
by θs = ∇θ(s).

Proof. Given a morphism ∇, the left action defined above commutes with restriction
morphisms by definition. Given a left DX -module M , the morphism ∇ is given by
θ 7→ (s 7→ θs), and we immediately verify the three conditions:
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1. ∇fθ(s) = (fθ)s = f(θs) = f∇θ(s).
2. ∇θ(fs) = θ(fs) = (θf)s− (fθ)s+ (fθ)s = [θ, f ]s+ (fθ)s = θ(f)s+ f∇θ(s)
3. ∇[θ1,θ2](s) = [θ1, θ2]s = (θ1θ2)s−(θ2θ1)s = ∇1◦∇2(s)−∇2◦∇1(s) = [∇θ1 ,∇θ2 ](s).

For a locally free left OX -module M of finite rank, such a morphism ∇ as in 2.3
is called an integrable connection, and in this situation we will refer also to M itself
as an integrable connection. In what follows, it will often be useful to work with right
DX-modules as well, and we note the analogous characterization for right DX -modules.

Lemma 2.4. Let M be an OX-module. The data of a right DX-module structure on
M extending the OX-module structure is equivalent to a C-linear morphism

∇ : ΘX → E ndC(M), θ 7→ ∇θ

satisfying the following conditions:

1. ∇fθ(s) = ∇θ(fs)
2. ∇θ(fs) = θ(f)s+ f∇θ(s)
3. ∇[θ1,θ2](s) = [∇θ1 ,∇θ2 ](s)

where f ∈ OX , θ, θ1, θ2 ∈ ΘX , s ∈M denote local sections, and the DX-action is given
by sθ = −∇θ(s).

The proof is entirely analogous to above.

Notation 2.5. Let X be a smooth variety. We denote by Mod(DX) the category of
left DX -modules, and by Mod(Dop

X ) the category of right DX -modules.

Proposition 2.6. Let M,N ∈ Mod(DX) and M ′, N ′ ∈ Mod(Dop
X ). Then

1. M ⊗OX N ∈ Mod(DX); θ(s⊗ t) = θs⊗ t+ s⊗ θt.
2. M ′ ⊗OX N ∈ Mod(Dop

X ); (s′ ⊗ t)θ = s′θ ⊗ t− s′ ⊗ θt.
3. HomOX (M,N) ∈ Mod(DX); (θψ)(s) = θ(ψ(s))− ψ(θ(s)).

4. HomOX (M ′, N ′) ∈ Mod(DX); (θψ)(s) = −ψ(s)θ + ψ(sθ).

5. HomOX (M,N ′) ∈ Mod(Dop
X ); (ψθ)(s) = ψ(s)θ + ψ(θ(s))

Proof. Using lemmas 2.3 and 2.4, the above can be verified by direct computation.

As a corollary, we obtain the following isomorphisms.

Corollary 2.7. Let M,N ∈ Mod(DX) and M ′ ∈ Mod(Dop
X ). Then we have isomor-

phisms:

(M ′ ⊗OX N)⊗DX M 'M
′ ⊗DX (M ⊗OX N) ' (M ′ ⊗OX M)⊗DX N

(s′ ⊗ t)⊗ s↔ s′ ⊗ (s⊗ t)↔ (s′ ⊗ s)⊗ t

To translate between left and right DX -modules, we will use the canonical sheaf
ΩX = ∧nΩ1

X , where Ω1
X is the sheaf of 1-forms on X (cotangent sheaf), and its OX -

dual Ω−1X = HomOX (ΩX ,OX). Note that ΩX naturally has the structure of a right
DX -module (locally, θ ∈ ΘX acts by the Lie derivative: ωθ = −(Lie θ)ω).
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Proposition 2.8. The following functors (which we call the side-changing functors)
are quasi-inverses:

ΩX ⊗OX − : Mod(DX)→ Mod(Dop
X )

Ω−1X ⊗OX − = HomOX (ΩX ,−) : Mod(Dop
X )→ Mod(DX)

This follows from 2.6. For the rest of this paper, D-modules will be implicitly
assumed to be left D-modules unless otherwise specified.

2.2 Image functors

Throughout this subsection, let f : X → Y be a morphism of smooth varieties. The
main difficulty in defining the inverse and direct images of a DX -module comes from
from the fact that a morphism X → Y does not induce an obvious relationship between
DX and DY . (Morally speaking, given a morphism of commutative rings A→ B, there
is no reason for a derivation on A to induce a derivation on B or vice versa.)

Inverse images

Let M be a DY -module, and consider first its inverse image

f∗M = OX ⊗f−1OY f
−1M

as an OY -module. We give f∗M the structure of a DX -module as follows. First,
consider the morphism of OX -modules:

OX ⊗f−1OY f
−1Ω1

Y → Ω1
X

Applying HomOX (−,OX) gives a morphism

ΘX → OX ⊗f−1OY f
−1ΘY

which we denote by θ 7→ θ̃. Then the action of DX on f∗M is given (locally) by
θ(ψ ⊗ s) = θ(ψ)⊗ s+ ψθ̃(s). In case M = DY , we obtain a left DX -module

f∗DY = OX ⊗f−1OY f
−1DY

and the right multiplication of DY on itself induces a right f−1DY -module structure
on f∗DY . This bimodule will be important for defining our image functors.

Definition 2.9. The (DX , f
−1DY )-bimodule f∗DX = OX ⊗f−1OY f

−1DY obtained
above is denoted by DX→Y .

We thus have an isomorphism f∗M ' DX→Y ⊗f−1DY f
−1M , from which we obtain

a right-exact functor

DX→Y ⊗f−1DY f
−1− : Mod(DY )→ Mod(DX)

Example 2.10. We compute DX→Y in the case of a closed embedding i : X → Y
of smooth varieties. For p ∈ X, we may choose local coordinates {yk, ∂yk}1≤k≤n as in
2.2 on an affine open subset p ∈ U ⊂ Y such that yr+1 = · · · = yn = 0 gives defining
equations of X. Set xk = yk◦i for 1 ≤ k ≤ r, giving local coordinates {xk, ∂xk}1≤k≤r for
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an affine open subset of X. In this situation, the morphism ΘX → OX ⊗i−1OY i
−1ΘY

is given by ∂xk 7→ ∂yk . Now set D′ = ⊕m1,...,mrOY ∂m1
y1 · · · ∂

mr
yr ⊂ DY . It is a subring of

DY , and we have that DY ' D′ ⊗C C[∂yr+1 , . . . , ∂yn ] as a left D′-module. Hence

DX→Y ' (OX ⊗i−1OY i
−1D′)⊗C C[∂yr+1 , . . . , ∂yn ]

Note that in this situation OX ⊗i−1OY i
−1D′ is isomorphic to DX .

Direct images

Let M be a right DX -module. Applying the sheaf theoretic direct image functor f∗ to
the right f−1DY -module M ⊗DX DX→Y gives a right DY -module f∗(M ⊗DX DX→Y ).
Thus we have a functor

f∗(−⊗DX DX→Y ) : Mod(Dop
X )→ Mod(Dop

Y )

(We later give a slightly refined definition of this functor in terms of derived categories,
in order to deal with the fact that tensoring is only right-exact while the pushforward
is only left-exact.)

To obtain a direct image functor for left DX -modules, we use the side-changing
functors. To a left DX -module M , we associate the following left DY -module:

Ω−1Y ⊗OY f∗((ΩX ⊗OX M)⊗DX DX→Y )

We then have an isomorphism by 2.7

(ΩX ⊗OX M)⊗DX DX→Y ∼= (ΩX ⊗OX DX→Y )⊗DX M

of right f−1DY -modules. Therefore, we have

Ω−1Y ⊗OY f∗((ΩX ⊗OX M)⊗DX DX→Y ) ' Ω−1Y ⊗OY f∗((ΩX ⊗OX DX→Y )⊗DX M)

' f∗((ΩX ⊗OX DX→Y ⊗f−1OY f
−1Ω−1Y )⊗DX M)

By side changing, we have that ΩX ⊗OX DX→Y ⊗f−1OY f
−1Ω−1Y is a (f−1DY , DX)-

bimodule. Thus we define

Definition 2.11. The (f−1DY , DX)-bimodule ΩX ⊗OX DX→Y ⊗f−1OY f
−1Ω−1Y ob-

tained above is denoted by DY←X .

Example 2.12. Keeping the notation of 2.10, we obtain by similar computations a
local isomorphism DY←X ' C[∂yr+1 , . . . , ∂yn ] ⊗C DX . We do not write expicitly the
left f−1DY -structure here.

2.3 DX-modules as sheaves

Before moving on to derived categories of D-modules, we first list some basic results
on D-modules. Most of these facts follow from the corresponding facts about affine
varieties, quasi-projective varieties, and (quasi-)coherent OX -modules.

Notation 2.13. Let X be a smooth variety. We denote by Modqc(DX) the category
of DX -modules which are quasi-coherent as OX -modules. We denote by Modc(DX)
the category of coherent DX -modules.
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Proposition 2.14. Assume that A = DX(U) for some affine open subset U ⊂ X or
A = DX,x for some x ∈ X. Then

1. A is a left (and right) notherian ring.

2. The left and right global dimensions of A are at most 2 dimX.

Proposition 2.15. 1. DX is a coherent sheaf of rings.

2. A DX-module is coherent iff it is quasi-coherent over OX and locally finitely
generated over DX .

We sketch a proof of the following theorem because it makes use of the DX -action
in a meaningful way:

Theorem 2.16. A DX-module is coherent over OX iff it is an integrable connection.

Sketch. We sketch the forward direction. Suppose that a M ∈ Mod(DX) is coherent
over OX . Then it suffices to show that M is locally free over OX . By a standard fact
for coherent OX -modules, it is equivalent to prove that the stalk Mx for any x ∈ X is
a free OX,x-modules. For this, let us first take local coordinates {xi, ∂i} around x as
in 2.2 such that the m = (x1, . . . , xn) is the maximal ideal of OX,x.

