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Sensitivity of the Kurtosis Statistic as a
Detector of Pulsed Sinusoidal RFI

Roger D. De Roo, Member, IEEE, Sidharth Misra, and Christopher S. Ruf, Fellow, IEEE

Abstract—A new type of microwave radiometer detector that
is capable of identifying low-level pulsed radio frequency inter-
ference (RFI) has been developed. The Agile Digital Detector can
discriminate between RFI and natural thermal emission signals by
directly measuring other moments of the signal than the variance
that is traditionally measured. The kurtosis is the ratio of the
fourth central moment of the predetected voltage to the square
of the second central moment. It can be an excellent indicator of
the presence of RFI. A number of issues that are related to the
proper calculation of the kurtosis are addressed. The mean and
standard deviation of the kurtosis, in both the absence and the
presence of pulsed sinusoidal RFI, are derived. The kurtosis is
much more sensitive to short-pulsed RFI—such as from radars—
than to continuous-wave RFI. The minimum detectable power for
pulsed sinusoidal RFI is found to be proportional to (M 3N)−1/4,
where N is the number of independent samples and M is the
number of frequency subbands in the receiver.

Index Terms—Detectors, digital radio, interference suppression,
microwave radiometry.

I. INTRODUCTION

NUMEROUS studies have revealed that spaceborne mi-
crowave radiometers are subject to detrimental radio-

frequency interference (RFI), particularly at the L- and C-bands
[1]–[3] and also at the X-band [4], [5], and potentially at the
K-band [6]. This RFI is insidious. The International Telecom-
munications Union (ITU) laments “that studies have established
that measurements in absorption bands are extremely vulnera-
ble to interference because, in general, there is no possibility to
detect and to reject data that are contaminated by interference,
and because propagation of undetected contaminated data into
[numerical weather prediction] models may have a destructive
impact on the reliability/quality of weather forecasting [7].”
The ITU recommendation continues that the maximum in-
terference level for spaceborne microwave radiometers in all
bands should be one fifth of the power associated with the
noise-equivalent brightness uncertainty (NE∆T) needed for
the science objectives of the instrument. This recommendation
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is tight because RFI is additive, and therefore, random noise
reduction techniques such as oversampling and averaging will
be biased. While it is easy to remove large-amplitude RFI,
for which contaminated measurements indicate physically im-
plausible brightness, low-level RFI remains a problem. Since
radiometers are themselves the most sensitive microwave re-
ceivers, the seriousness of the problem is not even known. This
paper presents the theoretical basis behind a novel technique for
detecting low-level RFI in radiometric observations.

Previous analog and digital signal-processing-based algo-
rithms have been developed for RFI mitigation that are based
on the detection of anomalous spikes in the power spectrum
over narrow frequency bands [8], [9]. Such approaches will, in
general, tend to have more trouble detecting low-level intermit-
tent RFI. The Agile Digital Detector (ADD) is a digital signal-
processing detector that uses an alternative approach to RFI
detection and mitigation. High-order moments of the received
signal are detected, from which characteristics of the probabil-
ity distribution of its amplitude can be estimated. For a signal
that is generated by thermal emission alone, the amplitude is
Gaussian distributed. The presence of non-Gaussian-distributed
RFI can be detected by its influence on the high-order moments.
ADD performance has been empirically verified previously
during ground-based field trials [10]. Presented here are sta-
tistical characteristics of ADD performance based on analytical
considerations. The concept of kurtosis-based detection of RFI
is first described in Section II. In Section III, the behavior of
the kurtosis statistic in the absence of RFI is described. In
Section IV, the behavior of the kurtosis statistic in the presence
of pulsed sinusoidal RFI is introduced. A blind spot in the RFI
detection algorithm and the threshold for RFI detectability are
discussed in Section V.

