
What is a Semigraphoid?

Probability is ubiquitous in our everyday lives – we use probabilistic models to predict
future behavior. For example, we use probability to predict weather patterns, to determine
which treatment will be the most effective for a sick patient, or to determine the best way
to invest our money. Aside from these tangible applications, there are also many indirect
uses of probability as well. Many common algorithms, such as quicksort or primality testing,
use “random choices” to increase performence by the time spent making decisions. While
counterintuitive, this often works because we can show that “randomly” is “not too bad.”
Whatever the particular details, the common foundation for these applications is that we
develop a model for a complex system we cannot understand completely, and then use
probabilistic techniques to study the behavior of these systems.

As often happens in math, we will try to make an abstract model for these more concrete
objects, and this is where semigraphoids come in.

Conditional Independence

Suppose you want to model some real world situation (for example the interactions of differ-
ent components in a biological system). One approach to this involves modelling components
of the system using random variables, which can roughly be thought of as some model (e.g. a
probability distribution) for possible outcomes of an observation. Of course, in a complicated
system, the individual components do not act independently, and there is some dependence
of one component on others. To capture these interactions, we often specify a joint probability
distribution, which characterizes the probability of making a set of observations.

One useful tool for studying interactions among random variables is conditional inde-
pendence. Intuitively, two random variables X and Y are independent conditioned upon a
collection of random variables Z = {Z1, Z2, . . . , Zn} when knowing X, or knowing Y , when
you already know Z does not affect the outcome of the other, and we write this as X ⊥⊥ Y | Z.

For example, suppose you have a well-trained dog that only barks either when there is
someone at the door or there is an earthquake. In this situation, our random variables might
be: E (whether an earthquake is happening), D (whether there is someone at the door), and
B (whether your dog is barking).

In this case, there are 6 possible independences: E ⊥⊥ D, E ⊥⊥ B, D ⊥⊥ B, E ⊥⊥ D | B,
E ⊥⊥ B | D, and D ⊥⊥ B | E. Some of these are incompatible with our situation. For
example, E and B are not independent, because knowing E gives us information about B.
However, E and D are independent because knowing E does not give us information about
D. Now something a little strange can occur: once we condition on B, it’s no longer the
case that E and D are independent. If you know that your dog is barking and there is no
one at the door, then you can conclude that there is an earthquake. In general, we obtain
this information from a joint probability distribution, and conditional independence gives
qualitative information about a collection of random variables.
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Semigraphoids

One way to understand conditional independence more deeply is to abstract it. Suppose
someone gives you n random variables X1, X2, . . . , Xn, and a set of conditional independence
relations of the form Xi ⊥⊥ Xj | {Xk1 , Xk2 , . . . , Xkl}. Ideally, you’d like to understand
whether or not these conditional independence relations could have been the conditional
independence relations of an actual probability distribution. (Remember that in the example
with E,D,B, there were some conditional independence statements that were incompatible
with the situation.)

Unfortunately, the answer is that you cannot do this: there is not finite list of rules you
can check that will give you a test to determine whether an arbitrary set of conditional
independence relations come from an actual probability distribution...naturally, we won’t let
this stop us. Our next best bet is to write down some very agreeable rules which must be
satisfied. (This means that we can decide when something does not come from a probability
distribution, but not when it does.) Here is the list:

Symmetry X ⊥⊥ Y =⇒ Y ⊥⊥ X

Decomposition X ⊥⊥ A,B =⇒ X ⊥⊥ A and X ⊥⊥ B

Weak Union X ⊥⊥ A,B =⇒ X ⊥⊥ A | B and X ⊥⊥ B | A

Contraction X ⊥⊥ A | B and X ⊥⊥ B =⇒ X ⊥⊥ A,B

Intersection X ⊥⊥ A | B,C and X ⊥⊥ B | A,C =⇒ X ⊥⊥ A,B | C

For a collection of random variables X1, . . . , Xn, and a set S of conditional independence
statements (statements of the form Xi ⊥⊥ Xj | {Xk1 , . . . , Xkn}, we say that X is independent
of Y given Z if X ⊥⊥ Y | Z ∈ S (here X, Y, Z are sets of random variables). We call sets S
satisfying the first four rules semigraphoids. Semigraphoids additionally satisfying the fifth
rule are called graphoids.

It takes some work, but you can prove that any probability distribution satisfies these
rules. However, some of them are fairly intuitive: for example, if X and Y are independent,
then the order I declare them in does not matter. Or if X is independent of multiple things,
then it should be independent of those things individually.

In the most general case, it is difficult to use this abstraction to obtain something useful.
However, an active field of current research aims to study families of semigraphoids and
understand their properties using tools from various other fields of math.

Why do I care?

While occasionally very elegant, abstraction for the sake of abstraction is something that
is often somewhat difficult to appreciate concretely. In this case, however, there are many
tangible outcomes. One nice application of these is to the problem of causal inference. n
Suppose you have a complicated system, and you want to understand how the individual
components interact. You’re able to make some observations – maybe you decide that some
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components are independent, while others seem to depend on each other, etc. In this way,
you write down a set of conditional independence statements you suspect (or know) are true.
However, completely determining the system would require too many experiments or too
many resources to perform, and you can only gather limited information. (For example, this
scenario comes up frequently in the sciences, especially in modelling biological or chemical
networks.)

With your data, you would still like to try to determine how your system is put together,
and which pieces interact with what other pieces. This can guide future experiments, and
suggest previously unidentified connections.

First, you can test whether your data is correct: you should check that the semigraphoid
rules are not violated. If they are, then your data could not have come from a probability
distribution, and thus probably not from real life data. Next, you can try to determine which
semigraphoid best completess your data. This involves determining some metric by which
to determine how “good” a fit a semigraphoid is, and there are some general heuristics for
how to do this.

Essentially, semigraphoids provide a formal framework within which to analyze your data,
and they allow you to apply many mathematical tools to various problems without needing
to understand the technical details of these methods.
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