By Nakayama’s lemma we have s1, . . . , sm ∈ Mx such that Mx is generated over
OX,x by {s1, . . . , sm}, and the images of the generators {s1, . . . , sm} under the quotient
V = Mx → M/mMx form a basis of V as a OX,x/m = C-module. We claim that in
fact {s1, . . . , sm} are free generators of Mx over OX,x. Suppose to the contrary there
is some nontrivial relation

m∑
i=1

fisi = 0

over OX,x, and let ord(fi) = max{l | fi ∈ ml}. Applying ∂j to the above gives a new
relation

0 =

m∑
i=1

(∂jfi)si + fi(∂jsi) =

m∑
i=1

gisi

If each term ∂jfi = 0 for all j and i, the the original relation immediately descends
to a nontrivial relation

∑m
i=1 fisi = 0, so that each fi must be 0. Otherwise, because

each ∂jsi is again a OX,x-linear combination of {s1, . . . , sm}, we may pick some j
such that the minimum order of the fi is larger than the minimum order of the gi.
Repeating this argument until the minimum order reaches 0, we obtain a nontrivial
relation

∑m
i=1 hisi = 0 which descends to a nontrivial relation

∑m
i=1 hisi = 0.

Definition 2.17. A smooth variety X is called D-affine if

1. Γ(X,−) : Modqc(DX)→ Mod(Γ(X,DX)) is exact.

2. Γ(X,M) = 0 for M ∈ Modqc(DX) =⇒ M = 0.

Note in particular that smooth, affine varieties are D-affine.

Proposition 2.18. Assume that X is D-affine. Then

1. Any M ∈ Modqc(DX) is generated over DX by its global sections.

2. Γ(X,−) : Modqc(DX)→ Mod(Γ(X,DX)) gives an equivalence of categories.
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Proposition 2.19. Assume that X is D-affine. The equivalence

Modqc(DX) ' Mod(Γ(X,DX))

from 2.18(ii) induces an equivalence Modc(DX) ' Modf (Γ(X,DX))

Proposition 2.20. Any M ∈ Modqc(DX) can be embedded into an injective object I
of Modqc(DX) which is flabby.

Proposition 2.21. 1. A coherent DX-module is globally generated by a coherent
OX-submodule.

2. Let M ∈ Modqc(DX) and U ⊂ X open. Then any coherent DU -submodule N of
M |U can be extended to a coherent DX-submodule Ñ of M (s.t. Ñ |U = N).

3. Any M ∈ Modqc(DX) is a union of coherent DX-submodules.

Proposition 2.22. Let X be a smooth quasi-projective variety. Then

1. Any M ∈ Modqc(DX) is a quotient of a locally free (hence locally projective hence
locally flat) DX-module.

2. Any M ∈ Modc(DX) is a quotient of a locally free DX-module of finite rank.

Corollary 2.23. Let X be a smooth quasi-projective variety. Then

1. There is a resolution · · · → P1 → P0 →M → 0 of M by locally free DX-modules.

2. There is a finite resolution 0→ Pm → · · · → P1 → P0 →M → 0 of M by locally
projective DX-modules.

3 Derived categories of D-modules

Although it might seem preferable to remain strictly within the category of DX -
modules, the formalism of derived categories will provide many tools to formulate
the Riemann-Hilbert correspondence in complete generality. We show that the derived
image functors respect composition and preserve quasi-coherence over OX . In partic-
ular, this will allow us to use the strategy of decomposing a morphism f : X → Y as
X → X × Y → Y and studying each piece separately.

3.1 Derived D-module categories

Notation 3.1. Let ] ∈ {∅,+,−, b}. For a sheaf R of rings on a topological space, we
denote the derived category of R-modules D](Mod(R)) by D](R).

Facts 3.2. Let R be a sheaf of rings on a topological space X. Then for any M ∈
Mod(R),

1. there an injective object I of Mod(R) and a monomorphism M → I, and

2. there is a flat object F of Mod(R) and an epimorphism F →M .

In particular, any complex M• of D+(R) (resp. D−(R)) is quasi-isomorphic to a
complex I• of D+(R) (resp. F• of D−(R)) of injective (resp. flat) R-modules.
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Notation 3.3. Let ] ∈ {∅,+,−, b}. We denote by D]
qc(DX) (resp. D]

c(DX)) the
subcategory of D](DX) consisting of complexes whose cohomology sheaves belong to
Modqc(DX) (resp. Modc(DX)).

Proposition 3.4. Any object of Db(DX) (resp. Db
qc(DX)) is represented by a bounded

complex of flat DX-modules (resp. locally projective DX-modules in Modqc(DX)).

Proof. This follows from 2.14 and 2.23.

Inverse images

Let f : X → Y be a morphism of smooth varieties. We can define the left derived
functor of the right exact functor f∗:

Lf∗ : Db(DY )→ Db(DX),M• 7→ DX→Y ⊗Lf−1DY
f−1M•

by using a flat resolution of M•, where ⊗L denoes the left derived functor of the tensor
product. We call Lf∗ the inverse image functor.

Proposition 3.5. Lf∗ restricts to a functor Lf∗ : Db
qc(DY )→ Db

qc(DX).

Proof. Let M• ∈ Db
qc(DY ). By the forgetful functor Db(DX) → Db(OX), we may

consider M• ∈ Db
qc(OY ). Then computing:

DX→Y ⊗Lf−1DY
f−1M• = (OX ⊗f−1OY f

−1DY )⊗Lf−1DY
f−1M•

= (OX ⊗Lf−1OY f
−1DY )⊗Lf−1DY

f−1M•

= OX ⊗Lf−1OY f
−1M•

Then the desired result follows from the corresponding result for the functor

OX ⊗Lf−1OY f
−1− : Db(OY )→ Db(OX)

which follows from the fact that any M• ∈ Db
qc(OY ) can be represented by a complex

of locally free OY -modules.

Remark 3.6. Lf∗ does not necessarily restrict to a functor Lf∗ : Db
c(DY )→ Db

c(DX).
For example, if M• = DY , then Lf∗ = DX→Y , and if f : X → Y is a closed embedding
with dimX < dimY , then DX→Y is a locally free DX -module of infinite rank by 2.10.

We also make use of the shifted inverse image functor

f † = Lf∗[dimX − dimY ] : Db(DY )→ Db(DX)

Proposition 3.7. Let X
f−→ Y

g−→ Z be morphisms of smooth varieties. Then

L(g ◦ f)∗ ' Lf∗ ◦ Lg∗, (g ◦ f)† ' f † ◦ g†
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Proof. First, we compute:

DX→Y ⊗Lf−1DY
f−1DY→Z

= (OX ⊗f−1OY f
−1DY )⊗Lf−1DY

f−1(OY ⊗g−1OZ g
−1DZ)

= (OX ⊗f−1OY f
−1DY )⊗Lf−1DY

(f−1OY ⊗(g◦f)−1OZ (g ◦ f)−1DZ)

= (OX ⊗Lf−1OY f
−1DY )⊗Lf−1DY

(f−1OY ⊗L(g◦f)−1OZ (g ◦ f)−1DZ)

' OX ⊗L(g◦f)−1OZ (g ◦ f)−1DZ

= OX ⊗(g◦f)−1OZ (g ◦ f)−1DZ

= DX→Z

Thus, we have

L(g ◦ f)∗M• = DX→Z ⊗(g◦f)−1DY (g ◦ f−1)M•
' (DX→Y ⊗Lf−1DY

f−1DY→Z)⊗Lf−1g−1DY
f−1g−1M•

= DX→Y ⊗Lf−1DY
f−1(DY→Z ⊗Lg−1DY

g−1M•)

= Lf∗(Lg∗(M•))

Proposition 3.8. Let f : X → Y be a smooth morphism of smooth varieties. Then

1. For M ∈ Mod(DY ), we have H i(Lf∗M) = 0 for i 6= 0.

2. For M ∈ Modc(DY ), we have Lf∗M ∈ Modc(DX)

Proof. 1. Because f is a smooth morphism, OX is flat over f−1OY . By the proof of
3.5, Lf∗M ' OX ⊗Lf−1OY f

−1M . Thus Lf∗M has trivial cohomology for i 6= 0.

2. By 2.15, it suffices to show that the canonical morphism

DX → DX→Y = OX ⊗f−1OY f
−1Dy, P 7→ P (1⊗ 1)

is surjective. This question is local, so we may assume X and Y to be affine.
Next, we may choose coordinates {xi, ∂xi}1≤i≤n on X and {y1, ∂yi}1≤i≤m as in
2.2. Because f is smooth, these coordinates can be chosen to satisfy the additional
condition that ∂xi 7→ 1 ⊗ ∂yi for 1 ≤ i ≤ m and 0 otherwise under the canonical
morphism ΘX → f∗ΘY = OX ⊗f−1OY f

−1ΘY . In this situation, we have that

DX→Y =
⊕

r1,...,rm≥0
OX∂r1y1 · · · ∂

rm
ym

and the canonical morphism DX → DX→Y from above is given by

∂r1x1 · · · ∂
rn
xn 7→ δrm+1+···+rn,0∂

r1
y1 · · · ∂

rm
ym
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Tensor products

The bifunctor
−⊗OX − : Mod(DX)×Mod(DX)→ Mod(DX)

is right exact with respect to both factors, and we can thus define its left derived
functor

−⊗LOX − : Db(DX)×Db(DX)→ Db(DX)

by using a flat resolution of either factor.
Next let X,Y be smooth varieties, and p1 : X × Y → X, p2 : X × Y → Y the

projections. For M ∈ Mod(OX) and N ∈ Mod(OY ), we set

M �N = OX×Y ⊗p−1
1 OX⊗Cp

−1
2 OY

(p−11 M ⊗C p
−1
2 M) ∈ Mod(OX×Y )

This gives a bifunctor

−�− : Mod(OX)×Mod(OY )→ Mod(OX×Y )

which is exact with respect to both factors, so extends to a functor

−�− : Db(OX)×Db(OY )→ Db(OX×Y )

For M ∈ Mod(DX) and N ∈ Mod(DY ), the DX×Y -module

DX×Y ⊗p−1
1 Dx⊗Cp

−1
2 Dy

(p−11 M ⊗C p
−1
2 N)

is isomorphic as an OX×Y -module to M �N by

DX×Y ' OX×Y ⊗p−1
1 OX⊗Cp

−1
2 OY

p−11 DX ⊗C p
−1
2 DY

and we denote this DX×Y -module again by M � Y , called the exterior product. We
now obtain a bifunctor

−�− : Mod(DX)×Mod(DY )→ Mod(DX×Y )

which is again exact with respect to both factors, so extends to a functor

−�− : Db(DX)×Db(DY )→ Db(DX×Y )

We list some facts about the exterior tensor product:

Facts 3.9. 1. Let X and Y be smooth varieties. − � − restricts to give functors
Db
qc(DX)×Db

qc(DX)→ Db
qc(DX×Y ) and Db

c(DX)×Db
c(DY )→ Db

c(DX×Y ).