For the purpose of illustrating by example some of the
statistical concepts presented in this paper, it is useful to con-
sider some relevant radiometer operating characteristics. We
use values for the ADD prototype radiometer described in [10].
This radiometer operates with a 24-MHz total bandwidth that
is divided into eight subbands, each 3 MHz wide, using digital
filters. Data samples were taken with integration times of 36 ms.
This yields the number of independent samples: N = Bτ =
108 000 per observation in each subband. The system noise
temperature Tsys of the radiometer was approximately 600 K
while observing an ambient blackbody brightness temperature
of 290 K. Radiometer gain was set so that the ADD digitizer
covered a dynamic range of approximately six times the stan-
dard deviation of the Gaussian-distributed signal when Tsys =
600 K. For interference sources, we consider the Air Route
Surveillance Radars (ARSRs) operated by the U.S. Federal
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Fig. 1. Example of predetection signals. On the left are time-domain repre-
sentations of the signals. Their pdfs are shown on the right. Geophysical signals
and receiver noise are Gaussian distributed in amplitude (top), while sinusoids
have a distinctly non-Gaussian pdf (bottom).

Aviation Administration. These L-band radars are distributed
throughout the U.S. and transmit at megawatt peak power levels
with center frequencies that range from 1215–1380 MHz [11],
which is very close to the L-band passive band in the range
of 1400–1427 MHz. ARSR-1 radars transmit with a 0.072%
duty cycle, while ARSR-4 radars transmit with a 1%–3.24%
duty cycle.

II. PRINCIPLE OF KURTOSIS-BASED RFI DETECTION

IN MICROWAVE RADIOMETRY

The signal detected by a microwave radiometer is primarily
from natural thermal emission as well as thermal noise gener-
ated by the hardware. The probability density function (pdf)
of the amplitude of this signal is Gaussian distributed. The
most likely form of RFI is sinusoidal, which has a completely
different amplitude distribution, as shown in Fig. 1.

In the absence of RFI, the random voltage v at the input
to a digitizer is given by the Gaussian probability density
pg(v), i.e.,

pg(v) =
1

σ
√

2π
e

−v2

2σ2 . (1)

The RFI detection algorithm makes use of the higher order
moments of the random variable v. The central moments of the
distribution are given by

mg
n = 〈(v − 〈v〉)n〉 = 1 · 3 · · · · · · (n− 1)σn (2)

where σ is the standard deviation of v and n is even. The mo-
ment mn = 0 when n is odd. In case of a Gaussian-distributed

signal, higher order moments are uniquely determined by the
standard deviation. The kurtosis of v is defined as

R =
m4

m2
2

. (3)

For a Gaussian-distributed signal, the kurtosis is equal to 3,
independent of σ. In case the signal is corrupted by RFI, the
probability may deviate from a Gaussian distribution, and the
value of the kurtosis may deviate from 3.

The detection of RFI thus reduces to the problem of deciding
from its samples if a variable is normally distributed. This
is a well-documented area of research [12]. The moment-
ratio-based methods are especially appealing for radiometric
operation because calculations of the test statistic are simple
(and therefore fast), they do not require significant data storage
(e.g., no ranking of data is required), and the postdetect data
transmission rate is not significantly different from current
receiver technologies that do not employ RFI detection. In
addition, the statistic R is independent of the statistic m2 for
a Gaussian distribution [12]. Therefore, estimates of m2 and
hence of the brightness temperature will be unbiased by the
removal of samples incorrectly flagged as containing RFI by a
kurtosis-based algorithm. RFI detection algorithms which rely
on brightness thresholds may be biased because high outliers
are suppressed.

III. KURTOSIS IN THE ABSENCE OF RFI

While the kurtosis is ideally equal to 3 for a Gaussian dis-
tribution, the measurement process results in a sample estimate
of the kurtosis that can deviate from the theoretical value. This
section explores some mechanisms of the measurement process
and how they can affect the estimate of the kurtosis when no
RFI is present.