2. Let M ∈ Mod(DX). Then p∗1M 'M �OY .

3. Let N ∈ Mod(DY ). Then p∗2N ' OX �N .

4. Let ∆X : X → X × X be the diagonal embedding. For M,N ∈ Mod(DX), we
have M ⊗OX N ' ∆∗X(M �N). Furthermore, for M•, N• ∈ Db(DX), we have a
canonical isomorphism M• ⊗LOX N• ' L∆∗X(M• �N•).

5. If Pi is a flat DXi-module for i = 1, 2 then P1 � P2 is a flat DX1×X2-module.

6. Let fi : Xi → Yi be morphisms of smooth varieties. Then for Mi,• ∈ Db(Yi), we
have L(f1 × f2)∗M1,• �M2,• ' Lf∗1M1,• � Lf∗2M2,•.

7. Let f : X → Y be a morphism of smooth varieties. Then for M•, N• ∈ Db(DY ),
we have Lf∗(M• ⊗LOY N•) ' Lf

∗M• ⊗LOX Lf
∗N•.

11



Direct images

Let f : X → Y be a morphism of smooth varieties. We define functors

Db(DX)→ Db(f−1DY ), M• 7→ DY←X ⊗LDX M•

Db(f−1DY )→ Db(DY ), N• 7→ Rf∗N•

using a flat resolution of M• and an injective resolution of N•. We denote the compo-
sition by ∫

f
: Db(DX)→ Db(DY ), M• 7→ Rf∗(DY←X ⊗LDX M•)

and for an integer k, we set
∫ k
f M• = Hk(

∫
f M•).

First, we recall a fact about Rf∗:

Proposition 3.10. The functor Rf∗ : Db(OX) → Db(OY ) restricts to give a functor
Db
qc(OX)→ Db

qc(OY ). If f is proper, it also restricts to a functor Db
c(OX)→ Db

c(OY ).

Proposition 3.11. Let X
f−→ Y

g−→ Z be morphisms of smooth varieties. Then we have
that

∫
g◦f =

∫
g

∫
f .

Proof. By an analogous computation to the one in the proof of 3.7, we obtain isomor-
phisms

DZ←X ' f−1DZ←Y ⊗f−1DY DY←X ' f−1DZ←Y ⊗Lf−1DY
DY←X

Hence by definition, for M• ∈ Db(DX), we obtain∫
g

∫
f
M• = Rg∗(DZ←Y ⊗LDY Rf∗(DY←X ⊗LDX M•))

We claim that the canonical morphism

F• ⊗LDY Rf∗G• → Rf∗(f
−1F• ⊗Lf−1DY

G•)

is an isomorphism for any F• ∈ Db
qc(D

op
Y ), G• ∈ Db(f−1DY ). (The question is local, so

take Y affine. Then represent F• by a complex of free right DY -modules, so we reduce
to F• = D⊕IY , and

F• ⊗LDY Rf∗G• ' Rf∗(G•)
⊕I ' Rf∗(G⊕I• ) ' Rf∗(f−1F• ⊗Lf−1DY

G•)

giving the desired isomorphism.) Hence we compute∫
g

∫
f
M• ' Rg∗Rf∗(f−1DZ←Y ⊗Lf−1DY

(DY←X ⊗LDX M•))

' R(g ◦ f)∗((f
−1DZ←Y ⊗Lf−1DY

DY←X)⊗LDX M•)

' R(g ◦ f)∗(DZ←X ⊗LDX M•)

=

∫
g◦f

M•

12



Proposition 3.12. Let i : X → Y be a closed embedding of smooth varieties.

1. For M ∈ Mod(DX), we have
∫ k
i M = 0 for k 6= 0. In particular, the functor∫ 0

i : Mod(DX)→ Mod(DY ) is exact.

2.
∫ 0
i restricts to a functor

∫ 0
i : Modqc(DX) to Modqc(DY ).

Sketch. By the local computation in 2.12, we have that∫
i
M = Ri∗(DY←X⊗LDXM) ' Ri∗(C[∂yr+1 , . . . , ∂yn ]⊗CM) ' C[∂yr+1 , . . . , ∂yn ]⊗C i∗M

Ths proves (i). (ii) then follows from a concrete description of the DY -module structure
on C[∂yr+1 , . . . , ∂yn ]⊗C i∗M .

For the next steps, we will need the following fact.

Lemma 3.13. There exist locally free resolutions of OX as a left DX-module and ΩX

as a right DX-module given by

0→ DX ⊗OX ∧
nΘX → · · · → DX ⊗OX ∧

0ΘX → OX → 0

0→ ∧0ΩX ⊗OX DX → · · · → ∧nΩ1
X ⊗OX DX → ΩX → 0

Let Y,Z be smooth varieties, and set X = Y × Z. Let f, g : X → Y, Z be the
projections. To compute DY←X⊗LDXM , we use the resolution of the right DX -module

DY←X = DY � ΩZ induced by the resolution of ΩZ from 3.13. Set Ωk
X/Y = OY � Ωk

Z

for 0 ≤ k ≤ dimZ. Then for M ∈ Modqc(DX), we define the relative de Rham
complex DRX/Y (M) by DRX/Y (M)k = ΩdimZ+k

X/Y ⊗OX M for −dimZ ≤ k ≤ 0 and 0
otherwise. By construction of the relative de Rham complex, we have an equivalence
DRX/Y (M) ' DY←XDY←X ⊗LDX M .

Proposition 3.14. Let Y, Z be smooth varieties, and f : X = Y × Z → Y the
projection. Then

∫
f restricts to a functor

∫
f : Db

qc(DX)→ Db
qc(DY ).

Sketch. It suffices to show for M ∈ Modqc(DX) that Rif∗(DRX/Y (M)k) is quasi-

coherent for any i and k. Since M is quasi-coherent over OX , then so is DRX/Y (M)k,

and hence by 3.10 so is Rif∗(DRX/Y (M)k).

Now we can prove:

Proposition 3.15. Let f : X → Y be a morphism of smooth varieties. Then
∫
f

restricts to a functor
∫
f : Db

qc(DX)→ Db
qc(DY ).

Proof. First, factor f : X → Y into a closed embedding X ↪→ X × Y followed by
a projection X × Y → Y . Then by 3.11, we may assume that f is either a closed
embedding or a projection. The former follows from 3.12 and the latter follows from
3.14.

In fact, direct images corresponding to proper morphisms even preserve coherence:

Theorem 3.16. Let f : X → Y be a proper morphism of quasi-projective varieties.
Then

∫
f restricts to a functor Db

c(DX)→ Db
c(DY ).
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We mention a fact about direct images and the exterior tensor product:

Facts 3.17. Let fi : Xi → Yi be morphisms of smooth varieties. Then for Mi,• ∈
Db
qc(DXi), the canonical morphism∫

f1

M1,• �
∫
f2

M2,• →
∫
f1×f2

M1,• �M2,•

is an isomorphism.

The proofs of these statements again use the technique of splitting f into the com-
position of a closed embedding followed by a projection.

4 Coherent D-modules

So far, we have encountered the functors f † and
∫
f and seen that they preserve quasi-

coherence over OX . However, as in remark 3.6, we saw that they do not necessarily
interact nicely with coherence. In this section, we will focus on coherent D-modules,
and commutative approximations of them. We then use this to find a suitable condition
on coherent D-modules that is preserved by these functors.

4.1 Good filtrations

We first define the order filtration of DX . Recall that on any affine open U ⊂ X, we
have local coordinates {xi, ∂i} such that DU = ⊕α∈NnOU∂α. We then define FlDu =∑
|α|<lOU∂α. Then for an arbitrary open V ⊂ X, we define

FlDX(V ) = {P ∈ DX(V ) | resVU (P ) ∈ FlDX(U) for any affine open U ⊂ V }

We then have the associated graded grF DX = ⊕∞i=0FiDX/Fi−1DX . We next define
filtrations of DX -modules. Let M ∈ Modqc(DX). We consider a filtration of M by
quasi-coherent OX -submodules FiM satisfying

1. FiM ⊂ Fi+1M

2. FiM = 0 for i sufficiently small

3. M = ∪i∈ZFiM
4. (FjDX)(FiM) ⊂ Fi+jM

and define grF M = ⊕i∈ZFiM/Fi−1M which we consider as a graded grF DX -module.
We give a few facts about filtered DX -modules which will be useful later. These follow
from general facts about filtered modules over rings.

Proposition 4.1. Let (M,F ) be a filtered DX-module. TFAE:

1. grF M is coherent over grF DX .

2. FiM is coherent over OX for each i and there is i0 sufficiently large such that
(FjDX)(FiM) = Fi+jM for j ≥ 0, i ≥ i0.

14



3. There is locally a surjective DX-linear morphism Φ : D⊕mX → M and integers
nj , 1 ≤ j ≤ m such that

Φ(

m⊕
j=1

Fi−njDX) = FiM

If any of the above equivalent conditions holds for a filtered DX -module (M,F ),
then we say that F is a good filtration of M .

Theorem 4.2. Any coherent DX-module admits a globally defined good filtration. Con-
versely, a DX-module with a good filtration is coherent.

Using good filtrations, we can work with commutative approximations to coher-
ent D-modules. In particular, we will be able to use results directly from classical
commutative algebra and algebraic geometry to study D-modules.

4.2 Characteristic varieties

As defined above, grF DX is a sheaf of commutative algebras finitely generated over
OX . On an open affine U ⊂ X with local coordinates {xi, ∂i} as in 2.2, we set ξi = ∂i
mod F0DU ∈ grF1 DU . Then grFl DU = ⊕|α|=lOUξα, and grF DU = OU [ξ1, . . . , ξn]. For
π : T ∗X → X the cotangent bundle of X, we may regard ξ1, . . . , ξi as coordinates on the
fibers of the projection over U , and hence we obtain an identification of OU [ξ1, . . . , ξn]
with π∗OT ∗X |U . This then gives an identification grDX ' π∗OT ∗X

Now let M be a coherent DX -module with a good filtration F by 4.2. By 4.1 and
the isomorphism grF DX ' π∗OT ∗X obtained above,, we have that grF M is a coherent
π∗OT ∗X -module, and we set

g̃rF M = OT ∗X ⊗π−1π∗T ∗X π−1 grF M

Then g̃rF M is a coherent OT ∗X -module, and we call its support the characteristic
variety of M , written Ch(M). The following theorem is a consequence of a more
general fact about filtered modules over filtered rings.

Theorem 4.3. 1. Let M be a coherent DX-module. Then Ch(M) does not depend
on the choice of a good filtration F .

2. For a short exact sequence 0 → M → N → L → 0 of coherent DX-modules, we
have Ch(N) = Ch(M) ∪ Ch(L)

We also remark the following difficult theorem due originally to Sato-Kawai-Kashiwara:

Theorem 4.4. The characteristic variety of any coherent DX-module is involutive
with respect to the symplectic structure of the cotanteng bundle T ∗X.

Although a proof of this theorem is beyond the scope of this paper, we note the
following important corollary

Corollary 4.5. Let M ∈ Modc(DX). Then any irreducible component of Ch(M) has
dimension at least dimX. In particular, if M 6= 0, then dim Ch(M) ≥ dimX.

If a coherent DX -module M has the minimal possible dimension of its characteristic
variety (dim Ch(M) ≤ dimX), then it is called holonomic.
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Proposition 4.6. For M 6= 0 ∈ Modc(DX), TFAE:

1. M is coherent over OX .

2. Ch(M) = T ∗XX ' X (where T ∗XX denotes the zero section of π : T ∗X → X).

Proof. Suppose M is coherent over OX (hence is it locally free with finite rank r > 0
by 2.16). Then the filtration F defined by FiM = 0 for i < 0 and FiM = M for
i ≥ 0 is a good filtration on M , and we have the local isomorphisms grF M ' M '
OrX . Furthermore, ΘX acts trivially on grF M , becausse grFl M = 0 for l ≥ 1, hence
Ch(M) = T ∗XX is the zero section of π : T ∗X → X.

Conversely, suppose Ch(M) = T ∗XX. The problem is local on X, so we may take
X affine with local coords {xi, ∂i}1≤i≤n as in 2.2. In this case, T ∗X = X ×Cn, and for
any good filtration F of M , we have√

AnnOX [ξ1,...,ξn](grF M) = (ξ1, . . . , ξn) = I

where (ξ1, . . . , ξn) is an ideal of OX [ξ1, . . . , ξn]. (Recall that ξi = ∂i ModF0DX ∈
grF1 (M), and the identification π∗OT ∗X ' OX [ξ1, . . . , ξn].) Since I is notherian, there
is some m0 > 0 such that Im0 ⊂ AnnOX [ξ1,...,ξn](grF M). Because Im0 is generated by
the monomials ξα for |α| = m0, we thus have that

∂αFjM ⊂ Fj+m0−1M

On the other hand, because F is a good filtration, we have FiDXFjM = Fi+jM for j
sufficiently large by 4.1(ii). Hence

Fm0+jM = (Fm0DX)(FjM) ⊂ Fj+m0−1M

for j sufficiently large. Hence FjM = Fj+1M = M for all j sufficiently large, so by
4.1(ii) we have that M is a coherent OX -module.

Because T ∗XX ' X, we have dim(T ∗XX) = dimX, so we obtain the following
corollary:

Corollary 4.7. Let M be a coherent DX-module which is also coherent over OX .
(Equivalently, by 2.16, let M be an integrable connection.) Then M is holonomic.

4.3 Non-characteristic morphisms and inverse images

Although in general inverse images do not preserve coherency, we give a sufficient
condition on the morphism f : X → Y so that the inverse of a coherent D-module
will be again coherent. For a morphism f : X → Y of smooth varieties, we have the

induced morphisms T ∗X
ρf←− X ×Y T ∗Y

$f−−→ T ∗Y .

Definition 4.8. Keeping the notation above, set T ∗XY = ρ−1f T ∗XX ⊂ X ×Y T ∗Y . We
call a morphism f : X → Y of smooth varieties non-characteristic with respect to a
coherent DY -module M if $−1f (Ch(M)) ∩ T ∗XY ⊂ X ×Y T ∗Y Y .

The following lemma can be checked by computation.
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Lemma 4.9. Let f : X → Y and g : Y → Z be morphisms of smooth varieties. Then
we have a commutative diagram

T ∗X X ×Y T ∗Y X ×Z T ∗Z

T ∗Y Y ×Z T ∗Z

T ∗Z

ρf

$f

ϕ

ψ

ρg

$g

where ρf ◦ ϕ = ρg◦f , $g ◦ ψ = $g◦f , and the upper right square is cartesian.

We now move on to the main theorem of this subsection.

Lemma 4.10. Let f : X → Y be an embedding of a hypersurface, non-characteristic
with respect to M ∈ Modc(DY ). Then for u ∈ M , there is locally P ∈ DY such that
Pu = 0 and f is non-characteristic with respect to DY /DY P .

Proof. We have that Ch(DY u) ⊂ Ch(M), so f is also non-characteristic with respect
to DY u. Next, Ch(DY u) is the zero set of grF I, where I = {Q ∈ DY | Qu = 0}. Then
because T ∗XY is a line bundle on X (in the case of a closed embedding, T ∗XY is the
conormal bundle of X in Y , which in the case of a hypersurface embedding is a line
bundle), we can find locally P ∈ I such that f is non-characteristic with respect to
DY /DY P .

Theorem 4.11. Let f : X → Y be a morphism of smooth varieties non-characteristic
with respect to M ∈ Modc(DY ).

1. Hj(Lf∗M) = 0 for all j 6= 0.

2. H0(Lf∗M) is a coherent DX-module.

3. Ch(H0(Lf∗M)) ⊂ ρf$−1f Ch(M).

Sketch. Factor f : X → Y into the composition X → Y × X → Y . Thus we may
reduce to the case where f is a closed embedding of a projection. In the latter case,
the assertions follow from the isomorphism Lf∗M 'M �OZ .

In the former case, we first consider the closed embedding of a hypersurface. To
show (i), pick local coordinates {yi, ∂yi} on Y as in 2.10 such that y1 = 0 gives a
defining equation for X, and DX→Y ' DY /y1DY . Thus we may compute Lf∗ using
the resolution 0 → y1DY → DY → DX→Y → 0. Then, Lf∗M is (locally) represented

by the complex f−1M
·y1−−→ f−1M where the terms are in degree −1 and 0. From here,

(i) can be deduced from 4.10.
For (ii) and (iii), take a good filtration F of M . Set N = H0(Lf∗M) = f∗M , and

define a filtration F of N by FiN = Im(f∗FiM → f∗M). It can then be shown that
grF N is a coherent grF DX -module such that Ch(N) ⊂ ρf$−1f (Ch(M)).

Next, we consider when f : X → Y is a closed embedding. We proceed by induction
on the codimension of X. For codimY X = 1, we refer to the previous case. For a more
general embedding, we factor f : X → Y as a composite X → Z → Y of closed
embeddings of smooth varieties with codimZ X, codimZ Y < codimY X. Then using
4.9 with the induction hypothesis, we can deduce the desired results about f .
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4.4 Duality for D-modules

We have so far used filtrations to obtain commutative approximations to D-modules
and to find a condition for inverse images to preserve coherence. In this section, we
define the operation of duality, and study how it interacts with holonomicity and the
image functors.

Definition 4.12. We define the duality functor D = DX : D−(DX)→ D+(DX)op by

DM• = RHomDX (M•, DX)⊗OX Ω−1X [dX ] = RHomDX (M•, DX ⊗OX Ω−1X [dX ])

where dX = dimX.

Before we study duality, we first provide a computational lemma.

Lemma 4.13. Let M ∈ Modc(DX). Then for any affine open U ⊂ X,

E xtiDX (M,DX)(U) = ExtiDX(U)(M(U), DX(U))

To see why the operation D deserves the name of duality, we have the following
lemma:

Proposition 4.14. 1. D sends Db
c(DX) to Db

c(DX)op

2. D2 ' Id on Db
c(DX).

Sketch. 1. First, we may assume that M• = M ∈ Modc(DX). Then we can deduce
from 4.13 that H i(DM) ∈ Modc(DX) for any i. The boundedness follows from
4.13, and 2.14.

2. We construct a canonical morphism M• → D2M• for M• ∈ Db(DX). By defini-
tion,

D2M• ' RHomDopX
(RHomDX (M•, DX), DX)

Now set H• = RHomDX (M•, DX). Then we have

RHomDX⊗CD
op
X

(M• ⊗C H•, DX) ' RHomDX (M•, RHomDopX
(H•, DX))

Applying H0(RΓ(X,−)) to the above, we obtain

HomDX⊗CD
op
X

(M• ⊗C H•, DX) ' HomDX (M•, RHomDopX
(H•, DX))

From this, we obtain our desired morphism M → D2M by the above equivalence
from the canonical morphism

M• ⊗C RHomDX (M•, DX)→ DX

To see that this is an isomorphism, we may first reduce to the case when X is
affine (hence D-affine), and then we may replace M• with DX by 2.19 by taking
a resolution F• ' M• where F• is a bounded complex of DX -modules such that
each term of F• is a direct summand of a free DX -module of finite rank. In this
case, both sides are DX and the result follows immediately.
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The following theorem gives further information about characteristic varieties:

Theorem 4.15. Let X be a smooth variety and M a coherent DX-module.

1. codimT ∗X Ch(E xtiDX (M,DX)⊗OX Ω−1X ) ≥ i.

2. E xtiDX (M,DX) = 0 for i < codimT ∗X Ch(M).

Now we can state how D interacts with holonomicity:

Corollary 4.16. Let M be a coherent DX-module.

1. H i(DM) = 0 unless −(dX − codimT ∗X Ch(m)) ≤ i ≤ 0.

2. codimT ∗X Ch(H i(DM)) ≥ dX + i.

3. M is holonomic iff H i(DM) = 0 for i 6= 0.

4. If M is holonomic, then DM ' H0(DM) is also holonomic.

Proof. (i) and (ii) follow immediately from 4.15 and the definition of D. (iv) and the
forward direction of (iii) follow from the (i) and (ii) and 4.5. (Note that for (iv) to
make sense, we also need (iii).)