A. Effects of Finite Number of Independent Samples

Because the kurtosis is estimated from a finite sample set, it
is itself a random variable. Let its pdf be denoted by p(R;N),
where N is the number of independent samples. The area under
the outlying tails of the pdf determines the rate of false detec-
tions of RFI in otherwise RFI-free radiometric observations.
Closed-form expressions for p(R;N) exist only for N = 4
[13], which is a sample size that is much too small for prac-
tical utility. Fortunately, the moments of p(R;N) are known
exactly for arbitrary N up to the seventh moment [14]–[16]
and can be used to estimate the area under its tails. In the
limit of large N , p(R;N) tends toward normal with mean
〈R〉 = 3(N − 1)/(N + 1) and variance that asymptotically
approaches 24/N . The normal approximation requires a rather
large N (N > 50 000). For radiometer applications with very
fine bandwidth resolution and very short integration times, the
non-Gaussian nature of p(R;N) should be taken into account
in order to minimize the false alarms of RFI detection.

A common moment-based estimator for pdfs and cumulative
distribution functions (CDFs) is the Edgeworth series [17],
but this series generates negative values for the pdf in the
tails, resulting in poor area estimates under the tails. Bowman
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Fig. 2. Contours of the CDF for the kurtosis R as a function of the number
of independent samples N when the samples are drawn from a Gaussian
population.

and Shenton [18] recommend an alternative approximation for
N > 25 given by

p(R;N) =
1√
2π

exp

(
−1

2

(
γ + δ sinh−1

(
R− ξ

λ

))2
)

× δ√
(R− ξ)2 + λ2

(4)

where the parameters γ, δ, λ, ξ are estimated from the first
four moments of p(R;N) using the algorithm of [19]. The con-
tours of constant CDF, which are calculated with this method,
are shown in Fig. 2. This plot extends from sufficiently low
N (∼100) that comparisons can be made to other approxima-
tions, such as the empirically derived curves for 20 < N < 200
in [20], with which they agree quite closely, except far out on
the tails (for the CDF < 0.007 and CDF > 0.975 curves). Out
on the tails for these low values of N , the curves in Fig. 2
are slightly conservative. Above approximately N = 50 000,
the distribution of R can be described as normal, but at fewer
samples, the tail for large R is longer than the tail for small
R, and different thresholds for departures from 3 should be
considered for the upper and lower tails to flag the presence
of RFI. To take an extreme example, at N = 2000, a blind
application of the large N limit of the variance would indicate
that the symmetric 1% thresholds, namely, the mean ±2.58
standard deviations, for RFI-free R should be 2.715 < R <

TABLE I
RATIO OF SAMPLES WITHIN THE DIGITIZER SPAN TO OUTLIERS FOR AN

RFI-FREE SIGNAL WITH DIFFERENT DIGITIZER SPANS

3.279. While the RFI-free rejection is about the same (1.1%),
the actual 1% thresholds are 2.744 < R < 3.315. As will be
seen here, this offset of the correct thresholds strengthens the
moment-ratio test against continuous-wave (CW) RFI, but it
weakens it against short-pulsed RFI.

B. Effects of Clipping by Digitizers

All digitizers have a finite input range. For the moment-
ratio method to work properly, out-of-range signals must be
sufficiently rare so as not to appreciably disturb the expected
statistics of the RFI-free data. This can easily be achieved since
the tails of the Gaussian pdf fall off very rapidly. Table I gives
the ratio of the area below the Gaussian curve within specified
limits to the area outside those limits. This is equivalent to the
ratio of the number of samples within the limits to those that
fall outside of them or the odds against an outlier. Even for very
modest spans, keeping the expected number of outliers below
1 per integration period can be easily achieved. Sufficient span
is also important to prevent clipping of RFI since the easiest
RFI to detect is that which is very strong.

C. Effects of Digitizer Null Offset

There has been no distinction thus far between the moments
about the origin µn and the moments about the mean mn

because all RF signals have zero mean. However, the digitizing
hardware often introduces a mean into the data because the
analog-to-digital converter (ADC) has a null offset. In terms
of the digitizer outputs vi, the nth moment about the origin is
given by

µn =
1
Ns

Ns∑
i=1

vn
i (5)

where Ns is the number of digitized samples, fs is the sampling
rate, τ is the integration time, and Ns = 1 + fsτ . Since the
digitizing rate may exceed the bandwidth of the signal, the
samples may be correlated, and the number of digitized sam-
ples Ns may exceed the number of independent samples N .
However, the number of independent samples cannot exceed
the number of samples collected. In other words, Ns ≥ N ,
with the equality holding when fs ≤ B. The moment about the
origin calculations is very easily achieved for even rather rapid
sampling rates in digital logic such as a field-programmable
gate array (FPGA). The moments about the mean as a function