For the remaining direction of (iii), assume that H i(DM) = 0 for i 6= 0, and set
M∗ = H0(DM). Then DM∗ = D2M ' M , hence H0(DM) ' M by 4.14. Then by
(ii), dim Ch(H0(DM∗)) ≥ dX , hence DM∗ 'M is holonomic.

We now turn to relationship between duality and the image functors.

Lemma 4.17. For M• ∈ Db
c(DX) and N• ∈ Db(DX), we have

RHomDX (M•, N•) ' RHomDX (M•, DX)⊗LDX N•

Proof. We have a canonical morphism

' RHomDX (M•, DX)⊗LDX N• → RHomDX (M•, N•)

Thus we may assume that M• = DX , in which case both side are equal to N•.

Proposition 4.18. For M• ∈ Db
c(DX) and N• ∈ Db(DX). We have

RHomDX (M•, N•) ' (ΩX ⊗LOX DXM•)⊗LDX N•[−dX ]

' ΩX ⊗LDX (DXM•)⊗LOX N•)[−dX ]

' RHomDX (OX ,DXM• ⊗LOX N•)

in Db(CX). Furthermore, we have

RHomDX (OX , N•) ' ΩX ⊗LDX N•[−dX ]

Proof. We begin with the latter statement. By 4.17,

RHomDX (OX , N•) ' RHomDX (OX , DX)⊗LDX N•
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Thus it suffices to compute RHomDX (OX , DX), for which we use the resolution 3.13
of the left DX -module OX and the right DX -module ΩX :

RHomDX (OX , DX) ' [HomDX (DX ⊗OX ∧
iΘX , DX)]

' [HomOX (∧iΘX , DX)]

' [∧iΩ1
X ⊗OX DX ]

' ΩX [−dX ]

Now let us prove the former statement. By 4.17 and the definition of DX :

RHomDX (M•, N•) ' RHomDX (M•, DX)⊗LDX N•
' (ΩX ⊗LOX DXM•)⊗LDX N•[−dX ]

The other isomorphisms follow from the derived version of 2.7 and the isomorphism
proved in the first half of this proof.

Applying RΓ(X,−) to the first isomorphism of 4.18

Corollary 4.19. Let p : X → {pt} be the projection. Then for M• ∈ Db
c(DX) and

N• ∈ Db(DX), we have isomorphisms

RHomDX (M•, N•) '
∫
p
(DXM• ⊗LOX N•)[−dX ]

' RHomDX (OX ,DXM• ⊗LDX N•)

Theorem 4.20. Let f : X → Y be a morphism of smooth varieties, and M ∈
Modc(DY ).

1. If Lf∗M ∈ Db
c(DX), then there is a canonical morphism DXLf∗M → Lf∗DYM .

2. Assume f is non-characteristic with respect to M . Then DXLf
∗M ' Lf∗DYM .

We construct the morphism, but do not prove that it is an isomorphism. The proof
uses the (by now) standard strategy of factoring f into X → Pn × Y → Y .

Sketch. First, by 4.18, we have

HomDb(DY )(M,M) ' HomDb(DY )(OY ,DYM ⊗LOY M)

Applying the functor Lf∗ and using 3.9, we then have a morphism

HomDb(DY )(OY ,DYM ⊗LOY M)→ HomDb(DX)(Lf
∗OY , Lf∗(DYM)⊗LOX Lf

∗M)

Putting these together and then further computing:

HomDb(DY )(M,M) ' HomDb(DY )(OY ,DYM ⊗LOY M)

→ HomDb(DX)(Lf
∗OY , Lf∗(DYM)⊗LOX Lf

∗M)

' HomDb(DX)(OX , Lf∗M ⊗LOX Lf
∗DYM)

' HomDb(DX)(DXLf∗M,Lf∗DYM)

Thus we obtain a canonical morphism DXLf∗M → Lf∗DYM as the image under the
above compositions of idM .
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Theorem 4.21. Let f : X → Y be a proper morphism. Then we have a canonical
isomorphism

∫
f DX ' DY

∫
f : Db

c(DX)→ Db
c(DY ).

As above, we sketch the construction of the morphism, and omit checking that
it is actually an isomorphism. The proof again uses the strategy of factoring f into
X → Pn × Y → Y .

Sketch. To construct the desired morphism, we will need the trace map

Trf :

∫
f
OX [dX ]→ OY [dY ]

This map is constructed in two steps. First, for a closed embedding i : X → Y , we
apply the canonical morphism

∫
i i
† → Id to OY gives a morphism

∫
i i
†OY → OY . By

local computations, i†OY = i∗OY [dX−dY ] = OX [dX−dY ] and then shifting everything
by dY , we get a morphism

∫
iOX [dX ]→ OY [dY ]. Next, for a projection Pn×Y → Y , we

may reduce to the situation where Y is a single point. The desired morphism is then
induced by the standard trace morphism in algebraic geometry. Finally, we obtain
Trf :

∫
f OX [dX ] → OY [dY ] by composing the trace morphisms for a factorization

X → Pn × Y → Y . One can then show that Trf does not depend on the choice of
factorization and is functorial with respect to composition.

Now we construct a canonical morphism
∫
f DX → DY

∫
f . Let M• ∈ Db

c(DX).
Computing gives∫

f
DXM• = Rf∗(RHomDX (M•, DX)⊗LDX DX→Y )⊗LOY Ω−1Y [dY ]

= Rf∗(RHomDX (M•, DX→Y ))⊗LOY Ω−1Y [dX ]

DY
∫
f
M• = RHomDX (

∫
f
M•, DY )⊗LOY Ω−1Y [dY ]

so it suffices to construct a canonical morphism

Φ(M•) : Rf∗(RHomDX (M•, DX→Y [dX ]))→ RHomDY (

∫
f
M•, DY [dY ])

in Db
c(D

op
Y ). We have∫

f
DX→Y [dX ] =

∫
f
Lf∗DY [dX ] '

∫
f
OX [dX ]⊗LOY DY

so that TrF induces a canonical morphism
∫
f DX→Y [dX ] → DY [dY ]. Putting every-

thing together, we may define Φ(M•) by the composition

Rf∗(RHomDX (M•, DX→Y [dX ]))

→ Rf∗RHomf−1DY (DY←X ⊗LDX M•, DY←X ⊗LDX DX→Y [dX ])

→ RHomDY (Rf∗(DY←X ⊗LDX M•), Rf∗(DY←X ⊗LDX DX→Y )[dX ])

= RHomDY (

∫
f
M•,

∫
f
DX→Y [dX ])

→ RHomDY (

∫
f
M•, DY [dY ])
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5 Holonomic D-modules

We now turn to holonomicD-modules. Although we previously required further criteria
of a morphism f : X → Y for its image functors to preserve coherence, we will see that
even the image functors of general morphisms f : X → Y of smooth varieties preserve
holonomicity. Furthermore, the duality functor will allow us to identify the previously
missing left adjoints to our image functors. Finally, we also single out a particularly
simple class of holonomic DX -modules.

Notation 5.1. Let Modh(DX) denote the subcategory of Modc(DX) of holonomic
DX -modules, and let Db

h(DX) denote the subcategory of Db
c(DX) consisting of M ∈

Db
c(DX) whose cohomology sheaves are holonomic.

5.1 Properties of holonomic D-modules

Proposition 5.2. 1. For an exact sequence 0→ L→ M → N → 0 in Modc(DX),
we have N ∈ Modh(DX) ⇐⇒ M,L ∈ Modh(DX).

2. Any holonomic DX-module has finite length.

Sketch. The first statement is an immediate corollary of 4.3. For the second statement,
we introduce an invariant called the total multiplicity, defined as follows.

Let F be a good filtration of M , so that in particular g̃rF M is a coherent OT ∗X -
module. Then for any irreducible component C ∈ Ch(M), take an affine open U ⊂
T ∗X such that C ∩ U = C, and let pC ⊂ OU (U) be the defining ideal of U ∩ C.

Then the stalk (g̃rF M)p is an artinian (OT ∗X)p-module (that does not depend on
U), so has a well defined length which we denote mC(M). Then we define the total
multipicity m(M) =

∑
C∈Ch(M)mC(M), where the sum is over irreducible components

C of Ch(M).
By general facts about filtered rings, m(M) = m(L)+m(N) for any exact sequence

0 → L → M → N → 0 of holonomic DX -modules. Furthermore, m(M) = 0 ⇐⇒
M = 0, so the second statement follows by induction on m(M).

Proposition 5.3. Let M ∈ Modh(DX). Then there is an open, dense U ⊂ X such
that M |U is coherent on OU .

Proof. Let T ∗XX ⊂ T ∗X be the zero section, and set S = Ch(M) \ T ∗XX. If S = ∅,
then by 4.6 M is coherent over OX . If S 6= ∅, then the fibers of the projection are
at least one-dimensional, because in particular each fiber is stable under scaling by C,

because g̃rF M is a graded module over the graded ring OT ∗X . (The grading on the
latter comes from grF DX .) Hence dimπ(S) < dimS ≤ dimX. Thus there is an open
subset U ⊂ X such that U ∩ π(S) = ∅, and thus Ch(M |U ) \ T ∗UU = ∅, so M |U is
coherent over OU .

We also note the following result:

Proposition 5.4. Let M ∈ Modqc(DX). For U ⊂ X open, suppose that N is a
holonomic submodule of M |U . Then there is a holonomic submodule Ñ of M such that
Ñ |U = N .
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Sketch. By 2.21, we may assume M coherent and M |U = N . Set L = H0(DXM).
Then by 4.16, we have codimT ∗X Ch(L) ≥ dX , hence L is holonomic with Ñ = DXL
also holonomic. By 4.14, Ñ |U = N , and one can check that the canonical morphism
Ñ →M obtained from the morphism DXM → L is injective.

Proposition 5.5. The duality functor DX induces isomorphisms

Modh(DX) ' Modh(DX)op, Db
h(DX) ' Db

h(DX)op

Proof. This is an immediate corollary of 4.16

We present without proof the following fundamental result on holonomicD-modules.
One strategy for proving this theorem first deduces (ii) as a corollary of (i), and then
uses the familiar trick of decomposing f as a closed embedding followed by a projection
to reduce (i) to the situation in of a projection Cn+1 → Cn, so we can thus work with
D-modules on Cn.

Theorem 5.6. Let f : X → Y be a morphism of smooth varieties.

1.
∫
f restricts to a functor

∫
f : Db

h(DX)→ Db
h(DY ).

2. f † restricts to a functor f † : Db
h(DY )→ Db

h(DX).

5.2 Adjunction formulas

Using duality, we can also introduce new functors:

Definition 5.7. Let f : X → Y be a morphism of smooth algebraic varieties. We
define

∫
f ! and f? by ∫

f !
= DY

∫
f
DX : Db

h(DX)→ Db
h(DY )

f? = DXf †DY : Db
h(DY )→ Db

h(DX)

from which we can obtain adjunction formulas:

Theorem 5.8. For M• ∈ Db
h(DX) and N• ∈ Db

h(DY ), we have natural isomorphisms

RHomDY (

∫
f !
M•, N•) ' Rf∗RHomDX (M•, f

†N•)

Rf∗RHomDX (f?N•,M•) ' RHomDY (N•,

∫
f
M•)
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Proof. Note that either isomorphism can be deduced from the other by application of
the duality functors. We prove the first:

Rf∗RHomDX (M•, f
†N•)

' Rf∗((ΩX ⊗LOX DXXM•)⊗LDX f
†N•)[−dX ]

' Rf∗((ΩX ⊗LOX DXM•)⊗LDX DX→Y ⊗Lf−1DY
f−1N•)[dY ]

' Rf∗((ΩX ⊗LOX DXM•)⊗LDX DX→Y )⊗LDY N•[−dY ]

' (ΩY ⊗LOY

∫
f
DXM•)⊗LDY N•[−dY ]

' (ΩY ⊗LOY DY
∫
f !
M•)⊗LDY N•[−dY ]

' RHomDY (

∫
f !
M•, N•)

The first and last equivalences follow from 4.18, and the rest follow from definitions of
the functors.

From this, we obtain adjunctions:

Corollary 5.9. For M• ∈ Db
h(DX) and N• ∈ Db

h(DY ), we have natural isomorphisms

HomDbh(DY )(

∫
f !
M•, N•) ' HomDbh(DX)(M•, f

†N•)

HomDbh(DX)(f
?N•,M•) ' HomDbh(DY )(N•,

∫
f
M•)

Proof. Apply H0(RΓ(Y,−)) to the isomorphisms of 5.8.

Theorem 5.10. There is a morphism of functors
∫
f ! →

∫
f : Db

h(DX) → Db
h(DY )

which is an isomorphism if f is proper.

Sketch. By Hironaka’s desingularization theorem, we can factor f : X → Y as

X
g−→ X × Y j−→ X̃ × Y p−→ Y

where X̃ is a desingularization of X, g, j are embeddings, and p is the projection. In
this situation, g and p are proper, and j is an open embedding, so we may reduce to
these cases.

If f is proper, then by 4.21 we have an isomorphism∫
f !

= DY
∫
f
DX

∼−→
∫
f

If f is an open embedding, then for M• ∈ Db
h(DX), we have

HomDbh(DY )(

∫
f !
M•,

∫
j
M•) ' HomDb

h(DX)(M•, j
†
∫
f
M•)

' HomDbh(DX)(M•,M•)

by 5.9 and we obtain the desired morphism as the image of Id ∈ HomDbh(DX)(M•,M•).
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5.3 Minimal extensions

A nonzero coherent D-module M is simple if it contains no coherent D-submodules
other than itself and 0. For any holonomic D-module M , there is a finite sequence
M = M0 ⊃ · · · ⊃ Mr+1 = 0 of holonomic D-submodules such that Mi/Mi+1 is simple
for each i, by 5.2. We now construct simple holonomic D-modules from locally free
D-modules of finite rank over O on locally closed smooth subvarieties.

Let Y be a locally closed smooth subvariety of a smooth variety X, and assume
that the inclusion map i : Y ↪→ X is affine. Then DX←Y is locally free over DY and
Ri∗ = i∗, so for a holonomic DY -module M we have Hj

∫
iM = Hj

∫
i!M = 0 for j 6= 0,

so we may thus regard
∫
iM and

∫
i!M as DX -modules. These are holonomic by 5.6,

and by 5.10, we have a morphism
∫
i!M →

∫
iM in Modh(DX).

We call the image L(Y,M) of the canonical morphism
∫
i!M →

∫
iM above the

minimal extension of M , and L(Y,M) is holonomic by 5.2. We mention the following
classification theorem for simple, holonomic D-modules.

Theorem 5.11. 1. Let Y be a locally closed, smooth, connected subvariety of X
such that i : Y ↪→ X is affine and let M be a simple holonomic DY -module. Then
L(Y,M) is also simple, and is the unique simple submodule of

∫
iM .

2. Any simple holonomic DX-module is isomorphic to L(Y,M) for some pair (Y,M),
where Y is as in (i) and M is a simple DY -module that is locally free and of finite
rank over OY .

3. Let (Y,M) as in (ii) and (Y ′,M ′) another such pair. Then L(Y,M) ' L(Y ′,M ′)
iff Y = Y ′ and M |U 'M ′|U for any open dense U ⊂ Y ∩ Y ′.

Proposition 5.12. Let Y be a locally closed smooth subvariety of X such that the
embedding i : Y → X is affine, and let M be an integrableconnection on Y . Then
DXL(Y,M) ' L(Y,DYM).

Proof. By definition of L(Y,M) and exactness of the duality functor:

DXL(Y,M) = DX Im(

∫
i!
M →

∫
i
M) ' Im(DX

∫
i!
M → DX

∫
i
M)

and L(Y,DYM) ' Im(
∫
i!DYM →

∫
iDYM). These are isomorphic by 4.21 and the

definition of
∫
i!.

6 Analytic D-modules

Until this point, X has denoted a smooth variety over C. To state the Riemann-Hilbert
correspondence, we will also need to study D-modules on complex manifolds. In this
section, we give a rapid overview of the theory of D-modules on complex manifolds
(much of which will be completely analogous to the algebraic situation).

6.1 D-modules on complex manifolds

Let X be a complex manifold and OX its sheaf of holomorphic functions. We will also
need the sheaves ΘX and Ωp

X of holomorphic vector fields and holomorphic differential
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forms of degree p. We define DX to be the subsheaf of E ndC(OX) generated by OX
and ΘX , and we have the side-changing equivalence

ΩX ⊗OX − : Mod(DX)→ Mod(Dop
X )

We also define the transfer bimodules

DX→Y = OX ⊗f−1OY f
−1DY , DY←X = ΩX ⊗OX DX→Y ⊗f−1OY f

−1Ω−1Y

In local coordinates {xi} on X, we have DU = ⊕α∈NnOU∂α, where ∂i = ∂
∂xi

, with
the order filtration defined locally by FlDU =

∑
|α|≤lOU∂α. Then the associated

graded grF DX is a sheaf of commutative algebras over OX , and we will often identify
it with a subsheaf of π∗OT ∗X . (We regard ξi = ∂i ∈ grF1 DX as giving coordinates on
the fibers of the cotangent bundle π : T ∗X → x.)

We also have the notion of a good filtration on a D-module M . Unlike in the
algebraic case, we no longer have the existence of a global good filtration, but the local
version will suffice to define the characteristic variety Ch(M) of a coherent DX -module
as follows. For an open U ⊂ X such that M |U admits a good filtration F , we obtain
a coherent OT ∗U -module

˜grF (M |U ) = OT ∗U ⊗π−1
U grF DU

π−1U grF M |U

where πU : T ∗U → U is the projection. Set Ch(M |U ) to be the support of the above
OT ∗U -module. Then Ch(M) is the closed subvariety of T ∗X such that Ch(M)∩T ∗U =
Ch(M |U ) for any U and F as above. By an analogous argument as in the algebraic
case, Ch(M) is well-defined, and we have the following theorem.

Theorem 6.1. For any coherent DX-module M , Ch(M) is involutive with respect to
the canonical symplectic structure on T ∗X. In particular, every irreducible component
of Ch(M) has dimension at least dimX, and dim Ch(M) ≥ dimX.

We call M holonomic if Ch(M) has the minimal dimension dimX, and we define
the condition for f to be non-characteristic with respect to a coherent DX -module M
similarly to the algebraic case.

Notation 6.2. We denote by Modc(DX) and Modh(DX) the categories of coherent and
holonomic DX -modules, respectively. Furthermore, we denote by Db

c(DX) and Db
h(DX)

the subcategories of Db(DX) consisting of complexes whose cohomology sheaves are
coherent and holonomic DX -modules, respectively.

We re-introduce the various functors from before.

Definition 6.3. Let f : X → Y be a morphism of complex manifolds.

DX : Db
c(DX)→ Db

c(DX)op, M• 7→ RHomDX (M•, DX ⊗OX Ω−1X [dX ])

Note that DX also preserves holonomicity: DX : Db
h(DX) 7→ Db

h(DX)op.

Lf∗ : Db(DY )→ Db(DX), M• 7→ DX→Y ⊗Lf−1DY
f−1M•

f † : Db(DY )→ Db(DX), M• 7→ Lf∗M•[dX − dY ]∫
f

: Db(DX)→ Db(DY ), M• 7→ Rf∗(DY←X ⊗LDX M•)

While many of the algebraic results carry over immediately to the analytic situation
(e.g. under what conditions the functors above preserve coherence, commutivity with
duality, etc.), we do not list them here.
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6.2 Solution and de Rham functors

In this section, we introduce the de Rham and solution functors. These will be crucial
in the Riemann-Hilbert correspondence.

Definition 6.4. Let X be a complex manifold.