DE ROO et al.: SENSITIVITY OF THE KURTOSIS STATISTIC 1941

of the moments about the origin can be readily derived with the
binomial formula [21]

ma
2 =µ2 − µ2

1 (6)

ma
4 =µ4 − 4µ3µ1 + 6µ2µ

2
1 − 3µ4

1 (7)

where the superscript a indicates an ideal analog operation,
i.e., without the effects of digitization. Thus, a digital receiver
configured to perform kurtosis calculations should collect the
first four moments about the origin of the data to correct for the
ADC null offset. Null offsets of even a fraction of a digitizing
bin can be removed in this manner.

D. Effects of Digitization

Digitization of the signal results in a small loss of infor-
mation since the continuous random variable is binned by the
ADC. For example, the variance of a digitized Gaussian signal
is larger than the variance of the analog signal by the variance
of a uniform distribution that is one digitizing bin wide. This
is because the act of digitizing can be viewed as adding to
the analog signal a random amount, which is either positive
or negative up to one half of a digitizing bin. If the signal
strength is sufficiently strong, the amount added to the data
by digitization is nearly uniformly distributed. A similar effect
occurs to all even moments of a digitized distribution. Fischman
and England [22] have derived the effects of digitization on the
moments of a Gaussian distribution as a function of the width
of a digitization bin v0. They found that

md
2 =σ2 +

1
12

v2
0 (8)

md
4 = 3σ4 +

1
2
σ2v2

0 +
1
80

v4
0 (9)

where the superscript d indicates that the Gaussian signal has
been digitized. They further found that the correction for the
variance is accurate for a Gaussian signal as long as the standard
deviation σ is greater than 2/3 v0 and the correction for the
fourth moment is accurate for σ > 3/4 v0.

For radio brightness measurements of the second moment,
this digitization offset is a constant and can be lumped with
the receiver temperature. For kurtosis measurements of thermal
noise, the digitization offsets in the second and fourth moments
nearly cancel when the ratio (3) is taken, i.e.,

md
4(

md
2

)2 = 3 −
1

120((
σ
v0

)2

+ 1
12

)2 . (10)

The offset induced in the kurtosis statistic by neglecting the
effects of digitization is always negative, and while it is about
−1% at σ = 2/3 v0, it decreases to −0.24% at σ = v0 and
decreases further as the signal strength at the ADC input is
increased. For the case of the ADD measurements presented
in [10], the instrument gain was set so that σ = 10v0.

The correction for the effects of digitization has been derived
by Sheppard and is given by [21]

m2 =µ2 − µ2
1 −

1
12

v2
0

m4 =µ4 − 4µ3µ1 + 6µ2µ
2
1 − 3µ4

1

− 1
2
(
µ2 − µ2

1

)
v2
0 +

7
240

v4
0 . (11)

These moments are the estimators of the second and fourth
central moments, which are unbiased by the effects of digi-
tization, in terms of the output of the FPGA. Errors in the
ADC transfer function measured by the differential and integral
nonlinearities have not been considered. While radiometric and
even interferometric operation is quite feasible with only a few
levels, Sheppard’s correction must be generalized for optimal
signal detection [23]. In the rest of this paper, our measurements
were made with sufficiently strong signals that Sheppard’s
correction has been neglected.

IV. KURTOSIS IN THE PRESENCE OF

PULSED SINUSOIDAL RFI

The kurtosis may change in the presence of RFI. Here, we
characterize the behavior of the kurtosis in the presence of a
radarlike source of RFI.