DRX : Db(DX)→ Db(CX), DRXM• = ΩX ⊗LDX M•
SolX : Db(DX)→ Db(CX)op, SolXM• = RHomDX (M•,OX)

We have the following analogous result to 4.18

Proposition 6.5. For M• ∈ Db
c(DX), we have

DRXM• ' RHomDX (OX ,M•)[dX ] ' SolX(DXM•)[dX ]

By this result, properties of SolX can be deduced from properties of DRX , and vice
versa. DRX has the advantage that we can compute it using a resolution of the right
DX -module ΩX . Similarly to 3.13, we have a locally free resolution

0→ Ω0
X ⊗OX DX → · · · → ΩdX

X ⊗OX DX → ΩX → 0

so for M ∈ Mod(DX), we may represent DRX(M)[−dX ] in Db(CX) by the complex

ΩX,• ⊗OX M = [Ω0
X ⊗OX M → · · · → ΩdX

X ⊗OX M ]

In the case where M is an integrable connection of rank m (a coherent DX -module
which is locally free of rank m over OX), we have that the cohomology sheaf

H0(ΩX,• ⊗OX M) 'HomDX (OX ,M)

coincides with the kernel of the morphism

∇ : M ' Ω0
X ⊗OX M → Ω1

X ⊗OX M
whic is the sheaf

M∇ = {s ∈M | ∇s = 0} = {0 ∈M | ΘXs = 0}
of horizontal sections of the integrable connection M . It is a locally free CX -module
of rank m. We call such CX -modules (locally free CX -modules of finite rank) local
systems, and we denote by Loc(X) the category of local systems on X. Conversely,
given a local system L, we can define an integrable connection M = OX⊗CX L with ∇ :
M → Ω1

X⊗CXM as above given by d⊗ idL. In fact, we can extend this correspondence
to obtain a simple case of the Riemann-Hilbert correspondence:

Theorem 6.6. Let M be an integrable connection of rank m on a complex manifold
X. Then H i(DRX(M)) = 0 for i 6= −dX , and H−dX (DRX(M)) is a local system on
X. Thus we have an equivalence

H−dX (DRX(−)) : Conn(X) ' Loc(X)

where Conn(X) denotes the category of integrable connections on X.

Theorem 6.7. Let f : X → Y be a morphism of complex manifolds. For M• ∈
Db(DX), we have an isomorphism in Db(CY ):

Rf∗DRXM• ' DRY
∫
f
M•

If f is non-characteristic with respect to a coherent DX-module M , then we have

DRY (Lf∗M) ' f−1DRX(M)[dY − dX ]
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6.3 Constructible sheaves

For a morphism f : X → Y of analytic spaces, we have functors

f−1 : Mod(CY )→ Mod(CX), f∗, f! : Mod(CX)→ Mod(CY )

The first is exact, and the latter two are left exact. We have their derived functors

f−1 : Db(CY )→ Db(CX), Rf∗, Rf! : Db(CX)→ Db(CY )

and an additional functor f ! : Db(CY ) → Db(CX), which is right adjoint to Rf!.
Furthermore, the tensor product induces a functor

−⊗C − : Db(CX)×Db(CX)→ Db(CX)

and we also have an exterior tensor product:

Definition 6.8. Let X and Y be analytic spaces. For K• ∈ Db(CX) and L• ∈ Db(CY ),
we define

K• � CL• = p−11 K• ⊗CX×Y p
−1
2 L•

where p1, p2 : X × Y → X,Y are the projections.

For an analytic space, we set ωX,• = a!XC ∈ Db(CX), where aX : X → {pt}
is the unique morphism to the one point space. If X is a complex manifold, then
ωX,• ' CX [2 dimX]. We define

Definition 6.9. Let X be a complex manifold. We define a functor

DX : Db(CX)→ Db(CX)op, DXF• = RHomCX (F•, ωX,•)

and DXF• is called the Verdier dual of F• ∈ Db(CX).

Proposition 6.10. Let X be a complex manifold. Let M be a holonomic DX-module
and DXM its dual. Then we have isomorphisms

DX(DRX(M)) ' DRXDXM, DX SolX(M)[dX ] ' SolX(DXM)[dX ]

Let X be an analytic space. A locally finite partition X = tα∈AXα by locally
closed analytic subsets Xα is a stratification of X if for any α ∈ A, Xα is smooth and
Xα = tβ∈BXβ some B ⊂ A. We call each Xα a stratum.

Definition 6.11. Let X be an analytic space. A CX -module F is constructible on X
if there is a stratification X = tα∈AXα such that F |Xα is locally free of finite rank for
all α. If X is a variety, then a CXan-module F is algebraically constructible if there is
a stratification X = tα∈AXα such that F |Xan

α
is a locally constant sheaf for all α.

Notation 6.12. For an analytic space X, we denote by Db
c(X) the subcategory of

Db(CX) consisting of complexes whose cohomology sheaves are constructible. For a
variety X, we denote by Db

c(X) the subcategory of Db(CXan) consisting of complexes
whose cohomology sheaves are algebraically constructible.

For a variety X, we write by abuse of notation the sheaf ωXan,• and the functor
DXan : Db(CXan)→ Db(CXan)op simply as ωX,• and DX , respectively.

For a morphism f : X → Y of varieties, we write (fan)−1, (fan)!, Rfan∗ , Rfan! as
f−1, f !, Rf∗, Rf! respectively.
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Theorem 6.13. 1. Let X be a variety or an analytic space. Then ωX,• ∈ Db
c(X),

DX preserves Db
c(X), and D2

X ' Id on Db
c(X).

2. Let f : X → Y be a morphism of varieties or analytic spaces. Then f−1 and f !

induce f−1, f ! : Db
c(Y )→ Db

c(X), and f ! = DXf
−1DY on Db

c(Y ).

3. Let f : X → Y be a morphism of varieties or analytic spaces. In the latter case, we
further assume that f is proper. Then Rf∗, Rf! induce Rf∗, Rf! : Db

c(X)→ Db
c(Y )

and Rf! = DYRf∗DX .

4. Let X be a variety or analytic space. Then the tensor product − ⊗C − induces
−⊗C − : Db

c(X)×Db
c(X)→ Db

c(X).

In fact, we could have taken the above theorem as the definitions of f! and f ! (i.e.
obtained from f−1 and f∗ by Verdier duality).

Definition 6.14. Let X be a variety or an analytic space. Then F• ∈ Db
c(X) is

a perverse sheaf if dim supp(Hj(F•)) ≤ −j and dim supp(Hj(DXF•)) ≤ −j for any
j ∈ Z. We denote by Perv(CX) the subcategory of Db

c(X) consisting of perverse
sheaves.

We now mention two remarkable theorems of Kashiwara:

Theorem 6.15. Let M be a holonomic DX-module for X a complex manifold. Then
SolX(M) = RHomDX (M,OX) and DRX(M) = ΩX ⊗LDX M are objects in Db

c(X).

Theorem 6.16. Let X be a complex manifold and M a holonomic DX-module. Then
SolX(M)[dX ] = RHomDX (M,OX)[dX ] and DRX(M) = ΩX ⊗LDX M are perverse
sheaves on X.

6.4 Analytic from algebraic

We turn now to obtaining analytic D-modules from algebraic D-modules on a smooth
variety.

For an algebraic variety X, we denote by Xan the corresponding analytic space.
We have a morphism iX : (Xan,OXan)→ (X,OX) of ringed spaces. If X is a smooth
variety, then Xan is a complex manifold, and we have a morphism i−1X DX → DXan .
This gives a functor

−an : Mod(DX)→ Mod(DXan), M 7→Man = DXan ⊗i−1
X DX

i−1X M

This functor is exact because DXan is faithfully flat over i−1X DX , so the above functor
is exact and extends to a functor

−an : Db(DX)→ Db(DXan)

Note further that −an preserves coherence. We may now define the de Rham and
Solution functors for a smooth variety X.

Definition 6.17. Let X be a smooth variety. Then we define functors

DRX : Db(DX)→ Db(CXan), M• 7→ ΩXan ⊗LDXan (M•)
an

SolX : Db(DX)→ Db(CXan)op, M• 7→ RHomDXan ((M•)
an,OXan)
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Proposition 6.18. Let f : X → Y be a morphism of smooth varieties. For M• ∈
Db
c(DX), there is a canonical morphism DRY (

∫
f M•) → Rf∗(DRXM•) which is an

isomorphism if f is proper.

Proposition 6.19. Let X and Y be smooth algebraic varieties. For M• ∈ Db
c(DX)

and N• ∈ Db
c(DY ), we have a canonical morphism

DRX(M•) �C DYY (N•)→ DRX×Y (M• �N•)

which is an isomorphism if M• ∈ Db
h(DX) or N• ∈ Db

h(DY ).

Proposition 6.20. Let X be a smooth variety. For M• ∈ Db
c(DX), we have canonical

morphisms
DRX(DXM•)→ DX(DRXM•)

SolX(DXM•)[dX ]→ DX(SolXM•)[dX ]

which are isomorphisms if M• ∈ Db
h(DX).

7 Regular D-modules

While the classical theory of regular integrable connections on a complex manifold
provides motivation for the algebraic setting, we instead take the opposite approach and
begin with regular integrable connections on an algebraic variety. We then generalize
to high dimensional varieties, and mention in passing an analytic result.

7.1 Regularity on curves

Let C be a smooth (algebraic) curve, p ∈ C, OC,p the local ring, and KC,p its fraction
field.

Definition 7.1. Let M be a finite dimensional KC,p-module and ∇ : M → Ω1
C,p⊗OC,p

M be a C-linear map. Then (M,∇) is called an algebraic meromorphic connection
p ∈ C if ∇(fu) = df ⊗ u+ f∇u for f ∈ KC,p, u ∈M .

A morphism ϕ : (M,∇M ) → (N,∇N ) of algebraic meromorphic connections at
p ∈ C is a KC,p-linear map ϕ : M → N satisfying ∇N ◦ ϕ = (id⊗ ϕ) ◦ ∇M .

Definition 7.2. An algebraic meromorphic connection (M,∇) at p ∈ C is called
regular if there is a finitely generated OC,p-submodule L of M such that M = KC,pL
and x∇(L) ⊂ Ω1

C,p ⊗OC,p L for some local parameter x at p. We call such L an OC,p-
lattice of (M,∇).

We now define what it means for a DC-module to be reguar. Let M be an integrable
connection on C. Let j : C ↪→ C be a smooth completion, and consider the DC-module
j∗M =

∫
jM . Because M was locally free over OC , it is free on a nonempty open

U ⊂ C. We set V = C \ U , and hence j∗M |C\V is also free over j∗OC |C\V . Thus j∗M

is locally free of finite rank over j∗OC . Let p ∈ C \ C. Then the stalk (j∗M)p is a
free module over KC,p = (j∗OC)p as well as a DC,p-module, and we have a morphism

∇ : j∗M → Ω1
C,p
⊗OC,p j∗M given by m 7→ dx⊗ ∂m, where x is a local parameter at p

and ∂ = d
dx . We call the DC-module j∗M the algebraic meromorphic extension of M .
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Definition 7.3. Let M be an integrable connection on a smooth curve C. For p ∈
C \ C, we say that M has a regular singularity at p if ((j∗M)p,∇) as defined above is
regular. M is called regular if M has a regular singularity at all p ∈ C \ C.