A. Combined Gaussian Noise and a Pulsed Sinusoid

Assume that the RFI can be modeled as a pulsed sinusoid
with an amplitude A and total duration dτ , where τ is the
radiometer integration time and 0 ≤ d ≤ 1. In our case, even
though the RFI is deterministic in nature, we consider its
amplitude histogram as an equivalent probability distribution.
The pdf of such a waveform is given by

pps(v) = (1 − d)δ(v) +
d

π
√
A2 − v2

(12)

where δ(x) is the Dirac delta function. If the integration time
greatly exceeds the interpulse period, then d is the radar’s
duty cycle, which is the proportion of time that the radar
is transmitting. We require the probability distribution of the
combined signal that includes both thermal emission and the
RFI signal. Rice [24] determined the probability distribution
function for the instantaneous voltage of a sinusoid with noise,
which is easily extended to the case of a pulsed sinusoid, i.e.,

p(v) =
1√
2πσ

e
−v2

2σ2

(
1 + d

∞∑
k=1

1
(k!)2

(
A

2σ

)2k

He2k

( v
σ

))

(13)

where

He2k(x) =
k∑

m=0

(−1)m

2m

(2k)!
m!(2k − 2m)!

x2k−2m (14)

is a Hermite polynomial of even order [17]. When d = 0
or A = 0, the expression reduces to a Gaussian probability
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Fig. 3. Instantaneous voltage pdf for constant Gaussian noise level and
constant pulsed sinusoid amplitude but varying duty cycle.

Fig. 4. Comparison of (13) with the ADD output while the radiometer is
observing the sky with an equivalent of 2000 K of CW at 1412 MHz added
to the input.

distribution. Rice’s result is the case when d = 1. Fig. 3 shows
the shapes predicted by (13) for constant noise and pulsed
sinusoid amplitudes. Fig. 4 shows a comparison of Rice’s result
with the measurements presented in [10].

In order to calculate the statistical behavior of the kurtosis,
we require the first four moments of the resultant signal. Since
the distributions are symmetric about v = 0, the odd moments
are zero. Thus, the first four nonzero moments for the signal
with pulsed sinusoidal contamination become

mps
2 =σ2+

dA2

2
=σ2(1+S) (15)

mps
4 =3

(
σ4+dA2σ2+

dA4

8

)
=3σ4

(
1+2S+

1
2d

S2

)
(16)

mps
6 =5σ6

(
3+9S+

9
2d

S2+
2

(2d)2
S3

)
(17)

mps
8 =35σ8

(
3+12S+

18
2d

S2+
8

(2d)2
S3+

1
(2d)3

S4

)
(18)

Fig. 5. Examples of instantaneous voltage pdfs with the same variance
(mps

2 = 64). Pulsed sinusoidal RFI, when present, has a constant signal-to-
noise power level but different duty cycles. The low-duty-cycle RFI has the
highest tails and is easiest to detect with the kurtosis statistic.

where S is the signal-to-noise ratio of the pulsed sinusoid power
(Pps = dA2/2, which is averaged over an integration period) to
the noise power and is given by

S =
dA2

2σ2
=

Pps

kTsysB
=

Tps

Tsys
(19)

where σ2 = kTsysB, k is the Boltzmann constant, and B is
the RF bandwidth. S is also the ratio of the equivalent RFI
brightness temperature Tps to the system temperature (in the
absence of RFI) Tsys. The shape of the pdf of the instantaneous
voltage as a function of the duty cycle, but with the total power
kept constant, is depicted in Fig. 5. The tails of the distribution
are highest at low duty cycles.

B. Mean and Variance of Kurtosis With Pulsed Sinusoidal RFI

In the presence of pulsed sinusoidal RFI, the large sample
expected value of the kurtosis becomes

R(S, d) =
mps

4

(mps
2 )2

= 3

(
1 + 2S + 1

2dS
2
)

(1 + S)2
. (20)

In the CW limit (d = 1), R ranges from 3 to 3/2 as the power
in the sinusoid increases. However, as d → 0 but S > 0 (corre-
sponding to very short radar pulses), R > 3. These departures
from 3 enable the detection of RFI.

The large sample variance in the kurtosis statistic can be
derived from the moments to be [25]

σ2
R(S, d) =

1

N (mps
2 )4

×
[
mps

8 − (mps
4 )2 +

4 (mps
4 )3

(mps
2 )2

− 4mps
4 mps

6

mps
2

]
. (21)

For S = 0 (i.e., in the absence of RFI), the variance of the kur-
tosis statistic reduces to σ2

R(S = 0) = 24/N . We shall denote
this special value as σ2

R0.
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V. LIMITS OF DETECTION

A. Blind Spot and False Alarm Rate (FAR)

If the kurtosis becomes 3, then, in spite of the presence of
RFI, the algorithm will fail to detect it. This indicates a blind
spot in the algorithm. Two conditions are possible in which
the kurtosis becomes 3: S = 0 or d = 1/2. The first condition
corresponds to the absence of RFI, while the second is an
algorithm blind spot. It is worth noting that practical radars tend
to operate with duty cycles well below 50%, and so radiometers
will generally not be subject to this problem. Nonetheless, this
result is somewhat surprising given the obvious differences
between the 50% duty cycle and Gaussian pdfs in Fig. 5. This
is because the kurtosis is just one more parameter that describes
the pdf. A more complete description of the pdf requires more
moments of the pdf.

In light of the variance in R even in the absence of RFI,
there will be a range of RFI around R = 3 ± zσR0 for some z
determined by the desired FAR for which the kurtosis algorithm
is blind. To determine this region of blindness, we solve (20) for
the duty cycle, i.e.,

d =
3
2S

2

(1 + S)2R− 3(1 + 2S)
. (22)

Provided that the number of independent samples N is suffi-
ciently high to invoke the normal distribution of the kurtosis R,
the relation between a specified FAR and the threshold values of
the kurtosis Rtha = 3 + zaσR0 and Rthb = 3 − zbσR0 is given
by FAR = FARa + FARb, where

FARa,b =
1
2

(
1 − erf(za,b/

√
2)
)

(23)

and the subscripts a and b refer to the tail of the distribution
“above” and “below” the RFI-free kurtosis mean value of 3.

Fig. 6 illustrates the region of sinusoid amplitude and duty
cycle in which the signal will not be detected by the kurtosis for
a given number of independent samples and FAR. The kurtosis
is blind at a 50% duty cycle. In this example, the FAR is nearly
symmetric (FARa = FARb) because N is sufficiently large to
invoke the normal distribution of R and z = za = zb. For the
curves presented in Fig. 6, zσR0 = 0.03, which corresponds
to an arbitrarily chosen FAR = 4.4% for N = 108 000. Under
these conditions, the 100% duty cycle (CW) limit of detection
is S = −7.84 dB, corresponding to Tps = 99 K, assuming an
RFI-free Tsys = 600 K. The limit of detection for very short
duty cycle RFI is lower. For example, the ∼1% duty cycle of
ARSR-4 radars should be detectable at −18.4 dB (8.3 K), and
the ∼0.1% duty cycle of ARSR-1 radars should be detectable
at S = −23.4 dB (2.7 K) at FAR = 4.4%. For FARa = 10%,
the ARSR-1 detectable limit is S = −24.4 dB (2.2 K). This is
very close to the ideal radiometric uncertainty since NE∆T =
Tsys/

√
N = 1.8 K.

B. Probability of Detection

When the number of samples N is sufficiently large to
describe the distribution of the kurtosis as having a Gaussian

Fig. 6. Kurtosis blindness to pulsed sinusoidal RFI, with zσR0 = 0.03,
which is the 4.4% FAR for Bτ = 108 000. The pulsed sinusoidal RFI with
duty cycle and power between the R = 3 ± zσR0 curves are not detectable.
At any power level, a 50% duty cycle is undetectable. The limit of detectability
for very short pulsed RFI is much lower than that for CW RFI and approaches
NE∆T.

distribution with mean R and standard deviation σR, we can
predict not only the FAR but also the probability of detection
(PD) for a given threshold value of kurtosis Rth, strength S, and
duty cycle d of pulsed sinusoid RFI. Considering the blind spot
at d = 1/2, the PD for RFI with d < 1/2 (e.g., radars) will be
denoted as PDa because we expect R to be above 3, while RFI
with d > 1/2 (e.g., CW RFI) will be denoted as PDb because
we expect R to be below 3. These probabilities of detection are
given as

PDa,b =
1
2

(
1 ∓ erf

((
Rtha,b −R(S, d)

)
/
√

2σR(S, d)
))

.