Before we can define regularity for holonomic DC-modules, we will need the follow-
ing lemma.

Lemma 7.4. A coherent DC-module M is holonomic iff it is generically an integrable
connection.

Proof. The forward direction follows immediately from 5.3. Conversely, suppose M ∈
Modc(DC), and there exists an open, dense U ⊂ C such that M |U is an integrable
connection. In this case, V = C \U is a finite set, and Ch(M) ⊂ T ∗CC ∪ (∪p∈V (T ∗C)p),
where (T ∗C)p denotes the fiber over p of the projection π : T ∗C → C. Then because
dim∗C C = 1 and dim(T ∗C)p = 1 and V is finite, we have dim Ch(M) = 1, so M is
holonomic.

Definition 7.5. Let C be a smooth curve, and M ∈ Modh(DC). Then M is regular
if there is an open, dense C0 ⊂ C such that M |C0 is a regular integrable connection on
C0. M• ∈ Db

h(DC) is regular if all its cohomology sheaves are regular.

7.2 Regularity on general varieties

Let X now denote a smooth variety, and let j : X ↪→ V be an open embedding of X into
a smooth variety V such that D = V \X is a divisor on V . We set OV [D] = j∗OX ; this
is a coherent sheaf of rings. We call a DV -module an algebraic meromorphic connection
along D if it is isomorphic as an OV -module to a coherent OV [D]-module.

Definition 7.6. An integrable connection M on X is regular if for any morphism
iC : C → X from a smooth curve C, the induced integrable connection i∗CM on C is
regular (as an integrable connection on a smooth curve).

Notation 7.7. We denote by Conn(V ;D) the category of algebraic meromorphic
connections along D, Conn(X) the category of integrable connections on X, and
Connreg(X) the subcategory of Conn(X) consisting of regular integrable connections

We now mention a few results which we will need later. Their proofs rely on results
for analytic meromorphic connections, and we will not include them here.

Proposition 7.8. Let M ∈ Conn(X). TFAE:

1. M is regular.

2. There is a smooth completion j : X ↪→ X such that X \ X is a divisor on X,
(j∗M)an is a regular analytic meromorphic connection.

3. For any smooth completion j : X ↪→ X such that X \ X is a divisor on X,
(j∗M)an is a regular analytic meromorphic connection.

The following are due to Deligne:
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Theorem 7.9. Let D be a divisor on a copmlex manifold X and j : Y = X \D → D
the embedding. Let N be a regular (analytic) meromorphic connection along D. Then
the following morphisms are isomorphisms

DRX(N)→ Rj∗j
−1DRX(N)

RΓ(X,DRX(N))→ RΓ(Y,DRY (N |Y ))

Theorem 7.10. Let X be a smooth variety. Then the functor −an induces an equiv-
alence Connreg(X)→ Conn(Xan).

7.3 Regular holonomic D-modules

Finally, we define regular, holonomic D-modules.

Definition 7.11. Let X be a smooth variety. M ∈ Modh(DX) is regular if any
composition factor of M is isomorphic to the minimal extension L(Y,N) of some regular
integrable connection N on a locally closed smooth subvariety Y of X such that the
inclusion Y → X is affine.

Notation 7.12. We denote by Modrh(DX) the subcategory of Modh(DX) consisting
of regular holonomic DX -modules, and we denote by Db

rh(DX) the subcategory of
Db
h(DX) consisting of objects whose cohomology sheaves are regular holonomic DX -

modules.

We now state a theorem about regular holonomic D-modules which will play a
crucial role in the Riemann-Hilbert correspondence.

Theorem 7.13. Let X be a smooth variety.

1. DX preserves Db
rh(DX).

2. Let f : X → Y be a morphism of smooth varieties. Then
∫
f ,
∫
f ! restrict to functors

Db
rh(DX)→ Db

rh(DY ) and f †, f? restrict to functors Db
rh(DY )→ Db

rh(DX).

8 Riemann-Hilbert correspondence

Before we finally state the Riemann-Hilbert correspondence, we first prove a prelimi-
nary result about the interactions of the de Rham functor with the other functors we
have so far.

Theorem 8.1. Let f : X → Y be a morphism of smooth varieties. Then we have the
following isomorphisms of functors:

DXDRX ' DRXDX : Db
h(DX)→ Db

h(X)

DRY ◦
∫
f
' Rfan∗ ◦DRX : Db

rh(DX)→ Db
c(Y )

DRY ◦
∫
f !
' Rfan! ◦DRX : Db

rh(DX)→ Db
c(Y )

DRX ◦ f † ' (fan)! ◦DRY : Db
rh(DY )→ Db

c(X)

DRX ◦ f? ' (fan)−1 ◦DRY : Db
rh(DY )→ Db

c(X)
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In the following sketch, we freely use 7.13, which is necessary even to define the
functors above.

Sketch. The first isomorphism is 6.20, and we can immediately deduce the third and
fifth isomorphisms from the first, second, and fourth using 6.13.

It remains to show the second and fourth isomorphisms. By 6.18, we have the
desired morphism

DRY ◦
∫
f
→ Rf∗ ◦DRX

and we show that it is an isomorphism when restricted to Db
rh(DX). First, we can

factor f as X → X → Y where the first map is an open embedding such that X \X
is a normal crossings divisor on X (by a result of Hironaka) and the second map is
projective. Thus we may assume that f is an open embedding as above or projective.
If f is projective, then in particular it is proper, so we have our isomorphism by 6.18.

Now let f is an open embedding as above and M ∈ Modrh(DX). We proceed by
induction on the length of a composition series for M (such a composition series exists
by 5.2). In this case, suffices to prove the statement for M simple, and we may reduce
to the case M =

∫
i L where i : Z → X is an affine embedding of a smooth locally

closed subvariety Z of X and L is a simple regular integrable connection on Z. The
isomorphism for L follows from 7.9 and 7.10.

Thus we may compute:

DRY

∫
f
M = DRY

∫
f

∫
i
L ' DRY

∫
f◦i
' R(f ◦ i)∗DRZL

' Rf∗Ri∗DRZL ' Rf∗DRX
∫
i
L = Rf∗DRXM

For the fourth isomorphism, we first construct the desired morphism as follows.

HomDbh(DX)(f
†N•, f

†N•) ' HomDbH(DY )(

∫
f !
f †N•, N•)

→ HomDbc(Y )(DRY (

∫
f !
f †N•), DRYN•)

' HomDbC(Y )(Rf!DRX(f †N•), DRYN•)

' HomDbc(X)(DRXf
†N•, f

!DRYN•)

where the first line uses 5.9, the second line is application of DRY , the third line comes
from the isomorphism proven above, and the final line is again adjunction.

Factor f into X → X × Y → Y to reduce to the cases of a closed embedding and
a projection. The projection is in particular smooth, and smooth morphisms are non-
characteristic for any coherent DX -module, so the isomorphism is obtained by 6.7. In
the case of a closed embedding i : X → Y , let j : Y \X → Y be the corresponding open
embedding. Then for N• ∈ Db

rh(DY ), we have the following morphism of distinguished
triangles:

DRy
∫
i i
†N• DRYN• DRY

∫
j j
†N•

Ri∗i
!DRYN• DRYN• Rj∗j

!DRYN•

ψ Id ϕ

+1

+1
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Since j is smooth, we have that DRY
∫
j j
†N• ' Rj∗j

!DRYN•, so that ϕ is an
isomorphism. Thus ψ is also an isomorphism. Again by the first isomorphism, we have

DRY

∫
i
i†N• ' Ri∗DRXi†N•

Combining this with ψ gives the desired isomorphism (after precomosing with i−1,
nothing that i−1Ri∗ = Id since i is a closed embedding).

Theorem 8.2. For a smooth variety X, the de Rham functor

DRX : Db
rh(DX)→ Db

c(X)

gives an equivalence of categories.

Sketch. First, we show that for M•, N• ∈ Db
rh(DX),

RHomDX (M•, N•) ' RHomCXan (DRXM•, DRXN•)

Let ∆ : X ↪→ X ×X be the diagonal embedding, and p : X → {pt} the projection
to a point. Then by 4.19, we have the equivalence

RHomDX (M•, N•) '
∫
p

∆†(DXM• �N•)

Next, we have the equivalences for F•, G• ∈ Db
c(X):

∆!(DXF• �B•) ' ∆!DX×X(F• � DXG•)

' DX∆−1(F � DXG•)

' DX(F• ⊗C DXG•)

' RHomC(F• ⊗C DXG•, ωX,•)

' RHomC(F•, RHomC(DXG•, ωX,•))

' RHomC(F•,D
2
XG•)

' RHomC(F•, G•)

and applying Rp∗ = RΓ(X,−) to the first and last terms above gives:

RHomCXan (F•, G•) ' Rp∗∆!(DXF• �G•)

Thus we obtain:

RHomCXan (DRXM•, DRXN•) ' Rp∗∆!((DXDRXM•) �DRXN•)

6.20 ' Rp∗∆!(DRX(DXM•) �DRXN•)

6.19 ' Rp∗∆!(DRX×X((DXM•) �N•))

8.1 ' Rp∗DRX(∆†(DXM• �N•))

8.1 ' DRpt
∫
p

∆†(DXM• �N•)

'
∫
p

∆†(DXM• �N•)

' RHomDX (M•, N•)
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thus establishing that DRX is fully faithful. For essential surjectivity, it suffices to
check on generators of Db

c(X), so we may take F• = Ri∗L ∈ Db
c(CX) for an affine

embedding i : Z → X of a locally closed smooth subvariety Z of X and a local
system L on Zan. By 7.10, there is a regular integrable connection N on Z such that
DRZN ' L[dimZ]. Set M• =

∫
iN [−dimZ] ∈ Db

rh(DX). Then

DRX(M•) = DRX

∫
i
N [−dimZ] ' Ri∗DRZN [−dimZ] ' Ri∗L = F•

By 6.5, we obtain the following corollary.

Corollary 8.3. The solution functor

SolX : Db
rh(DX)→ Db

c(X)op

gives an equivalence of categories.

Although we will not go into detail here, we can obtain further information from
the above correspondence by further investigating the category of perverse sheaves.

Theorem 8.4. The de Rham functor induces an equivalence

DRX : Modrh(DX)→ Perv(CX)
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