(24)

Figs. 7 and 8 show the receiver operating characteristic charts
for 0.1% and 1% duty cycles, respectively, while Fig. 9 shows
the same for 100% duty cycle, for a fixed N = 108 000. The
performance of the algorithm is much better at a low duty cycle.

C. Dependence of Detection of RFI on System Parameters

For a duty cycle d that is small, the sinusoid amplitude A
must be substantial to obtain a particular level of interference.
The digitizer must not clip this short duration pulse, or we
will effectively reduce the interference to the point where it
remains present but is not detectable. If we arbitrarily consider
the minimum Tps which is unambiguously detectable without
using the kurtosis statistic as being equal to, say, 10NE∆T, then
the digitizer should not clip the signal for S < 10/

√
N . Solving

the first equality of (19) for the sinusoid amplitude, we obtain
A = 7.8 σ when d = 0.1% and N = 108 000. This implies the
ADC should have about three bits more than it needs to digitize
the RFI-free radiometric signal.

If we are to fix the FAR and PD, we can determine the
minimum detectable pulsed sinusoidal RFI using the kurto-
sis statistic. Consider, as a representative detection situation,
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Fig. 7. Probability of detection of a pulsed sinusoid with 0.1% duty cycle
versus single-sided FAR. N = 108 000. At an RFI contribution equal to
2NE∆T, detection exceeds 90% for a FAR of 3%.

Fig. 8. Probability of detection of a pulsed sinusoid with 1% duty cycle versus
single-sided FAR. N = 108 000. The detection of RFI at a strength of 8NE∆T
is nearly perfect.

setting the PD to PD = 1 − FAR. This is equivalent to setting
the threshold kurtosis value to the same number of standard
deviations away from the means of both the RFI-free and pulsed
sinusoidal RFI-containing pdfs, i.e.,

Rtha,b = 3 − zσR0 = R(Smin, d) + zσR(Smin, d) (25)

where Smin is the minimum detectable S and z is a para-
meter that is fixed based on the desired FAR. For example,
FARb,a = 15.87% for z = ±1, FARb,a = 2.28% for z = ±2,

Fig. 9. Probability of detection of a CW tone (duty cycle of 100%) versus
single-sided FAR. N = 108 000. The power in the sinusoid must get relatively
strong to be reliably detected in a single look.

Fig. 10. Minimum detectable RFI as a function of the number of samples
N and duty cycle d for a fixed FAR and PD, with PD = 1 − FAR, and
the FAR determined by the threshold kurtosis Rth = 3 ± zσR0. For N >
100 000, the kurtosis algorithm is most sensitive to short duty cycle RFI. The
minimum detectable RFI, when measured in Kelvin, is proportional to N−1/4

for a large N .

and FARb,a = 0.13% for z = ±3. Solving the equation for the
constant z, we get

z =
3S2

min

√
N
24

(
1 − 1

2d

)
(1 + Smin)2 (1 + σR(Smin, d)/σR0)

. (26)

As N → ∞, the ratio of the standard deviations becomes
constant, and Smin is proportional to N−1/4. Expressed in
terms of the ideal radiometer uncertainty NE∆T, which itself
is proportional to N−1/2, the minimum detectable RFI grows
as N1/4, as shown in Fig. 10. Thus, the kurtosis algorithm can
be used to detect an arbitrarily low level of RFI, but the number
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of samples needed to do so increases somewhat faster than that
needed for a particular radiometric resolution.

Division of the RF bandwidth B into subbands is an approach
to salvage some observations when the RFI is narrowband
and has been used to detect RFI by comparing the power
in each subband [8], [9]. Polyphase filters [26] can be used
in the FPGA to divide the RF bandwidth into M subbands.
This division into subbands also enhances the sensitivity of
the kurtosis statistic to RFI. Because the RFI is presumed to
be narrowband, the RFI signal strength for a subband with
pulsed sinusoidal RFI is the same as that which would appear
in the full reception bandwidth. However, the noise power is
proportional to the bandwidth, and so the signal-to-noise ratio
for the subband Ssb is enhanced by a factor of M over that
of full bandwidth reception: Ssb = MS. At the same time,
the number of independent samples for each subband Nsb is
reduced by a factor of M : Nsb = N/M . Since the sensitivity
analysis for one subband is the same as for full-band reception,
we can conclude that Ssb,min is proportional to N

−1/4
sb , or for

the entire system, Smin is proportional to (M3N)−1/4. Thus,
in terms of the minimum detectable RFI, the division of the
received bandwidth into eight subbands, as done in the ADD,
is equivalent to increasing the number of independent samples
by a factor of 512 and reducing the minimum detectable RFI
power by a factor of 4.75.

The limit of detection is a function of S, which is the ratio
of the pulsed sinusoid power to the total Gaussian-distributed
power. This Gaussian-distributed power is the system temper-
ature Tsys, which is the sum of the receiver noise temperature
and the geophysical brightness temperature, which is the point
of the radiometric observation, i.e., Tsys = TREC + TB . A re-
duction of the receiver noise figure, i.e., a reduction of TREC, is
well known to reduce the standard error of observation of TB .
A quiet receiver also helps in the detection of RFI by reducing
the Tsys, the baseline from which the minimum detectible RFI
power is calculated from the sinusoid to thermal power ratio S.

The standard error of the brightness observation can be
reduced by combining observations together. The same can
be done, at least in principle, to the other moments of the
observation, thereby increasing the number of independent
samples, and thus the sensitivity of the kurtosis test for RFI.
However, much like the brightness uncertainty can increase for
long integration times due to gain fluctuations or ultimately,
scene brightness changes, the kurtosis is also sensitive to these
effects. For example, if an RFI-free observation has a standard
deviation σ1 for a duration t1 but then suddenly changes to σ2

for a duration t2, then m2 = (t1 σ2
1 + t2 σ2

2)/(t1 + t2), and
m4 = 3(t1 σ4

1 + t2 σ4
2)/(t1 + t2). Thus

R = 3
t21σ

4
1 + t1t2

(
σ4

1 + σ4
2

)
+ t22σ

4
2

t21σ
4
1 + t1t2 (2σ2

1σ
2
2) + t22σ

4
2

. (27)

In this circumstance, R = 3 only if σ1 = σ2, t1 = 0, or t2 = 0,
which are the conditions that correspond to a constant standard
deviation. Otherwise, R > 3. Thus, integration periods should
be restricted to limit the effects of gain and brightness changes
on the kurtosis statistic as well as their effects on the brightness.

VI. CONCLUSION

The kurtosis of the predetected voltage has been presented
as a means of detecting the presence of pulsed sinusoidal RFI
in radiometric observations. The predetected voltage due to
thermal emission obeys the Gaussian pdf, for which the kurtosis
is 3, regardless of the variance (brightness) of the signal. Finite
sample sizes, digitizer offsets, digitizer spans, and the digitizer
bin size affect the kurtosis calculation in small but predictable
ways in the absence of RFI. When pulsed sinusoidal RFI is
added to the thermal noise, the kurtosis statistic can deviate
significantly from 3, indicating the presence of the RFI. CW
RFI tends to drive the kurtosis value to less than 3, while short
duty cycle pulses, such as those from radars, drive the kurtosis
to exceed 3. A pulsed sinusoid with a 50% duty cycle added to
Gaussian noise has an expected kurtosis of 3 and thus cannot
be detected by an RFI detection algorithm using the kurtosis.
For very short duty cycle RFI, such as radar transmissions, the
minimum RFI power for which the kurtosis can detect the RFI
approaches the ideal radiometric uncertainty. The sensitivity of
the kurtosis to RFI can be enhanced by dividing the system
bandwidth in the receiver into multiple frequency subbands,
possibly to the point that some RFI at the limit recommended
by the ITU for spaceborne passive sensors is detectable. The
ADD has been configured to use the RFI detection scheme
based on the kurtosis of the predetected voltage. The ADD has
been used in multiple campaigns to date, and the data collected
is currently being processed to demonstrate the performance of
the RFI detection scheme using the kurtosis.
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